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Abstract: Effects of various additives on the lipase from Burkholderia cepacia (BcL) 

immobilized on mixed-function-grafted mesoporous silica gel support by hydrophobic 

adsorption and covalent attachment were investigated. Catalytic properties of the 

immobilized biocatalysts were characterized in kinetic resolution of racemic  

1-phenylethanol (rac-1a) and 1-(thiophen-2-yl)ethan-1-ol (rac-1b). Screening of more than 

40 additives showed significantly enhanced productivity of immobilized BcL with several 

additives such as PEGs, oleic acid and polyvinyl alcohol. Effects of substrate concentration 

and temperature between 0–100 °C on kinetic resolution of rac-1a were studied with the 

best adsorbed BcLs containing PEG 20 k or PVA 18–88 additives in continuous-flow 

packed-bed reactor. The optimum temperature of lipase activity for BcL co-immobilized 

with PEG 20k found at around 30 °C determined in the continuous-flow system increased 

remarkably to around 80 °C for BcL co-immobilized with PVA 18–88. 

Keywords: silica gel; Burkholderia cepacia lipase; enzyme immobilization; adsorption; 

activity enhancement; additive; continuous-flow packed-bed reactor 
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1. Introduction 

The interest in use of enzymes as natural chiral catalysts has increased in the past few decades [1–4]. 

Chirality has become a central topic in pharmaceutical industry [5–7], thus the application of enzymes 

as biocatalysts in the production of enantiopure chiral compounds turned out to be relevant on industrial 

scale [8]. Hydrolases, especially lipases, are the most often used biocatalysts in asymmetric 

biotransformations, because they can catalyze a wide range of enantio- and regioselective reactions 

such as hydrolysis, esterification, transesterification, aminolysis and ammoniolysis [9–11]. 

Lipases (triacylglycerol hydrolases, EC 3.1.1.3) catalyzing the hydrolysis of the triglycerides into 

fatty acids, mono-, and diacylglycerols, and glycerol [12] at the lipid-water interface [13,14] belong to 

the enzyme class of hydrolases. Because lipases are relatively thermostable and often highly selective 

in their reactions with a wide range of substrates, they are widely used in food, detergent and 

pharmaceutical industry [8–10].  

In spite of their enormous synthetic potential, the application of enzymes as native proteins has 

some drawbacks. Many enzymes are relatively unstable in aqueous solutions and their recycling is 

difficult. For industrial applications, immobilization of enzymes proved to be crucial to enhance their 

activity, thermal and operational stability, and reusability [15–18]. Among the numerous methods 

developed for enzyme immobilization [15–18], including adsorption, covalent attachment to solid 

supports and entrapment within polymers, immobilization of the biocatalysts onto solid supports has 

become a robust, widely accepted industrial technique [19–21]. Physical adsorption of the desired enzyme 

onto suitable carriers is a convenient, one step immobilization technique, especially for lipases [15–22]. 

The nature of the solid support in enzyme immobilization is of primary importance [20,23]. Porous 

silica gels [24], particularly mesoporous silica gels (MPSs) [25–27] turned out to be useful carriers for 

enzyme immobilization due to their large surface area, tunable porosity, low cytotoxicity, favorable 

mechanical properties and functionalizable large surface. Surface grafting of MPSs with variable 

functions can widen their applicability as carriers for proteins and enzymes [25,27]. Surface-

functionalized silica gels, such as butyl [28] or octyl silica gels [29] proved to be suitable carriers for 

adsorptive immobilization of lipases [30]. Furthermore, hydrophobic silica gels were useful for 

differential adsorption of lipase A and lipase B from Candida antarctica [31]. Mixed-function-grafted 

silica supports with amine groups allowed the immobilization of enzymes by adsorption as well as by 

covalent immobilization [32]. 

Lipase catalysis is characterized by interfacial activation. When lipases are dissolved in water, their 

active site is covered by a lid resulting in a closed, catalytically inactive form. When lipases are in 

contact with an interface between water and apolar phase, the lid opens allowing access to the active 

site [12–14]. The increased hydrophobicity near the active site in the open conformation is the basis of 

preferential adsorption and interfacial activation of lipases during adsorption on hydrophobic  

surfaces [16–18]. Because of this conformational mobility influencing the catalytic activity, the final 

outcome of the biocatalytic properties of immobilized lipases can be influenced by various additives 

during adsorption and covalent attachment. 

Molecular imprinting [33] – which is called bioimprinting when enzymes are tuned at their active 

site by substrates or their analogues – proved to be one of the most successful strategies for enhancing 

enzyme activity in organic solvents [34–39]. The active site of the lipase treated with substrate 
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analogues, surfactants or other entities, resulted in improved lipase performance in non-aqueous 

medium [40–43]. Conformational changes opening the lid over the active site occur during the 

bioimprinting process and thus the immobilized lipase is fixed in an open conformation. When the 

ligand is washed away, the enzyme is trapped in this conformation because it has adopted a rigid 

structure due to the strong intramolecular electrostatic interactions that occur in a solvent with a low 

dielectric constant [44,45]. Combining molecular imprinting with protein surface coating and salt 

activation was reported as dual bioimprinting [42]. 

Biodegradable polymers such as polyvinyl alcohol (PVA) or chitosan were applied as additives in 

enzyme immobilizations [46]. Further ecofriendly polymers such as gum arabic and chitosan were also 

useful for stabilization of enzymes by microencapsulation [47]. In addition, PVAs were applied in 

preparation of sol-gel catalysts as lipase stabilizing additives [48,49]. The beneficial effects of further 

additives such as crown ethers, β-cyclodextrin derivatives, surfactants and sugars were also studied in 

sol-gel encapsulations [48,50,51].  

The biotransformations may not only be tuned by modifying the biocatalysts but also by the 

reaction conditions. Effect of the temperature on selectivity is one of the major concerns in enzymatic 

transformations. In most of the cases – usually investigated in batch mode – stereoselectivity of 

enzyme catalyzed reactions was decreased with increasing temperature [52–62]. A few examples were 

found where enantiomer selectivity of enzyme-catalyzed kinetic resolutions (KRs) increased with 

increasing temperature [63,64] or had a maximum [32,65,66]. Although biotransformations in 

continuous-flow systems could enhance the efficiency of the hydrolase-catalyzed processes [67], there 

are only a few examples on the temperature effects on lipase-catalyzed KRs in continuous-flow mode 

so far [32,51,65–68]. 

Lipase from Burkholderia cepacia (BcL) was selected to study the effect of different types of 

additives during immobilization on surface-grafted mesoporous silica gels on enhancing the enzymatic 

activity and selectivity. BcL is an extracellular lipase catalyzing the biodegradation of environmental 

pollutants, biological control of plant diseases [69]. BcL being a relatively thermotolerant enzyme is 

frequently used as biocatalyst in various biotransformations performed in non-aqueous media [50,70–72]. 

In addition to study the influence of wide range of additives on the biocatalytic properties of BcL 

immobilized onto surface modified silica gels, the temperature effect on the immobilized  

BcL-catalyzed KRs in continuous-flow mode was also investigated. 

2. Results and Discussion 

2.1. Immobilization of BcL onto Mixed-Function-Grafted Mesoporous Silica Gels  

In this study on immobilization of BcL onto mixed-function-grafted mesoporous silica gel by 

adsorption and adsorption combined with covalent binding, more than 40 additives were tested as 

bioimprinting agents, stabilizers or surface coating polymers. The additives in our present study were 

mono- (rhamnose, glucose, fructose, xylitol, xylose, sorbitol, mannitol), di- (sucrose, maltose) and 

polysaccharides (xylane, gum arabic, carrageenan, sodium alginate, chitosan, α- and β-cyclodextrins, 

starch); polyethylene glycols (tetraethylene glycol, PEG 400, PEG 1k, PEG 4k, PEG 8k, PEG 20k, 

PEG 1k dimethyl ether); polyvinyl alcohols (PVA 4–88, PVA 18–88, PVA 13–23–88, PVA 60–98, 
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PVA 72–98); detergents (Brij 30, Triton X-100, Tween 80); carboxylic and fatty acids (hexanoic, 

octanoic, decanoic, lauric, palmitic, oleic acid); glycerol and glycerides (glycerol, trilaurin, triolein, 

tristearin, Hymono 9004—a mixture of unsaturated mono- and diglycerides, FAME—fatty acids 

methyl esters) and unnatural substrates (1-phenylethanol, 1-(thiophen-2-yl)ethan-1-ol, 2-octanol). 

2.2. Effect of Additives on the Biocatalytic Properties of Adsorbed BcL 

Adsorption of BcL onto mixed-function-grafted mesoporous silica gel from aqueous media was 

carried out in the presence of the additives listed in the Section 2.1. To evaluate the effects of the 

various additives on the biocatalytic properties of immobilized BcL biocatalysts, the resulted BcL 

preparations were investigated in the kinetic resolutions of racemic secondary alcohols 1-phenylethanol 

(rac-1a) and 1-(thiophen-2-yl)ethan-1-ol (rac-1b) in batch mode—in shake vials—(Table 1) and in 

continuous-flow bioreactors (Scheme 1).  

Table 1. Biocatalytic properties of BcL adsorbed onto mixed function-grafted silica 

supports in the kinetic resolution of rac-1a and rac-1b in batch mode. 

Additive 
KR of rac-1a a KR of rac-1b b 

c 
(%) 

ee(R)-2a 
(%) 

E 
Ub 

(µmol g−1 min−1) 
c 

(%) 
ee(R)-2b

(%) E Ub 
(µmol g−1 min−1) 

- 2.3 98.1 >100 1.6 2.1 76.6 7.7 2.7 
Brij 30 5.1 98.9 >100 3.5 4.2 74.3 7.0 5.5 
Tween 80 9.9 99.2 >200 6.7 8.8 74.9 7.5 11.5 
PVA 4–88 26.1 99.5 »200 17.9 27.5 75.0 9.2 35.9 
PVA 18–88 22.5 99.4 >200 15.4 21.8 75.2 8.6 28.4 
PVA 13–23–88 25.8 99.3 >200 17.6 27.2 76.4 9.8 35.4 
PVA 72–98 14.8 98.9 >200 10.1 14.0 74.5 7.7 18.2 
PEG 8k 24.6 99.5 »200 16.8 26.7 74.0 8.7 34.8 
PEG 20k 30.0 99.0 >200 20.5 34.7 74.6 10.1 45.1 
Gum arabic 21.8 99.3 >200 14.8 19.9 74.6 8.2 25.8 
Chitosan 11.5 98.7 >100 7.9 9.8 74.9 7.6 12.8 
Lauric acid 13.8 99.3 >200 9.4 9.9 74.0 7.2 12.8 
Oleic acid 23.3 99.3 >200 15.9 14.8 73.0 7.3 19.2 
Hymono 9004 22.5 99.5 »200 15.4 11.6 73.4 7.2 15.1 
Trilaurin 14.2 99.4 >200 9.7 5.7 73.4 6.8 7.5 
Triolein 23.5 99.5 »200 15.9 10.3 73.8 7.2 13.3 
rac-1a 10.8 99.0 >200 7.3 - - - - 
rac-1b - - - - 5.3 72.1 6.4 6.8 

a The conversion (c) and enantiomeric excess of ester (ee(R)-2a) was determined by chiral GC and enantiomeric 

ratio (E) was calculated from c and ee(R)-2a. The results of KRs with immobilized BcLs are shown only for 

biocatalysts with Ub > 5.0 µmol g−1 min−1; b The conversion (c) and enantiomeric excess of ester (ee(R)-2b) was 

determined by chiral GC and enantiomeric ratio (E) was calculated from c and ee(R)-2b. The results of KRs 

with immobilized BcLs are shown only for biocatalysts with Ub > 3.0 µmol g−1 min−1.  

Reaction conditions: Adsorption on mixed-function-grafted silica gel (20.0 mg mL−1) in a mixture of Tris buffer 

(14.3 mL, 100 mM, pH = 7.5 ionic strength controlled with NaCl) and 2-propanol (750 µL), additive  

(2.0 mg mL−1) and BcL (2.0 mg mL−1), 400 rpm, 4 °C, 24 h; KR of rac-1a: rac-1a (25.0 mg mL−1) and BcL 

adsorbed on mixed-function-grafted silica gel (12.5 mg mL−1) in a mixture of hexane/tert-butyl methyl 

ether/vinyl acetate 6/3/1 (2.0 mL), 1000 rpm, 30 °C, 4 h; KR of rac-1b: rac-1b (25.0 mg mL−1) and BcL 

adsorbed on mixed-function-grafted silica gel (12.5 mg mL−1) in a mixture of hexane/tert-butyl methyl 

ether/vinyl acetate 6/3/1 (2.0 mL), 1000 rpm, 30 °C, 2 h (see Experimental) 
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Scheme 1. Kinetic resolutions of 1-phenylethanol (rac-1a) and 1-(thiophen-2-yl)ethan-1-ol  

(rac-1b) with differently immobilized BcL biocatalysts in batch and continuous-flow modes. 

 

Data from KRs of racemic 1-phenylethanol (rac-1a) (Table 1) showed that several additives 

enhanced significantly the catalytic properties of the adsorbed BcL. While the conversion without 

additive was only 2.3% (Ub = 1.6 µmol g−1 min−1; E > 100 ) after 4 h of KR of rac-1a, all the additives 

listed in Table 1 improved the productivity of adsorbed BcL. Remarkably, the enantiomer selectivity of 

BcL increased in each case as well. While sugars and monosaccharides had no significant impact on 

activity of BcL (data not shown), the surfactant Tween 80 enhanced slightly the activity of BcL  

(Ub = 6.7 µmol g−1 min−1; E > 100). The natural substrates of lipases such as trilaurin and triolein 

resulted in a greater enhancement of activity (e.g., triolein increased the specific activity by 10-fold). 

The highest activity enhancements were achieved with PVAs and polyethylene glycols. Among the 

PVAs tested, addition of PVA 4–88 resulted in the most significant 11-fold activity enhancement  

(Ub = 17.9 µmol g−1 min−1; E » 200). The most active adsorbed BcL/PEG 20k biocatalyst had 13-fold 

higher enzyme activity in acylation of rac-1a (Ub = 20.5 µmol g−1 min−1; E > 200) than BcL adsorbed 

without any additives. Although racemic 1-phenylethanol rac-1a is not an ester or carboxylic acid-type 

substrate, the 2.5-fold activity enhancement of the rac-1a-treated BcL compared to the non-treated BcL 

preparation in KR of rac-1a indicated significant bioimprinting effect. 

The best results of KRs of racemic 1-(thiophen-2-yl)ethan-1-ol (rac-1b) with the adsorbed BcL 

biocatalysts treated with the additives are shown in Table 1. The BcL adsorbed without any additive 

resulted in only 2.1% conversion after 2 h (Ub = 2.7 µmol g−1 min−1; E = 7.7). Similarly to the KRs of  

1-phenylethanol (rac-1a), surfactants enhanced the specific enzyme activity in KRs of rac-1b by  

2- and 4-fold (Ub = 5.5 and 11.5 µmol g−1 min−1; with Brij 30 and Tween 80, respectively). The natural 

substrates (triolein, trilaurin, oleic acid and lauric acid) as additive showed higher imprinting effects 

with the adsorbed BcL (2.8–7.1-fold increase of Ub). In the same way as in the KRs of rac-1a, the most 

active BcL biocatalysts in KRs of 1-(thiophen-2-yl)ethan-1-ol rac-1b were the ones adsorbed in the 

presence of PVAs and polyethylene glycols as additives (13-fold enhancement, Ub = 35.9 µmol g−1 min−1 

and 17-fold activity enhancement, Ub = 45.1 µmol g−1 min−1; with PVA 4–88 and PEG 20k, 

respectively). Expectedly, in KR of rac-1b the rac-1b-treated BcL showed more significant 
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bioimprinting effect (2.4-fold increase in Ub compared to the non-treated BcL preparation) than the 

rac-1a-treated one (less than 2-fold enhancement of Ub). 

2.3. Effect of Additives on the Biocatalytic Properties of Covalently Immobilized BcL 

A further goal was to combine the benefits of adsorption and covalent binding onto mixed-function-

grafted silica gel with amino functions and to further improve in this way the stability of the 

covalently-linked BcL. It has been shown that heterofunctional supports can be advantageous for 

enzyme immobilization from multiple points of view [73]. Because phenyl grafting on silica gel was 

beneficial for hydrophobic adsorption and lipase activation [30,31] and covalent immobilization of 

CaLB on amino-silica resulted in better thermal stability of the enzyme than simple physical 

adsorption [32,74], it was assumed that adsorption on an amino-phenyl mixed-function-grafted silica 

gel support followed by cross-linking may provide a more stable cross-linked BcL that is also attached 

at the same time to the support by covalent bonds as well. Thus, a mesoporous silica gel (Dv250) 

grafted with (3-aminopropyl)trimethoxysilane (APTMOS) and phenyltrimethoxysilane (PTMOS) at 

1:3 ratio which allowed the efficient immobilization of lipase B from Candida antarctica by 

adsorption and covalent cross-linking [32] was selected as carrier to perform the adsorption and 

covalent immobilization of BcL in the presence of seven well performing additives (PEG 4k, Tween 80, 

PVA 18–88, gum arabic, triolein, lauric acid and oleic acid). However, based on our recent results with 

glycerol diglycidyl ether (GDE) as an efficient cross-linker for preparation of cross-linked enzyme 

aggregates [75], GDE was applied as cross-linking agent instead of the previously used 

glutardialdehyde [32]. As it was already shown, GDE may be particularly useful as cross-linking agent 

due to its ability to form stable bonds under mild conditions not only with the amine groups of Lys but 

with sulfur and oxygen containing residues of Cys, Tyr, Glu or Asp as well [75]. Furthermore, GDE is 

an inexpensive, partially water soluble bis-epoxy compound being less toxic than glutaraldehyde (GA). 

The results of GDE cross-linking after adsorption of BcL without additives were discouraging 

because the resulted BcL preparations exhibited almost no activity in KRs of rac-1a and rac-1b (only 

0.3% and 0.5% conversions after 24 h, respectively). The results may be rationalized by taking the 

spatial distribution of the surface exposed Lys residues in the open conformation of BcL into account  

(Figure 1). The structure shown in Figure 1 clearly indicates that the majority of the surface exposed 

Lys residues (four out of seven) are close to the lid domains modulating the active site accessibility. 

Thus anchoring the enzyme by these residues may force—at least partially—the closure of the 

entrance to the active site leading to inactive forms of the immobilized BcL. 

Fortunately, all the eight selected additives resulted in enhancement of the biocatalytic properties of 

the cross-linked BcL preparations (Table 2). Natural carboxylic acid substrates such as lauric acid and 

oleic acid applied as additives during cross-linking enhanced the biocatalytic properties of BcL (almost 

tenfold increase of activity). Addition of larger ester-containing additives such as triolein or Tween 80 

further enhanced the conversion (c = 7.3 and 8.7%, respectively). The best results were achieved with 

large molecular weight polymeric additives such as PEG 20k (c = 11.8%), gum arabic (c = 13.5%) and 

PVA 18–88 (c = 14.0%). The beneficial effect may be rationalized by the lower hydrophobicity of the 

polymeric additives forcing opposite orientation at the surface of the carrier and rigidification of the 

enzyme in proper conformation during the cross-linking process. 
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Figure 1. The catalytically active open conformation of BcL (PDB code: 1YS1 [76]) with 

a substrate analogue (in red) and the surface exposed Lys residues (in CPK color). 

 

Table 2. Biocatalytic properties of BcL covalently attached by GDE cross-linker onto 

mixed-function-grafted mesoporous silica gel in the kinetic resolution of rac-1a and rac-1b 

in batch mode. 

 KR of rac-1a a KR of rac-1b b 
Additive c (%) ee(R)-2a (%) E c (%) ee(R)-2b (%) E 

- 0.3 89.8 18.6 0.5 70.4 5.8 

PEG 4k 1.2 97.9 94.8 1.3 71.4 6.1 

PEG 20k 11.8 99.5 »200 22.3 73.3 8.2 

Tween 80 7.3 99.6 »200 9.4 71.6 6.5 

PVA 18–88 14.0 99.8 »200 26.4 75.2 9.2 

Gum arabic 13.5 99.8 »200 26.1 75.5 9.3 

Lauric acid 4.0 99.4 >200 8.5 74.7 7.4 

Oleic acid 3.4 99.4 >200 9.9 74.8 7.5 

Triolein 8.7 99.7 »200 13.0 73.3 7.2 
a The conversion (c) and enantiomeric excess of ester (ee(R)-2a) was determined by chiral GC and enantiomeric 

ratio (E) was calculated from c and ee(R)-2a. 
b The conversion (c) and enantiomeric excess of ester (ee(R)-2b) 

was determined by chiral GC and enantiomeric ratio (E) was calculated from c and ee(R)-2b. 

Reaction conditions: Cross-linking: GDE (20 µL mL−1), additive (1.9 mg mL−1) and BcL adsorbed on mixed-

function-grafted silica gel (12.5 mg mL−1) in a mixture of phosphate buffer (4 mL, 20 mM, pH = 7.2) and 

ethanol (12 mL), 400 rpm, 25 °C, 24 h; KR of rac-1a: rac-1a (25.0 mg mL−1) and BcL adsorbed on mixed-

function-grafted silica gel (12.5 mg mL−1) in a mixture of hexane/tert-butyl methyl ether/vinyl acetate 6/3/1 

(2.0 mL), 1000 rpm, 30 °C, 24 h; KR of rac-1b: rac-1b (25.0 mg mL−1) and BcL adsorbed on mixed-

function-grafted silica gel (12.5 mg mL−1) in a mixture of hexane/tert-butyl methyl ether/vinyl acetate 6/3/1 

(2.0 mL), 1000 rpm, 30 °C, 24 h (see Experimental). 

The biocatalytic properties of the BcL preparations cross-linked in the presence of the eight selected 

additives were also tested in the KR of rac-1b (Table 2). Similarly to the KR tests with rac-1a, all the 

eight covalently bound BcL biocatalyst prepared in the presence of additives showed enhanced 
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biocatalytic features in the KRs with rac-1b as well. PEG 4k resulted in 2.6-fold increase in 

conversion, the bioimprinting additives caused even larger effect (17- to 26-fold increase of the 

conversion with lauric acid, Tween 80, oleic acid and triolein). The most significantly enhanced 

conversions in the KRs with rac-1b with covalently immobilized BcL were found by using the large 

molecular weight polymeric additives PEG 20k, gum arabic and PVA 18–88 (45- to 53-fold increase).  

Although use of proper additives during the cross-linking of the adsorbed BcL enhanced the 

biocatalytic properties of the covalently immobilized BcL, the specific activity (Ub) of the adsorbed 

and cross-linked BcL preparations remained only 5%–15% that of the adsorbed BcL biocatalysts. Due 

to the simplicity of the adsorption process and to the tenfold higher specific activity of the adsorbed 

BcL, only the adsorbed lipase biocatalysts were investigated further.  

2.4. Thermal Stability of BcLs Adsorbed onto Mixed-Function-Grafted Mesoporous Silica Gel 

Five immobilized BcLs adsorbed onto mixed-function-grafted mesoporous silica gel in the presence 

of additives with the highest Ub with rac-1a (see Table 1) were selected for the further study on 

thermal stability of the adsorbed BcLs. During the thermostability tests, the BcL samples adsorbed in 

the presence of the five selected additives were incubated in toluene at various temperatures (30, 50, 

70, 90 and 110 °C) for 1 h and were tested in KR of rac-1a after cooling to 30 °C. Figure 2 shows the 

specific activity of the five selected BcLs at given temperatures in the KRs after 2 h.  

Figure 2. Thermal stability of adsorbed BcL preparations in kinetic resolution of rac-1a. 

 
Reaction conditions: Thermal treatment: BcL adsorbed on mixed-function-grafted silica gel (25 mg) in 

toluene (1 mL), 1 h at the indicated temperature; KR test with rac-1a: rac-1a (25.0 mg mL−1) and BcL 

adsorbed on mixed-function-grafted silica gel (12.5 mg mL−1) in a mixture of hexane/tert-butyl methyl 

ether/vinyl acetate 6/3/1 (2.0 mL), 1000 rpm, 30 °C, 2 h (see Experimental).  
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According to the KR tests with rac-1a at 30 °C, the most active adsorbed BcL preparation was the 

one obtained with PEG 20k as additive (Ub = 18.7 µmol g−1 min−1). The BcL/PEG 20k form, however, 

proved to be the least thermostable (retained only 18% of the initial activity after incubating at 70 °C 

for 1 h). When tested at 30 °C, the second most active form of adsorbed BcL was the one prepared 

with PVA 18–88 as additive (Ub = 14.0 µmol g−1 min−1). The BcL / PVA 18–88 form turned out to be 

one of the most thermostable preparations (87% of the initial activity was retained after incubating at 

70 °C). While the high molecular weight PVA 18–88 (130 kDa, 88% hydrolyzed) or PVA 4–88  

(31 kDa, 88% hydrolyzed) as additive had almost the same relative stabilizing effect for BcL up to 70 °C, 

the less molecular weight PVA 13–23–88 (13–23 kDa, 88% hydrolyzed) resulted in lower degree of 

thermal stabilization (only up to 50 °C). Oleic acid as natural substrate for BcL showed even less 

thermal stabilization. The most thermostable forms of BcL with PVA 4–88 and PVA 18–88 retained 

44 and 49% of their initial activity after 1 h incubation at 90 °C but all BcL forms lost their activity 

after incubating at 110 °C. The thermal behavior of adsorbed BcL with PEG 20k can be rationalized by 

assuming that enhanced thermostability is related to embedding the lipase molecule within a thin film 

of the high molecular weight additive which is diminished when PEG 20k melts (Mp ~ 60 °C).  

Considering also the fact that the more hydrophilic, almost fully (98%) hydrolyzed PVAs were 

much less active (Ub = 10.1 µmol g−1 min−1 with PVA 72–98: 72 kDa; and Ub < 5 µmol g−1 min−1 with 

PVA 60–98: 60 kDa; see Table 1) than PVAs with 88% hydrolysis (Ub = 15.4–17.9 µmol g−1 min−1 

with PVA 18–88: 130 kDa, PVA 4–88: 31 kDa and PVA 13–23–88: 13–23 kDa; see Table 1), it can 

be assumed that partial hydrophobicity of less hydrolyzed PVAs forming a thin film embedding the 

lipase molecules contributed to the activation of BcL. 

2.5. Recyclability of Adsorbed BcL Biocatalysts 

For practical applications of immobilized lipases, reusability is of foremost importance. For testing 

the operational stability and recycling of the BcLs adsorbed onto mixed-function-grafted mesoporous 

silica gel with additives, the five adsorbed BcL biocatalysts with the highest specific biocatalyst 

activity (Ub) in KR of rac-1a were compared by repeated KRs of rac-1a as recycling test. Each 

biocatalyst was reused seven times and their Ub (initial values are listed in Table 1) was recorded after 

recovery. Figure 3 shows the retained relative specific activities of adsorbed BcL biocatalysts related to 

their initial specific biocatalyst activity as 100%. 

Recycling of the adsorbed BcL biocatalysts in eight cycles of KR of rac-1a indicated different 

effect of the additives on the operational stability of the adsorbed BcL in organic solvent. Four out of 

the investigated five additives (oleic acid and three PVAs) resulted in quite stable adsorbed BcL 

biocatalysts retaining their initial specific biocatalyst activity even after eight runs. In contrast, the BcL 

biocatalyst adsorbed in the presence of PEG 20k lost gradually its activity and retained only 49% of its 

initial Ub after eight runs. The apparent increase of the initial Ub which may be rationalized by 

equilibration/partial loss of water content of the enzyme during repeated runs is noteworthy. Due to the 

good mechanical properties of carrier, the mass loss of biocatalysts was below 5% in each cycle. 
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Figure 3. Recycling of the adsorbed BcL from repeated kinetic resolutions of rac-1a. 

 
Reaction conditions for one cycle: rac-1a (25.0 mg mL−1) and BcL adsorbed on mixed-function-grafted silica 

gel (12.5 mg mL−1) in a mixture of hexane/tert-butyl methyl ether/vinyl acetate 6/3/1 (2.0 mL), 1000 rpm, 

30 °C, 1 h; then washing by hexane (2 × 10 mL). For GC after each cycles, see Experimental. 

2.6. Continuous-Flow Kinetic Resolutions of rac-1a with BcLs Adsorbed with PVA 18-88 and PEG 20k 

Retention of biocatalysts by immobilization—in particular for enzymes [15–21], especially for  

lipases [22]—contributed significantly to the development of continuous-flow biotransformations 

[8,19,67]. When a biotransformation is performed in a continuous-flow packed-bed bioreactor, no 

separate process is required for enzyme recovery because the immobilized biocatalyst is continuously 

retained. Moreover, packed-bed flow reactors with immobilized catalyst have a clear advantage in that 

voidage is low: 34% compared to over 80%–90% being typical for a stirred tank reactor [77].  

Because temperature [65] or the mode of lipase immobilization [32,66] had significant impact on 

lipase-catalyzed KR processes in continuous-flow reactors, two well-working adsorbed BcL 

biocatalysts (with PVA 18–88 and PEG 20k as additives) were selected to study the effect of substrate 

concentration and temperature on KR of rac-1a in continuous-flow packed-bed bioreactors (Figure 4).  

First, productivity of the two BcL biocatalysts (rflow, µmol g−1 min−1) was investigated as a function 

of substrate concentration (c(R)-1a, mg mL−1). Because the quasi-linear range of rflow as a function of c(R)-1a 

ended at 5 mg mL−1 (0.041 mmol mL−1, Figure 4A), the further temperature effect studies in the range 

of 0 °C–100 °C were performed at this substrate concentration (Figure 4B,C). 

Next, temperature effects on productivity (rflow, Figure 4B) and selectivity (E, Figure 4C) of two 

BcL biocatalysts in continuous-flow KR of rac-1a were investigated between 0 °C–100 °C. In 

accordance with the thermal stability tests in batch mode, productivity—temperature profiles of the 
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adsorbed BcL with PEG 20k and PVA 18–88 were quite dissimilar (Figure 4B). BcL with PEG 20k 

was thermostable only up to 30 °C and started to lose its activity over 40 °C. On the other hand, BcL 

with PVA 18–88 was thermostable up to 80 °C and deactivated only at higher temperatures.  

Investigation of the temperature-dependency of enantiomer selectivity with the two BcL 

biocatalysts in continuous-flow KR of rac-1a revealed similar trends as published previously for 

lipase-catalyzed KRs of secondary alcohols and amines in continuous-flow bioreactors [32,65,66]. 

With both forms of adsorbed BcL maxima of E at certain temperature were found (Figure 4C). BcL 

with PEG 20k resulted in higher enantiomer selectivity in the lower temperature range (0 °C–50 °C) 

with a maximum at around 20 °C but selectivity decreased drastically over the breakdown temperature 

of this form (~30 °C). Enantiomer selectivity of BcL with PVA 18–88 had a maximum at higher 

temperature (~30 °C) with monotonic decrease up to 100 °C. 

It was demonstrated already that operational stability of immobilized lipases in continuous-flow 

kinetic resolutions below the optimum temperature are quite high and stationary reaction conditions 

could be maintained even for one week period [51,68]. Because the main goal of this study was to 

demonstrate the differences between the additives and not to produce large quantities of the already 

known products [(R)-2a and (S)-1a], no further attempts were made for their preparative production. 

Figure 4. Kinetic resolutions of racemic 1-phenylethanol (rac-1a) in continuous-flow 

packed-bed bioreactor. Effect of the substrate concentration on specific reaction rate, rflow (A); 

temperature on specific reaction rate, rflow (B) and temperature on enantiomeric ratio, E (C). 

 
Reaction conditions: (A) rac-1a at different concentrations (0.5, 1.0, 2.5, 5.0, 10, 25, 50 mg mL−1) in 6/3/1 

mixture of hexane/tert-butyl methyl ether/vinyl acetate, at 30 °C, flow rate: 0.2 mL min−1; (B and C) rac-1a 

(5.0 mg mL−1) in 6/3/1 mixture of hexane/tert-butyl methyl ether/vinyl acetate, at the indicated temperature in 

the 0 °C–100 °C range, flow rate: 0.2 mL min−1. For GC analyses of samples at various states, see Experimental. 
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The remarkably different behavior of the two BcL biocatalysts with PEG 20k and PVA 18–88 as 

additives in continuous-flow KR can be rationalized by assuming different solubility of the two 

additives. In case of PEG 20k, the additive has good solubility in the solvent (6/3/1 mixture of 

hexane/tert-butyl methyl ether/vinyl acetate) and thus dissolved out from the biocatalyst resulting in 

rapid loss of its positive effects. The PVA 18–88 additive in the other BcL biocatalyst, however, 

seemed to be resistant to removal up to 80 °C. These assumptions can rationalize the enormous, about 

50 °C difference in the optimum temperature of lipase activity for BcL co-immobilized with PEG 20k 

and PVA 18–88. These results indicate also the importance of embedding the enzyme molecules in a 

thin and permeable matrix of suitable properties for activation and stabilization in their immobilized form. 

3. Experimental Section  

3.1. Analytical Methods 

GC analyses were carried out on Agilent 4890 instrument equipped with FID detector using H2 

carrier gas (injector: 250 °C, FID: 250 °C, head pressure: 12 psi, split ratio: 50:1) on a Hydrodex  

β-6TBDM column (25 m × 0.25 mm × 0.25 μm film with heptakis-(2,3-di-O-methyl-6-O-t-

butyldimethylsilyl)-β-cyclodextrine; Macherey & Nagel, Düren, Germany). tr (min): for 1a and 2a  

(oven: 120 °C, 8 min), 3.77 [(S)-2a], 4.08 [(R)-2a], 5.27 [(R)-1a], 5.55 [(S)-1a]; for 1b and 2b (oven: 

100 °C–160 °C 10 °C/min), 3.87 [(R)-1b], 4.06 [(S)-1b], 4.61 [(S)-2b], 4.77 [(R)-2b]. Conversion (c), 

enantiomeric excess (ee) and enantiomeric ratio (E) were determined by GC measurements with base-

line separations of the enantiomers of 1a and 2a, and 1b and 2b using precise integration methods. 

Enantiomeric ratio (E) was calculated from c and enantiomeric excess of the product (eeP) using the 

equation E = ln[1 − c(1 + eeP)]/ln[1 − c(1 − eeP)] [78]. Due to sensitivity to experimental errors,  

E values calculated in the 100-200 range are given as > 100, in the 200–500 range as > 200 and above 

500 as » 200. To characterize the productivity of the biocatalysts, specific reaction rates (or specific 

biocatalyst activity) in batch reactions (Ub) were calculated using the equation Ub = nP/(t × mB) (where 

nP [μmol] is the amount of the product, t [h] is the reaction time and mB [g] is the mass of the applied 

biocatalyst) [65]. Specific reaction rates in continuous-flow systems (rflow) were calculated using the 

equation rflow = [P] × v/mB (where [P] [μmol/mL] is the molar concentration of the product, v [mL/h] is 

the flow rate and mB [g] is the mass of the applied biocatalyst) [65]. Because the rate of product 

formation is not a linear function of conversion (c), rigorous comparisons between the productivity of 

a continuous-flow reaction and its batch mode counterpart using their Ub and rflow values can only be 

made at comparable degrees of conversions [65]. 

3.2. Materials  

Lipase from Burkholderia cepacia (BcL), phenyltrimethoxysilane (PTMOS) and  

(3-aminopropyl)trimethoxysilane were purchased from Aldrich (Milwaukee, WI, USA). PEG 400, 

PEG 1k, PEG 4k, PEG 8k, PEG 20k, gum arabic, alginic acid sodium salt from brown algae, α-

cyclodextrin, β-cyclodextrin, lauric acid, decanoic acid, trilaurin, tristearin, chitosan, 1-phenylethanol 

were purchased from Fluka (Milwaukee, WI, USA). NaH2PO4 and Na2HPO4 were of analytical grade, 

purchased from Merck (Darmstadt, Germany). Hydrochloric acid (analytical grade), Brij 30, Triton X-
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100, PVA 4–88 (31 kDa), PVA 18–88 (130 kDa), PVA 13–23–88 (13–23 kDa), PVA 60–98 (60 kDa), 

PVA 72–98 (72 kDa), xylan, Tween 80, carrageenan, starch, hexanoic acid, triolein, Hymono 9004,  

2-octanol, rhamnose, glucose, fructose, xylitol, xylose, sorbitol, mannitol, sucrose, maltose were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). The mesoporous silica gel with mixed grafting  

[(3-aminopropyl)trimethoxysilane (ApTMOS) and phenyltrimethoxysilane (PTMOS) in mole ratio of 1:3] 

was the product of SynBiocat (Budapest, Hungary) [32]. 

3.3. BcL Immobilization by Adsorption on Mesoporous Silica gel with Mixed Grafting 

To a solution of BcL (30.0 mg) in Tris buffer (14.3 mL, 100 mM, pH = 7.5, ionic strength 

controlled with NaCl) were added surface functionalized silica gel (300.0 mg), additive (30.0 mg) and 

2-propanol (750 µL) as co-solvent. The mixture was shaken at 400 rpm at 4 °C for 24 h. The adsorbed 

BcL biocatalyst was filtered off on a glass filter (G4), washed with distilled water (10 mL), phosphate 

buffer (10 mL, 20 mM, pH = 7.2), 2-propanol (2 × 10 mL), hexane (10 mL), dried at room temperature 

(2 h) and stored at 4 °C. All immobilization were carried out in triplicates. Standard deviations of 

immobilized biocatalyst masses were below 5%. 

3.4. BcL Immobilization by Adsorption Followed by Cross-Linking on Mesoporous Silica Gel with 

Mixed Grafting 

To a solution of additive (30.0 mg) in phosphate buffer (4 mL, 20 mM, pH = 7.2) and ethanol  

(12 mL) was added the previously adsorbed BcL preparation (200.0 mg) and glycerol diglycidyl ether 

(320.0 µL). The mixture was incubated at 400 rpm at 25 °C for 24 h. The adsorbed and cross-linked 

BcL biocatalyst was filtered off on a glass filter (G4), washed with ethanol (3 × 10 mL), distilled water 

(10 mL), ethanol (3 × 10 mL), dried at room temperature (2 h) and stored at 4 °C. All immobilization 

were carried out in triplicates. Standard deviations of immobilized biocatalyst masses were below 5%.  

3.5. Enantiomer Selective Acetylation of Racemic 1-Phenylethanol rac-1a and 1-(Thiophen-2-yl)ethan-

1-ol rac-1b 

Immobilized BcL biocatalyst (25.0 mg; adsorbed, or adsorbed and cross-linked; with additive) was 

added to a solution of the racemic alcohol (rac-1a: 50.0 mg; 0.409 mmol; rac-1b: 50.0 mg; 0.390 mmol) in 

hexane/tert-butyl methyl ether/vinyl acetate 6/3/1 (2.0 mL) in glass vial and the resulting mixture was 

shaken (1,000 rpm) at 30 °C for 4 h (adsorbed BcLs) or 24 h (adsorbed and cross-linked BcLs). The 

reactions were analyzed by GC after 1, 2, 4 and 24 h as described in Section 3.1. All test reactions 

were performed in triplicates. Standard deviations of conversion were below 9%, standard deviations 

of enantiomeric excess were below 0.4%.  

3.6. Thermal Stability of Immobilized BcL Biocatalysts 

Immobilized BcL biocatalyst (25.0 mg; adsorbed, with additive) and toluene (1.0 mL) were added to  

4 mL glass vial. The sample was incubated for 1 h at the given temperature (30, 50, 70, 90 or 110 °C). 

After cooling to room temperature, the samples were tested in KR of rac-1a as described in Section 3.1. 
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3.7. Recycling the Immobilized BcL Biocatalysts 

Immobilized BcL biocatalyst (25.0 mg; adsorbed, with additive) was added to a solution of racemic 

1-phenylethanol (rac-1a, 50.0 mg; 0.409 mmol) in hexane/tert-butyl methyl ether/vinyl acetate 6/3/1 

(1.0 mL) in an Eppendorf tube and the resulted mixture was shaken at 1,000 rpm for 1 h at 30 °C. 

After 1 h, the reaction mixture was centrifuged, the immobilized BcL biocatalyst was washed twice 

with hexane (2 × 1.0 mL), then fresh solution of rac-1a (50.0 mg; 0.409 mmol) in hexane/tert-butyl 

methyl ether/vinyl acetate 6/3/1 (1.0 mL) was added to it and the sample was shaken again (1,000 rpm) 

at 30 °C for 1 h. In this way, the immobilized BcL biocatalyst were tested in 8 cycles.  

3.8. Kinetic Resolution of 1-Phenylethanol rac-1a in Adsorbed BcL-Filled Continuous-Flow Bioreactor 

The continuous-flow KRs of rac-1a were performed in a laboratory flow reactor comprising an 

isocratic HPLC pump (K-120, Knauer, Berlin, Germany) attached to CatCart™ columns (stainless 

steel, inner diameter: 4 mm; total length: 70 mm; packed length: 65 mm; inner volume: 0.816 mL) 

filled with the immobilized BcL biocatalysts in an in–house made thermostated aluminum metal block 

column holder with precise temperature control. Before use, the BcL-filled columns were washed with 

a 2:1 mixture of hexane and tert-butyl methyl ether (0.5 mL min−1, 20 min). 

The adsorbed BcL biocatalysts (on mesoporous silica gel with mixed grafting in the presence of 

PVA 18–88 or PEG 20k) were packed into stainless steel CatCart™ columns according to the filling 

process of ThalesNano (Budapest, Hungary). Before packing, the BcL biocatalyst-filled columns were 

washed with distilled water, ethanol, n-hexane and acetone in an ultrasonic cleaner. For the 

continuous-flow enzymatic applications, the columns were sealed by silver metal filter membranes 

[Sterlitech Silver Membrane Filter from Sigma–Aldrich, Z623237, pore size 0.45 μm; pure metallic 

silver, 99.97% with no extractable or detectable contaminants] due to the known benefits of Ag 

(bacteriostatic). The sealings were made of PTFE. Two CatCart™ columns per enzyme were packed 

for this study (filling weights: BcL with PVA 18–88, 237.1 mg and 237.7 mg; BcL with PEG 20k, 

233.6 mg and 245.9 mg). 

To study the effect of the substrate concentration, solutions with racemic 1-phenylethanol (rac-1a) 

at different concentrations (0.5, 1.0, 2.5, 5.0, 10, 25, 50 mg mL−1) in 6/3/1 mixture of hexane/tert-butyl 

methyl ether/vinyl acetate were pumped through the adsorbed BcL biocatalyst-filled columns 

(adsorbed BcL with PVA 18–88 or PEG 20k) thermostated to 30 °C at a flow rate of 0.2 mL min−1.  

At each concentration, samples were analyzed by GC every 10 min up to 40 min after the beginning of 

the experiment. Samples were collected during stationary operation (30 min after changing the 

parameters), diluted with EtOH to 2 mg mL−1 and analyzed as described in Section 3.1.  

To study the effect of the temperature, a solution of racemic 1-phenylethanol (rac-1a, 5.0 mg mL−1) 

in 6/3/1 mixture of hexane/tert-butyl methyl ether/vinyl acetate was pumped through the adsorbed BcL 

biocatalyst-filled columns (adsorbed BcL with PVA 18–88 or PEG 20k) thermostated to various 

temperatures (0 °C–100 °C) at a flow rate of 0.2 mL min−1. Samples were collected during stationary 

operation (30 min after changing the parameters) and analyzed as described above. The experiments 

were performed at 10 °C steps in the temperature range between of 0 °C–100 °C. 
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After performing the various tests, the adsorbed BcL biocatalyst-filled columns were washed with a 

2:1 mixture of hexane and tert-butyl methyl ether (0.5 mL min−1, 20 min) and stored at 4 °C. 

4. Conclusions  

Catalytic properties and stability of lipase from Burkholderia cepacia could be tuned effectively 

with additives in immobilization on mixed-function-grafted silica gel support by hydrophobic 

adsorption and covalent attachment.  

Tests with the immobilized BcLs using kinetic resolution of rac-1a and rac-1b revealed BcL 

adsorbed in the presence of high molecular weight polymeric additives was significantly more active 

than adsorbed BcL without additive. The highest specific enzyme activity with PEG 20k as additive 

and with PVAs can be rationalized by assuming a thin film of the polymeric additive embedding the BcL 

molecules. Most of the investigated additives had a positive impact on covalent immobilization of BcL 

with cross-linking by glycerol diglycidyl ether after adsorption and resulted immobilized BcLs with 

moderate activity. Cross-linking without additives was fatal to BcL activity. Even the additive-protected 

cross-linked BcLs exhibited only about tenfold lower activity than their non-cross-linked counterparts.  

Due to the good mechanical properties of the carrier, most of the adsorbed BcLs were well 

recyclable from their reactions in organic media and maintained their catalytic activity up to 8 runs. 

Thermal stability of BcLs adsorbed with PEG 20k and PVA 18–88 in batch and in continuous-flow 

systems were remarkably different. Adsorbed BcL with PEG 20k lost its activity above 40 °C, 

however BcL with PVA 18–88 remained stable up to 80 °C with a selectivity maximum at 

approximately 30 °C. The remarkable 50 °C shift of optimum temperature of lipase activity for BcL 

co-immobilized with PEG 20k (at around 30 °C) and BcL co-immobilized with PVA 18–88 (at around 

80 °C) clearly indicate the potential of “immobilization engineering” for tuning the properties of 

immobilized enzymes. 
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