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Abstract: Infectious diseases such as trypanosomiasis and leishmaniasis are considered 

neglected tropical diseases due the lack for many years of research and development into 

new drug treatments besides the high incidence of mortality and the lack of current safe 

and effective drug therapies. Natural products such as sesquiterpene lactones have shown 

activity against T. brucei and L. donovani, the parasites responsible for these neglected 

diseases. To evaluate structure activity relationships, HQSAR models were constructed to 

relate a series of 40 sesquiterpene lactones (STLs) with activity against T. brucei, T. cruzi, 

L. donovani and P. falciparum and also with their cytotoxicity. All constructed models 

showed good internal (leave-one-out q
2
 values ranging from 0.637 to 0.775) and external 

validation coefficients (r
2

test values ranging from 0.653 to 0.944). From HQSAR 

contribution maps, several differences between the most and least potent compounds were 

found. The fragment contribution of PLS-generated models confirmed the results of 

previous QSAR studies that the presence of α,β-unsatured carbonyl groups is fundamental 

to biological activity. QSAR models for the activity of these compounds against T. cruzi,  

L. donovani and P. falciparum are reported here for the first time. The constructed HQSAR 

models are suitable to predict the activity of untested STLs. 
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1. Introduction 

Nowadays, several diseases caused by protozoan parasites such as leishamaniases, trypanosomiases 

(Chagas Disease and African Sleeping sickness) and malaria represent major health risks in developing 

countries. Leishmaniases and trypanosomiases have few available drug therapies and the development 

of anti-malarial compounds is also urgently needed due to rapidly emerging resistance of the parasites 

against existing drugs. Is estimated that the infections by Trypanosoma and Leishmania are responsible 

for over a million deaths per year. Their treatment by drugs is complicated by severe side effects due to 

the high toxicity of available drugs. Due to the lack of research and development of new drugs over 

many decades, these diseases are considered “neglected tropical diseases” [1–5]. There is thus an 

urgent need for development of new therapeuticals against these diseases. Many classes of chemicals 

have been tested against these parasites. Among them, natural products and, particularly, sesquiterpene 

lactones (STLs) have shown interesting activities [6,7]. 

In a previous study [8], in vitro activity data for 40 sesquiterpene lactones (STLs) against 

Trypanosoma brucei rhodesiense (the etiologic agent of East African sleeping sickness; Tbr), T. cruzi 

(Chagas Disease; Tcr), Leishmania donovani (visceral leishmaniasis, Kala-Azar; Ldon) as well as 

Plasmodium falciparum (tropical malaria; Pfc) were reported. Quantitative structure-activity 

relationship (QSAR) models for the activity against T. brucei rhodesiense and for the cytotoxic activity 

of these compounds against L6 rat skeletal myoblast cells were presented. It was found that the 

biological effects against the protozoan parasites were all correlated significantly with cytotoxicity 

against the mammalian control cells. It was not possible at that time and with the methods used for 

QSAR modelling to clearly define a structural basis for selectivity against the parasites [8]. QSAR 

approaches are considered powerful tools in lead identification as well as optimization [9] in cases where 

the bioactivity of congeneric sets of compounds is known. Even though QSAR methods have been applied 

to STLs successfully for several bioactivities [10–13] it remained a challenge to construct validated models 

of anti-protozoal activity of STLs against T. cruzi, L. donovani and P. falciparum [8,14]. 

The main objective of our present work is therefore to apply the hologram quantitative structure-

activity relationship (HQSAR) approach to construct comparable models for all four mentioned 

protozoa and cytotoxicity and to employ the molecular fragment information of the generated models 

to analyze the structural basis for the antiprotozoal activity and cytotoxicity of the compounds in this 

data set in order to find possible reasons for the selectivity observed with some of the STLs. 

2. Results and Discussion 

As biological activities against T.brucei and L6 cover a range of at least three logarithmic units, as 

shown by Figure 1, and all data within each activity set were determined under identical experimental 

conditions [8], the dataset is deemed suitable for QSAR studies. The biological activities against  
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T. cruzi, L. donovani and P. falciparum only cover 2.25, 1.90 and 1.92 logarithmic units, respectively. 

This is not the ideal scenario to construct HQSAR models, but we decided to construct these three 

models in order to support the results generated by Tbr and L6 models. 

Figure 1. pIC50 distribution of the dataset of 40 STLs over the five biological activities 

under study. Each graph represents the respective number of compounds with measured 

pIC50 (N) values in a particular concentration range against each tested parasite and 

cytotoxicity (L6).  

 

Initially, the HQSAR models with 16 series of fragment distinction and fixed fragment size (4 to 7 

atoms) were generated for each series of biological activity (T. brucei rhodesiense, T. cruzi,  

L. donovani, P. falciparum and L6 cytotoxicity). The five best models for each dependent variable are 

presented in Table 1. 

The initial search for the fragment distinction that best represents each biological activity shows that 

the model employing fragments based on atoms, bonds and connections (A/B/C) provides the best 

description for anti-T. brucei activity (q
2
 = 0.637). The best models for T. cruzi and P. falciparum were 

obtained employing fragments based on atoms and connections (A/C) with cross-validated correlation 

coefficients (q
2
) equal to 0.721 and 0.703, respectively. Finally, best HQSAR models for L. donovani 

(q
2
 = 0.775) and cytotoxicity (q

2
 = 0.647) employed fragment distinction based on atoms, connections, 

chirality and H-bond donor/acceptor groups (A/C/Ch/DA). In general, these initial results indicate that 

both anti-Ldon activity and cytotoxicity could be influenced more strongly by H-bond interactions and 

stereoselectivity since the best Ldon and L6 models were the only ones constructed with Ch and DA 

flags in fragment distinction. 

  



Molecules 2014, 19 10549 

 

Table 1. 5 Best HQSAR models with fragment size equal to 4 to 7 atoms. 

Tbr HQSAR models 

Fdist q
2
 SEV r

2
 SEE HL PC 

A/B/C 0.637 0.576 0.822 0.404 53 4 

A/C/Ch 0.619 0.591 0.823 0.403 83 4 

A/C/Ch/DA 0.601 0.604 0.871 0.343 53 4 

A/C 0.577 0.622 0.835 0.389 71 4 

A/B/C/Ch 0.573 0.625 0.833 0.391 307 4 

Tcr HQSAR models 

Fdist q
2
 SEV r

2
 SEE HL PC 

A/C 0.721 0.297 0.939 0.139 71 6 

A/B/C 0.697 0.309 0.950 0.125 53 6 

A/B 0.695 0.303 0.884 0.187 353 5 

A/B/C/DA 0.694 0.304 0.922 0.153 71 5 

A/C/Ch 0.667 0.317 0.919 0.156 151 5 

Ldon HQSAR models 

Fdist q
2
 SEV r

2
 SEE HL PC 

A/C/Ch/DA 0.775 0.279 0.972 0.098 83 6 

A/C/DA 0.768 0.283 0.959 0.119 61 6 

A/B 0.731 0.289 0.920 0.158 71 4 

A/C 0.727 0.292 0.892 0.183 61 4 

A/C/Ch 0.707 0.319 0.970 0.103 199 6 

Pfc HQSAR models 

Fdist q
2
 SEV r

2
 SEE HL PC 

A/C 0.703 0.254 0.950 0.104 83 6 

A/B/C 0.684 0.262 0.951 0.104 307 6 

A/C/Ch 0.682 0.263 0.948 0.106 61 6 

A/C/DA 0.676 0.265 0.954 0.100 151 6 

A/B/C/DA 0.668 0.253 0.888 0.147 151 4 

L6 HQSAR models 

Fdist q
2
 SEV r

2
 SEE HL PC 

A/C/Ch/DA 0.647 0.343 0.893 0.189 61 5 

A/B/C/Ch 0.646 0.351 0.907 0.180 61 6 

A/C 0.636 0.348 0.852 0.222 257 5 

A/B/C/H 0.633 0.357 0.912 0.175 353 6 

A/B/C 0.629 0.351 0.862 0.215 353 5 

Fdist: fragment distinction; HL: hologram length; PC: number of PLS principal components; standard error of 

validation; SEE: standard error of estimation. 

After this step, the fragment distinction of the best models was fixed and then a variation of 

fragment size was employed in order to analyze the influence of this parameter on statistical results. 

For each model (Tbr, Tcr, Ldon, Pfc and L6 models), we tested the fragment sizes with: 1 to 4 atoms,  

2 to 5 atoms, 3 to 6 atoms, 4 to 7 atoms (tested in first step), 5 to 8 atoms, 6 to 9 atoms, 7 to 10 atoms 

and 8 to 11 atoms. All results of this second step are shown in Table 2. 
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Table 2. HQSAR models with fragment size variations from 1–4 atoms to 8–11 atoms. 

Tbr HQSAR models with Fdist = A/B/C 

Fsize (atoms) q
2
 SEV r

2
 SEE HL PC 

1 to 4 0.407 0.736 0.708 0.517 97 4 

2 to 5 0.547 0.644 0.761 0.467 83 4 

3 to 6 0.546 0.644 0.808 0.419 97 4 

4 to 7 0.637 0.576 0.822 0.404 53 4 

5 to 8 0.588 0.614 0.833 0.391 307 4 

6 to 9 0.565 0.631 0.817 0.409 53 4 

7 to 10 0.519 0.663 0.826 0.398 61 4 

8 to 11 0.480 0.690 0.819 0.406 151 4 

Tcr HQSAR models with Fdist = A/C 

Fsize (atoms) q
2
 SEV r

2
 SEE HL PC 

1 to 4 0.330 0.440 0.640 0.322 53 4 

2 to 5 0.518 0.381 0.825 0.230 53 5 

4 to 7 0.721 0.297 0.939 0.139 71 6 

3 to 6 0.637 0.339 0.934 0.145 199 6 

5 to 8 0.741 0.280 0.948 0.126 151 5 

6 to 9 0.729 0.286 0.953 0.120 151 5 

7 to 10 0.748 0.282 0.965 0.106 151 6 

8 to 11 0.689 0.299 0.923 0.149 353 4 

Ldon HQSAR models with Fdist = A/C/Ch/DA 

Fsize (atoms) q
2
 SEV r

2
 SEE HL PC 

1 to 4 0.542 0.398 0.881 0.203 151 6 

2 to 5 0.618 0.364 0.904 0.182 83 6 

3 to 6 0.706 0.319 0.966 0.108 151 6 

4 to 7 0.775 0.279 0.972 0.098 83 6 

5 to 8 0.770 0.282 0.982 0.080 199 6 

6 to 9 0.747 0.296 0.976 0.091 199 6 

7 to 10 0.733 0.296 0.968 0.103 307 5 

8 to 11 0.716 0.305 0.965 0.106 257 5 

Pfc HQSAR models Fdist = A/C 

Fsize (atoms) q
2
 SEV r

2
 SEE HL PC 

1 to 4 0.458 0.333 0.809 0.197 59 5 

2 to 5 0.615 0.280 0.875 0.160 61 5 

3 to 6 0.730 0.242 0.944 0.110 71 6 

4 to 7 0.703 0.254 0.950 0.104 83 6 

5 to 8 0.706 0.253 0.961 0.092 307 6 

6 to 9 0.683 0.262 0.965 0.087 353 6 

7 to 10 0.736 0.232 0.960 0.090 97 5 

8 to 11 0.732 0.241 0.982 0.063 353 6 
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Table 2. Cont. 

L6 HQSAR models Fdist = A/C/Ch/DA 

Fsize (atoms) q
2
 SEV r

2
 SEE HL PC 

1 to 4 0.204 0.504 0.713 0.303 61 4 

2 to 5 0.465 0.422 0.856 0.219 71 5 

3 to 6 0.568 0.371 0.843 0.224 307 4 

4 to 7 0.647 0.343 0.893 0.189 61 5 

5 to 8 0.673 0.337 0.952 0.129 71 6 

6 to 9 0.619 0.363 0.966 0.109 59 6 

7 to 10 0.549 0.379 0.889 0.188 151 4 

8 to 11 0.583 0.373 0.948 0.131 151 5 

Fdist: fragment distinction; Fsize: fragment distinction; HL: hologram length; PC: number of PLS principal 

components; standard error of validation; SEE: standard error of estimation. 

After the analysis of the influence of fragment distinction and size, hologram length and number of 

PCs on the statistical parameters, we evaluated the quality of the constructed models by internal and 

external validations. 

The robustness test (Figure 2) suggests that all constructed models have acceptable internal 

consistency since all average q
2
 values for each number of cross-validation groups were higher than 

0.6. In order to certify that all models are completely validated, the r
2

test value was calculated for each 

model and the residues of prediction were also considered in external validation. Table 3 summarizes 

all parameters of the constructed HQSAR models as well all statistical results of internal and external 

validations. Figure 3 displays the experimental versus predicted pIC50 values of all HQSAR models. 

It is important to note that compound 17 in the T. brucei model, compounds 19 and 34 in the  

L. donovani model, and compounds 24 and 26 in the cytotoxicity model are considered outliers due to 

their high values of both CV and external validation residuals (residuals > 1.50 log units) 

Figure 2. Robustness test of the five constructed HQSAR models.  
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Table 3. Comparison of statistical results of all five constructed HQSAR models. 

 HQSAR Models 

 Tbr Tcr Ldon Pfc L6 

Fdist A/B/C A/C A/C/Ch/DA A/C A/C/Ch/DA 

Fsize 4–7 atoms 7–10 atoms 4–7 atoms 7–10 atoms 5–8 atoms 

HL 53 151 83 97 71 

PC 4 6 5 5 6 

N 31 28 25 23 30 

q2
LOO 0.637 0.748 0.775 0.736 0.673 

SEV 0.576 0.282 0.279 0.232 0.337 

q2
CV 0.623 ± 0.03 0.736 ± 0.03 0.753 ± 0.02 0.722 ± 0.02 0.656 ± 0.03 

r2 0.822 0.965 0.972 0.960 0.952 

SEE 0.404 0.106 0.098 0.090 0.129 

r2
test 0.653 0.790 0.944 0.897 0.831 

Fdist: fragment distinction; Fsize: fragment size; HL: hologram lenght; PC: number of PLS principal 

components; N: number of compounds of training set; SEV: standard error of validation; SEE: standard error 

of estimation. 

Figure 3. Experimental versus predicted pIC50 values of training and test sets of all 

constructed HQSAR models. 

 

These compounds were removed from the respective data sets and the modelling repeated without 

them, in order to avoid distortions in the models. Manifold reasons may lead to the behavior of 

particular compounds as outliers [15] on which to speculate here for each case in detail does not appear 

useful. From the results of external validations, we can note that all constructed models have 

acceptable values of external validation correlation coefficients and residuals of prediction for all test 

set compounds lower than 1 logarithmic unit (Supplementary Table S6). All generated models 
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including fragment distinction search and fragment size evaluation for the five sets of biological data 

are available in Supplementary Tables S1–S5.  

Therefore, both the LOO and CV internal validation methods as well as the external validation 

provide results which indicate that all constructed HQSAR models and their respective fragments 

information are suitable to explain the anti-protozoal and cytotoxic activities. 

From the contribution maps of compound 2, one of the most potent compounds in each HQSAR 

model (Figure 4), it becomes clear that the 7-membered ring with one of the attached methyl groups is 

assigned a positive contribution to biological activity by each of the HQSAR models. Quite notably, 

the oxygen atom in the butyrolactone ring only shows a positive contribution to the cytotoxicity model, 

indicating that this atom (or the butyrolactone moiety) could be related to an important difference 

between anti-protozoal and toxic activities of the compounds in this data set. The lactone carbonyl 

oxygen atom contributes positively to Tbr and Tcr models. 

Figure 4. HQSAR maps of positive contribution for all 5 constructed HQSAR models. 

 

Analyzing the contribution maps of the five constructed models (Figure 5), the 6-membered ring 

contributes negatively to T. brucei, P. falciparum and cytotoxic activities. The butyrolactone moiety 

(except the oxygen atom of carbonyl group) contributes negatively to anti T. cruzi activity. The oxygen 

atom of oxirane group contributes negatively to the L. donovani HQSAR model. 

On the background of previous QSAR analyses of this data set, it could be expected that all 

HQSAR models should be influenced by similar parameters and lead to similar contribution maps since 

the pairwise correlation between the sets of biological activity values is quite high (higher than 69%, 

Supplementary Table S7) [8]. However, this is not the case so that the information provided by the 

contribution maps of the individual models could be useful to identify differences, especially between 

cytotoxicity and the anti-protozoal activities. Even though the differences between the models for the 

antiparasitic and cytotoxic activities may be subtle and difficult to interpret in detail due to the 

complexity of the applied descriptors, it is noteworthy that these differences exist and thus represent a 

possibility to rationalize the structural reasons for the selectivity of some compounds against the parasites. 
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Figure 5. HQSAR maps of negative contribution for all five constructed HQSAR models. 

 

We calculated the maximum common structure (MCS) with the HQSAR module (Figure 6, MCS 

colored in cyan). This MCS comprises the butyrolactone moiety along with two carbon atoms of the 

attached ring system. The α-methylene group, although present in most compounds, is not part of the 

MCS since compounds 5, 6, 7 and 35 are 11,13-dihydro derivatives, i.e., they have a methyl group 

instead of the =CH2 group. Apart from this, compound 23 has a cyclic substituent at this position. 

Compounds 5, 6 and 7 are pseudoguaianolides bearing another α,β-unsatured carbonyl system, i.e., a 

cyclopentenone moiety located on the opposite side of the molecule. Compounds 23 and 35 do not 

contain any α,β-unsatured carbonyl system and both show very low activity against Tbr and also no 

significant cytotoxicity (pIC50 values equal to 3.79 and 4.31, respectively). Therefore, our HQSAR 

studies indicate that the presence of α,β-unsatured carbonyl system could be considered a common 

scaffold which is generally related to biological activity, while the fragments with positive and 

negative contributions (Figures 4 and 5) could be related to the differences of pIC50 in each model. 

Figure 6. Maximum common structure (cyan atoms of compound 01) of dataset calculated 

by all HQSAR models. 
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In order to perform an analysis of the anti-Tbr HQSAR model in terms of statistical influence of 

particular fragments on biological activity, we extracted the information about the fragments with 

highest positive and negative contributions to biological activity from this model (Table 4). 

Table 4. List of fragments with highest positive and negative contribution to Tbr HQSAR 

model; X atoms are the connectivity flag and are not considered part of fragment. 

Frag 01 Frag 02 Frag 03 Frag 04 * Frag 05 * 

   
 

 

0.025 0.025 0.025 0.022 0.022 

Frag 06 Frag 07 Frag 08 Frag 09 * Frag 10 * 

  
 

  

−0.016 −0.016 −0.016 −0.016 −0.016 

* Fragments containing explicit α,β-unsatured carbonyl system with highest contribution values. 

From the results obtained, it is possible to note that two of three fragments with highest contribution 

to biological activity (fragments 01 and 03) have two sp
2
 carbon atoms bonded directly to each other 

which would be characteristic of an α,β-unsatured carbonyl system. Fragment 04 is the fragment with 

an explicit α,β-unsatured carbonyl system with highest positive contribution to the model and this 

fragment is exactly the substructure present in compounds 01–08 which have the highest anti-T. brucei 

activities. Fragment 05 is one example of a fragment encoding the butyrolactone moiety indicating that 

this group also contributes positively to biological activity. There are also fragments containing an  

α,β-unsatured carbonyl system that show a negative contribution to the model (fragments 09, 10) but, 

in general terms, the values of their contribution to biological activity are lower than the positive ones, 

indicating that positive contributions have a higher statistical significance to this HQSAR model. From 

fragments with negative contributions (fragments 07, 08), it is possible to note that an epoxide group 

contributes negatively to anti-Tbr activity. As previously described, α,β-unsatured carbonyl systems 

such as the α-methylene--lactone and cyclopentenone moiety are of major influence on biological 

activity of STLs, not only with respect to their antiprotozoal and cytotoxic activity. [8,10,11,14,16–18]. 

In comparison to recent descriptor-based QSARs models for T. brucei activity and cytotoxicity 

constructed by Schmidt et al. [7], the obtained results in HQSAR suggest similar physicochemical 

interpretations. The positive contribution of methylcycloheptane (as part of a pseudoguaianolide 

skeleton) to all models suggests a positive influence of this ring system on activity that may be due to 

steric or hydrophobic factors since the cyclohexane system as present in the eudesmanolides showed a 

negative contribution to biological activity for both Tbr and L6 models. 

The two fragments with the highest contribution to the Tbr model represent alkene structures which 

are also hydrophobic groups. These results corroborate the positive contribution of hydrophobicity to 

anti-Tbr activity. 
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In summary, our HQSAR models showed once more that α,β-unsatured groups are fundamental to 

biological activity of STLs, in accordance with several previous works [7–13]. Furthermore, the 

methyl-cycloheptane ring as well as further hydrophobic groups appear to be responsible for higher 

levels of biological activity, indicating that the potency of the studied compounds could be related to 

cellular permeation mechanisms. 

After the analyses of HQSAR maps and the influence of fragments for most and less potent 

compounds, we also analyzed the HQSAR maps of the compounds with highest selectivity indices (SI) 

for T. brucei (compounds 19, 24 and 32) and lowest SI (compounds 26, 25 and 28). We generated 

these maps with Tbr and L6 models in order to verify the influence of fragments for both biological 

activities as a strategy to study the selectivity. From the maps of compounds 24, 25, 26 and 28 we 

cannot verify significant differences that could explain the selectivity of the lack of it (Supplementary 

Figure S1). The maps of compounds 19 and 32 are shown by Figure 7. 

Figure 7. HQSAR maps of most selective compounds. 

 

From Figure 7, we can note: (i) the contribution maps of compound 19, the most T. brucei selective, 

indicates that de C-atoms of the α,β-unsatured carbonyl system and the 7-membered ring contribute 

positively to the Tbr model but negatively to toxicity. Therefore, this compound could be considered a 

lead for the development of new chemical entities with antiprotozoal activity and low toxicity; (ii) the 

contribution map for compound 32 indicates that the 6-membered ring contributes positively to 

toxicity. From this information, it is possible to note that this fragment is present in compounds with lower 

antiprotozoal activity and also could lead to increased toxicity; (iii) the O atom of the hydroxy group of the 

distal ring of compound 32 contributes positively to anti-T. brucei activity, indicating that compounds 

with an –OH group at this position could be tested due the low influence of this fragment on toxicity. 
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3. Experimental Section 

3.1. Data Set 

The data set used for the HQSAR studies contains 40 sesquiterpene lactones with their 

antiprotozoal activity against Trypanosoma brucei rhodesiense (Tbr), Trypanosoma cruzi (Tcr), 

Leishmania donovani (Ldon) and Plasmodium falciparum (Pfc), as well as cytotoxicity against L6 rat 

skeletal myoblasts (Table 5) [8]. The biological activity data were reported as micromolar IC50 values 

which were converted to molar pIC50 (−logIC50) and used as dependent variables in the QSAR model 

development (Table 5). The chemical structures were drawn in the 2D format and converted to 3D, 

using the Sybyl X 2.0 package [19]. The studied compounds were divided into training and test sets 

containing 80% and 20%, respectively, of the total number of compounds of each dataset (a set with 

certain compounds with specific biological activity measurement) in order to construct the HQSAR 

models and to perform external validations. The dataset split step was performed in such a manner that 

the entire range of pIC50 values was covered by test set compounds, also taking into account the 

structural homogeneity of training and test sets. Thus, both training and test set compounds were inside 

the two dimensional Y (biological activity) and X (fragment) spaces. 

Table 5. Structures of dataset compounds and their pIC50 values. Selectivity indices (SI) 

are defined as SI = IC50(L6)/IC50(parasite) and showed between parenthesis. 

Pseudoguaianolides 

Cpd Structure R Tbr Tcr Ldon Pfc L6 

1 

 

H 7.284 (19.1) 6.158 (1.4) n.a. n.a. 6.003 

2 ac 7.201 (12.9) 6.269 (1.5) 6.351 (1.8) 6.483 (2.5) 6.092 

3 i-butyryl 6.979 (9.8) 5.805 (0.7) 6.077 (1.2) 6.155 (1.5) 5.987 

4 i-valeryl 6.936 (11.2) 5.606 (0.5) 6.060 (1.5) 6.085 (1.6) 5.887 

5 

 

H 6.164 (13.0) 4.668 (0.4) 5.415 (2.3) 5.516 (2.9) 5.051 

6 Ac 5.849 (2.2) 5.159 (0.4) n.a. n.a. 5.515 

7 i-valeryl 6.040 (5.0) 5.452 (1.3) 5.831 (3.1) 5.795 (2.9) 5.339 

8 

 

- 6.496 (7.7) 5.728 (1.3) n.a n.a. 5.612 

9 

 

Ac H OH 5.033 (1.3) 4.339 (0.3) n.a. n.a. 4.911 

10 Ac H H 5.174 (0.7) 4.690 (0.2) 4.912 (0.4) 5.190 (0.7) 5.357 

11 H H H 4.736 (1.7) 4.278 (0.6) 4.686 (1.5) 4.916 (2.6) 4.496 

12 H tig OH 4.961 (1.5) 4.308 (0.3) 4.746 (0.9) 4.975 (1.6) 4.778 

13 H H Otig 4.716 (1.7) 4.221 (0.5) 4.838 (2.2) 4.561 (1.2) 4.498 

14 Ac ac H 5.930 (7.2) 4.834 (0.6) 5.371 (2.0) 5.049 (0.9) 5.074 

15 Ac H Oac 5.402 (1.8) 4.788 (0.4) 5.062 (0.8) 5.223 (1.2) 5.138 

16 

 

- - - 4.866 (1.6) 4.348 (0.5) 4.927 (1.8) 4.972 (2.0) 4.666 
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Table 5. Cont. 

Xanthanolides 

Cpd Structure Tbr Tcr Ldon Pfc L6 

17 

 

4.207 (2.9) n.a. 4.623 (7.5) n.a. 3.748 

18 

 

5.535 (10.4) 4.581 (1.2) 4.753 (1.7) 5.107 (3.9) 4.520 

19 

 

6.481 (67.0) 4.948 (2.0) 6.223 (37.0) 5.186 (3.4) 4.655 

20 

 

4.799 (1.3) 4.409 (0.5) 4.836 (1.4) 4.896 (1.6) 4.702 

Modified Xanthanolides 

Cpd Structure Tbr Tcr Ldon Pfc L6 

21 

 

6.195 (14.8) 4.794 (0.6) 4.657 (0.4) 5.304 (1.9) 5.026 

22 

 

5.890 (10.3) 4.020 (0.1) 4.570 (0.5) 5.185 (2.0) 4.877 

23 

 

3.790 n.a. 4.812 n.a. n.a. 

24 

 

5.086 (52.1) n.a. 4.568 (15.8) n.a. 3.369 

Eudesmanolides 

Cpd Structure R Tbr Tcr Ldon Pfc L6 

25 

 

H 4.627 (0.2) 4.652 (0.2) n.a. n.a. 5.348 

26 OH 5.108 (0.1) 4.606 (0.0) n.a. n.a. 6.023 

27 Oac 4.970 (0.8) 4.614 (0.4) 4.930 (0.8) 5.036 (1.0) 5.050 

28 
 

- 3.467 (0.5) n.a. n.a. n.a. 3.728 

29 
 

- 5.581 (2.3) 5.081 (0.7) 5.519 (2.0) 5.194 (0.9) 5.223 

30 
 

- 5.795 (6.4) 4.763 (0.6) 5.061 (1.2) 4.971 (1.0) 4.992 

31 

 

- 4.749 (1.9) 4.539 (1.1) 5.221 (5.5) 4.919 (2.8) 4.479 

32 

 

- 5.956 (23.1) 4.582 (1.0) 5.134 (3.5) 4.866 (1.9) 4.592 
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Table 5. Cont. 

Germacranolides 

Cpd Structure R Tbr Tcr Ldon Pfc L6 

33 

 

- 5.885 (7.8) 4.775 (0.6) 4.818 (0.7) 5.199 (1.6) 4.991 

34 

 

- 6.411 (18.7) 4.972 (0.7) 5.449 (0.3) 4.925 (0.6) 5.140 

35 

 

- 4.310 (2.7) n.a. 4.449 (0.4) n.a. 3.877 

36 

 

H 4.845 (1.0) 4.592 (0.5) 5.564 5.025 (1.4) 4.866 

37 ac 6.321 (16.2) 4.802 (0.5) 5.285 5.198 (1.2) 5.111 

Cpd Structure R1 R2 Tbr Tcr Ldon Pfc L6 

38 

 

H H 
6.026 

(13.8) 
4.783 (0.8) 4.740 5.055 (1.5) 4.887 

39 ac H 
6.095 

(12.6) 
4.755 (0.6) 4.522 5.093 (1.3) 4.996 

40 H Oac 6.156 (9.5) 4.927 (0.6) 4.767 5.178 (1.0) 5.176 

ac = acetyl; tig = tigloyl; n.a. = pIC50 not available. 

3.2. Fragment-Based Strategy 

The HQSAR technique was chosen as fragment-based drug design strategy [20–23]. This technique 

has been successfully employed in drug design studies obtaining good agreement with experimental 

data of several different compound datasets [24–27]. The HQSAR technique consists in the 

decomposition of each molecule in the dataset into a molecular hologram that consists basically of 

linear, branched, and overlapping fragments which are divided to a fixed-length array (53 to 401 bins). 

The bin occupancies encode compositional and topological molecular information used as independent 

(X) variables in QSAR modeling. The hologram length, fragment size and fragment distinction  

(atoms (A), bonds (B), connections (C), hydrogen atoms (H), chirality (Ch), and H-bond donor/acceptor 

groups (DA)) are the parameters that affect the hologram generation and consequently the statistical 

evaluation of constructed HQSAR models. Initially, the several models applying different 

combinations of fragment distinctions were generated using default fragment size 4–7 atoms over the 

13 default series of hologram lengths. Next, the influence of fragment size was further investigated for 

the best model. All models generated in this study were generated using the Partial Least Squares 

(PLS) method. Each model was fully cross-validated by the Leave-One-Out (LOO) method. 

3.3. QSAR Model Validation 

After the obtainment of an optimum HQSAR model for each biological activity, we carried out a 

robustness test and external validation, with a test set of compounds which were not considered for the 
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purpose of QSAR model development [28–30]. The robustness test was performed employing the 

cross-validation (CV) method with pre-determined groups of compounds (from 5 to 25 groups) used to 

perform the internal capacity of biological activity prediction. All CV validations were carried out in 

triplicate and the average q
2
 (coefficient of determination of the predicted vs. experimental values 

during cross validation) and standard deviation for each number of CV groups were also calculated. 

Next, the models were submitted to an external validation to estimate the capacity of biological 

activity prediction for compounds that were not used in HQSAR model construction. Both, residuals of 

predicted values as well the external validation coefficient (r
2

test = coefficient of determination of 

predicted vs. experimental data of the test set) were analyzed in this step. As the pIC50 range of the five 

constructed models is different due to the employed dependent variable (pIC50 values for four protozoa 

and cytotoxicity), the five test sets were selected according to the pIC50 distribution of each specific 

dataset in order to optimally cover the different ranges of biological activity in the dataset. 

4. Conclusions  

All HQSAR models constructed in this study showed good internal consistency and external 

predictivity. The quality of all models with respect to internal and external predictiveness was 

evaluated by statistical parameters such as as leave-one-out cross-validation q
2
 (ranging from 0.637 to 

0.775) and quality of test set predictions r
2

test (ranging from 0.653 to 0.944), respectively. All of the 

obtained values were above those considered acceptable in literature [31]. All constructed models 

showed good internal (leave-one-out q
2
 values ranging from 0.637 to 0.775) and external validation 

coefficients (r
2

test values ranging from 0.653 to 0.944). While it was not possible so far to obtain 

reliable and statistically sound QSAR models for these STLs’ bioactivity against T. cruzi, L. donovani and 

P. falciparum with classical approaches, this task could now be achieved by using the HQSAR approach.  

Apart from their explanatory value, these models can now be used for activity predictions with 

larger databases of hitherto untested STLs in order to select promising candidates for testing against 

the parasites under study. It should not remain unmentioned, that recently, Schmidt et al. [14] reported 

on a refined QSAR model for anti-Tbr activity based on an extended data set of almost 70 compounds 

which could successfully be used to predict very high in vitro activity for a group of hitherto untested 

STLs. By using a similar approach in further studies with the HQSAR models generated in the present 

work, we expect to find new and promising hits against T. cruzi, L. donovani and P. falciparum within 

the vast structural diversity of STLs. 
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