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Abstract: Alkaloids are used in traditional medicine for the treatment of many diseases. 

These compounds are synthesized in plants as secondary metabolites and have multiple 

effects on cellular metabolism. Among plant derivatives with biological properties, the 

isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses 

against several diseases. In recent years, berberine has been reported to inhibit cell 

proliferation and to be cytotoxic towards cancer cells. Based on this evidence, many 

derivatives have been synthesized to improve berberine efficiency and selectivity; the 

results so far obtained on human cancer cell lines support the idea that they could be 

promising agents for cancer treatment. The main properties of berberine and derivatives 

will be illustrated. 
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1. Introduction 

Natural compounds have been used for centuries because of their availability; those present in 

plants are employed in the so-called Traditional Medicine, which translates theories, beliefs and 

experiences into knowledge, skills and practices applied to prevent, diagnose and treat physical and 
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mental disorders [1]. Being recognized as an integral part of the culture and traditions of populations, 

Traditional Medicine has been recommended by the World Health Organization as an effective 

complementary and alternative medicine for different diseases [2]. 

Plants have wide biological and medicinal properties, and are characterized by high safety, 

availability, accessibility and low cost, thus representing an invaluable source of chemicals with 

potential therapeutic effects [3,4]. Secondary metabolites of plants, such as flavonoids, saponins, 

tannins, steroids and alkaloids, display a number of properties, including hormonal mimicry, 

antioxidant, antibacterial, anti-inflammatory, immunomodulating, detoxificant effects [5] and even 

anticancer activity [3,4,6]. 

2. Berberine 

Among the several plant secondary metabolites, alkaloids possess a variety of pharmacological 

properties. Berberine (BBR, C20H19NO5, Figure 1, a 5,6-dihydro-dibenzo[a,g]quinolizinium derivative) 

is an isoquinoline quaternary alkaloid isolated from many kinds of medicinal plants such as Hydrastis 

canadensis, Berberis aristata, Coptis chinensis, Coptis japonica, Phellondendron amurense and 

Phellondendron chinense Schneid [7,8]. BBR has antioxidant effects and multiple pharmacological 

properties. It has been found to be effective against gastroenteritis, diarrhea, hyperlipidemia, obesity, 

fatty liver and coronary artery diseases, hypertension, diabetes and metabolic syndrome, polycystic 

ovary [8–11] and Alzheimer’s disease [12,13]. Recently, in vitro studies using cancer cell lines have 

shown that BBR inhibits cancer cell proliferation and migration, and induces apoptosis in a variety of 

cancer cell lines [8,14–16], stimulating further development of derivatives for drug-base cancer 

prevention and treatment. 

Many groups are actively working to depict the molecular mechanism of action of BBR; although 

many results suggest that the molecular structure of BBR is able to bind DNA, other nuclear and 

cytoplasmic targets have been identified (see below). 

Figure 1. Chemical structure of berberine chloride. 
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3. Molecular Targets of Berberine 

BBR interacts directly with nucleic acids and with several proteins, including telomerase, DNA 

topoisomerase I, p53, NF-kB, MMPs and estrogen receptors. In general, BBR treatment promotes cell 

cycle arrest and death in human cancer cell lines, coupled to an increased expression of apoptotic 

factors [8,15,16]. The main known targets of BBR are below described. 
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3.1. DNA 

Several studies have shown that BBR interacts directly with DNA, inducing double-strand  

breaks [16,17], and alters the spatial DNA conformation, thus suppressing gene transcription through 

the inhibition of the association between TBP (TATA binding protein) and the TATA box in the gene 

promoters [17]. Of note, BBR and derivatives (with substituents in position 9 or 13) can form DNA 

triplexes [18] or G-quadruplexes and block different cellular processes, including telomere elongation 

(see below) and DNA replication by the stabilization of the topoisomerase-mediated-DNA “cleavable 

complex” [19–26]. 

3.2. Cell Cycle 

Cell cycle arrest has been reported in human cancer cell lines as an effect of the interaction of BBR 

with DNA [8], as supported by the analysis of the phosphorylation of the histone H2AX [16], which 

impairs cell cycle progression and cell division. The net impact on cell cycle distribution depends on 

the cell type and treatment. In fact, an arrest at the G0/G1 phase was recorded in breast cancer 

MDAMB-231 and MCF-7 [27], thyroid carcinoma 8505C and TPC1 [28] and ovarian carcinoma 

OVCAR-3 and Skov-3 [29] cell lines. In giant cell carcinoma and prostate carcinoma cells, BBR 

affected the synthesis and activation of cyclins D1, D2, E, Cdk2, Cdk4 and Cdk6, inducing G0/G1 

arrest and suppressing cell proliferation [7]. A cell cycle arrest in G1 phase, paralleled by decreased 

expression levels of cyclin B1, was observed in lung cancer H1299 and A549 cell lines [30] as well as 

in WM793 human melanoma cells treated with low drug concentrations. Conversely, high doses of the 

drug blocked cells in the G2 phase [31], indicating that the effect could change depending on drug 

concentrations. Interestingly, the impact could be dependent on p53 status: in human U2OS, Saos-2 

and HOS osteosarcoma cells, BBR causes a cell cycle arrest in G1 (accompanied by p53-dependent 

upregulation of p21) and a p53-independent arrest in G2/M phase [32]. In general, the integrity of p53 

is relevant because cells with p53wt were found to be very sensitive to BBR, whereas cell lines lacking 

functional p53 do not respond to BBR treatment [14,16]. In this respect, using 13-arylalkyl BBR 

derivatives, named NAX012, NAX014 and NAX018, we have demonstrated that they are more potent 

than BBR, and that the more susceptible cells were harboring p53wt [33]. 

It was also observed that BBR induced cell cycle arrest at the G2/M phase in colorectal, breast 

cancer and hepatocellular carcinoma cells followed by apoptosis activation through the loss of 

mitochondrial membrane potential, release of cytochrome c, inhibition of anti-apoptotic proteins  

(c-IAP1, Bcl-2, Bcl-xL), activation of pro-apoptotic proteins (p53, p21, caspase-3 and -9) and cleavage 

of PARP-1 [8,33–37]. 

3.3. GADD (DNA Damage-Inducible Gene) 153 

This protein (also known as C/EBP-homologous protein (CHOP-10) or DNA damage-inducible 

transcript 3 (DDIT3), is involved in growth arrest and DNA damage, ubiquitously expressed at very 

low levels [38] and overexpressed under cellular stress conditions inducing nutrient deprivation and 

metabolic perturbations. Thus, GADD153 heterodimerizes with other C/EBP proteins to direct 

GADD153 dimers away from “classical” C/EBP binding sites, blocking cells at the G1/S boundary [38,39]. 
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It has been reported that the overexpression of GADD153 can be induced by BBR in human cervical 

cancer cells, accompanied by the release of Ca2+ from endoplasmic reticulum (ER). An event which 

causes cell cycle arrest and cell death, driven by altered functions of mitochondria followed by 

cytochrome c release and caspase-3 activation leading to apoptosis [38–41]. 

3.4. Cyclooxygenases (COX) 

Two COX isoforms with distinct physiological functions have been described; COX-1 is 

constitutively expressed and has an important role in cell homeostasis, while COX-2 is an inducible 

enzyme activated by extracellular stimuli. Overexpression of COX-2 stimulates the production of 

prostaglandins, including prostaglandin E2 (PGE2), which are implicated in inflammatory responses 

and also in carcinogenesis and metastasis [42–44]. BBR anti-inflammation potential is correlated with 

the inhibition of COX-2 transcription in human colon and melanoma cancer cells, and even 

macrophages, blocking in turn the transcription of PGE2 [8,43,44]. Down-regulation of COX-2 is 

mediated by the binding of its promoter to NF-κB, which promotes NF-κB translocation from the 

nucleus to the cytosol [42]. Moreover, with in vivo assays, BBR was found to lower COX-2 expression 

in the colon of rats treated with azoxymethane (AOM), inhibiting in turn the neoplastic transformation [34]. 

3.5. Mcl-1 

This protein, initially isolated from the ML-1 human myeloblastic leukemia cell line, is an  

anti-apoptotic member of the Bcl-2 family which contains three Bcl-2 homology domains and inhibits 

apoptosis by interacting with the pro-apoptotic proteins Bim, Bak, and Bid [45]. This protein becomes 

activated either constitutively or after induction by oxidative stress, cytokines or growth factors, and it 

can promote cell growth, survival and angiogenesis by the transcriptional up-regulation of the Signal 

Transducer and Activator of Transcription 3 (STAT3) [46]. Overexpression of Mcl-1 has been 

observed in a variety of cancers [45]. 

It has been reported that BBR could suppress the constitutive activation of STAT3 in human 

nasopharyngeal carcinoma, renal and oral cancer cells by down-regulating the activity of Mcl-1 [46], 

therefore, BBR can act inhibiting cell survival and leading apoptosis by suppressing Mcl-1 expression 

in different cancer cell types [45–47]. Moreover, BBR-mediated down-regulation of Mcl-1 expression 

was accompanied by down-regulation of c-FLIP, allowing the induction of TRAIL-mediated  

apoptosis [47–49]. 

3.6. Nucleophosmin/B23 

Nucleophosmin/B23 is a chaperone protein that translocates from the nucleoli to the nucleoplasm in 

response to DNA damage, causing cell cycle arrest at G2/M phase and apoptosis; the involvement of 

nucleophosmin/B23 in tumor development, although through an unknown mechanism, renders it a 

promising target for developing an anticancer strategy [50]. BBR promotes downregulation of 

nucleophosmin with consequent impairment of telomerase activity and induction of apoptosis [51]. 
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3.7. Telomerase 

Shortening of telomeres causes a loss of approximately 50 to 200 bp of telomeric DNA at each cell 

division; when telomeres are completely eroded, the ends of each strand of DNA are exposed to 

exonucleases and further DNA degradation [52]; then, cell cycle is arrested and the apoptotic pathway 

activated. Telomerase has a crucial role in cellular immortalization and tumorigenesis, being detected 

in 80%–90% of human cancers [52,53]. Telomerase is an enzyme that adds DNA sequence repeats to 

the 3' end of DNA strands in the telomere regions of chromosomes to ensure telomere elongation. 

Telomerase consists of a reverse transcriptase carrying its own RNA template used when it elongates 

telomeres [52]. 

BBR functions as an inhibitor of the telomere elongation by blocking the telomerase activity 

through formation of a G-quadruplex with telomeric DNA [54,55]. Remarkably, it interacts with the 

POT1 protein, an essential factor in the protection of telomeres, thus abolishing its binding to telomeric 

DNA and compromising cellular immortality. The inhibitory effect of BBR on lung cancer cell 

proliferation was described to be mediated by the decreased expression of activating enhancer-binding 

proteins (AP)-2α and -2β, both necessary for the hTERT expression. Under this condition, a  

down-regulation in the expression of telomerase was observed [42]. 

3.8. Wnt 

BBR has the potential to modulate and regulate Wnt/β-catenin pathway [56], which in normal cells 

is inactivated by ubiquitination and subsequent degradation of the β-catenin protein, blocking the 

expression of different cell division factors. Conversely, the binding of the extracellular Wnt factor to 

the membrane receptor Frizzled activates the pathway and induces gene transcription. An effect of 

BBR on this pathway, and in a greater manner of its arylalkyl derivatives, was reported in cancer cells. 

The level of β-catenin increased in drug treated cancer cell lines, thus leading to an enhancement of  

E-cadherin and consequent cell death [56]. 

3.9. DAXX 

The death-domain-associated protein (DAXX) regulates a wide range of cellular signaling pathways 

for both cell survival and death. In neuroblastoma cells it was observed that BBR binds to DNA in the 

DAXX core promoter region and suppressed its transcriptional activity. The down-regulation of 

DAXX expression resulted in the degradation of MDM2 (murine double minute 2) by ubiquitination, 

followed by the activation of p53 and then apoptosis [14,16].  

It has been demonstrated that DAXX interacts with MDM2 and HAUSP (herpes virus-associated 

ubiquitin-specific protease) to form a tertiary complex. This complex reduces self-ubiquitination of 

MDM2, to maintain a low level of p53 under non-stress conditions. In different cancer cell types, BBR 

induced a dissociation of the MDM2-DAXX-HAUSP complex, resulting in enhanced MDM2 

ubiquitination that increases p53 protein activity, leading to apoptosis [14]. 
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3.10. AMPK 

The AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine kinase that 

serves as a metabolic sensor for the maintenance of cellular energy homeostasis and is capable to 

inhibit AR (androgen receptor). AMPK becomes activated in cell starvation, hypoxia, ischemia and 

heat shock. In prostate cancer, AR signaling is crucial for development and progression by regulating 

cell proliferation, differentiation and apoptosis. After treatment with BBR, prostate cancer cells 

decrease their proliferation by a direct activation of AMPK, contributing to the degradation of AR and 

leading to apoptosis [57,58]. 

3.11. Enzymes Regulating Folate Cycle 

Thymidylate synthase (TS) catalyzes the reductive methylation of dUMP by  

5,10-methylenetetrahydrofolate (CH2H4PteGlu), generating dTMP and dihydrofolate [59]. 

Dihydrofolate reductase (DHFR) catalyzes the reduction of folate and 7,8-dihydrofolate (DHF) to 

5,6,7,8-tetrahydrofolate (THF), utilizing NADPH as cofactor. Both reactions are essential steps in the 

biosynthesis of nucleotide bases of DNA and thus important targets for chemotherapy [60]. Moreover, 

enhanced DNA repair is a common feature of almost all resistant cell lines studied.  

In this regard, a large panel of human ovarian carcinoma cell lines, in which cisplatin-resistance 

was associated with cross-resistance to 5-FU (5-fluorouracil) and methotrexate, showed an increase in 

TS and in the intracellular pools of 5,10-methylene-THF and THF [61]. These cells presented an 

increase in mRNA level for both DHFR and TS, which resulted in an increased enzyme activity [62]. 

Unlike traditional folate cycle inhibitors such as 5-FU, BBR showed an antiproliferative effect 

accompanied by a greater inhibition of TS and DHFR expression in cell extracts from resistant cells 

than from sensitive ones. Additional results showed that BBR suppresses the growth of cisplatin-resistant 

cells more than the sensitive counterparts, by interfering with the expression of folate cycle enzymes 

DHFR and TS [63]. 

4. Berberine and Cancer 

The search for new drugs that induce apoptosis in tumors refractory to the conventional therapy  

is crucial to develop efficient anticancer therapies. Several mechanisms by which BBR inhibits  

the proliferation of different cancer cell lines have been reported. Among them, the killing of cancer 

cells by the activation of apoptosis is the best characterized.  

In this context, several groups have reported the pro-apoptotic effect of BBR mediated by  

the impact on mitochondria. In fact, BBR was proved to alter the mitochondrial membrane potential 

(MMP), inhibit mitochondrial respiration leading to mitochondrial dysfunction and regulate the 

expression of Bcl-2 family members, as Mcl-1 [45,47]. Alterations in mitochondrial membrane 

stimulate the release of cytochrome c promoting the formation of reactive oxygen species (ROS) that 

trigger apoptosis that requires the activation of caspases and poly(ADP-ribose) polymerase-1 (PARP-1) 

cleavage [64]. Some examples of the pro-apoptotic effect of BBR are shown in Table 1 (see  

references therein). 
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Table 1. Examples of the multiple effects of BBR leading to apoptosis in different cancer cell lines. 

Cell Line Origin Effect Ref. 

8505C, TPC1 Thyroid carcinoma Cell cycle arrest [28] 

OVCAR-3, Skov-3 Ovarian carcinoma Cell cycle arrest [29,63] 

SCC-4, HSC-3 
Oral squamous 

carcinoma 

Caspase activation; MMP disruption; Cytochrome  

c release; Cell cycle arrest; ROS production 
[64,65] 

SK-N-SH, SK-N-MC 

T98G 

Neuroblastoma 

Glioblastoma 
Caspase activation; PARP-1 cleavage [66,67] 

A375, Hs29 Melanoma COX-2 downregulation [43] 

HONE-1, NPC, C666-1 
Nasopharyngeal 

carcinoma 

Caspase activation; PARP-1 cleavage;  

STAT3 inhibition; Mcl-1 downregulation 
[46,47,68] 

Panc-1 Pancreatic cancer TRAIL activation [49] 

A549, H1299 Lung cancer 
Caspase activation; MMP disruption; Bcl-2/Bcl-xL 

decrease; COX-2 downregulation; Cell cycle arrest 
[30,42,69] 

MCF-7, MDA-MB-231, 

MDA-MB-468, SK-BR-3 
Breast cancer 

Caspase activation; PARP-1 cleavage;  

Cytochrome c release; Cell cycle arrest 
[27,37,49,70–72] 

HepG2 Hepatoma 

Caspase activation; PARP-1 cleavage;  

MMP disruption; Cytochrome c release;  

Bcl-2/Bcl-xL decrease 

[73] 

IMCE, HCT-116, 

SW480, SW620, SW613 
Colorectal cancer 

Caspase activation; PARP-1 cleavage; ROS 

production; Cytochrome c release; Cell cycle arrest 
[33,74–76] 

LNCaP, PC-3, DU145, 

C4-2B 
Prostate carcinoma 

Caspase activation; PARP-1 cleavage;  

ROS production; MMP disruption;  

Cytochrome c release; Bcl-2/Bcl-xL decrease 

[77–79] 

A431 
Epidermoid 

carcinoma 

Caspase activation; PARP-1 cleavage;  

MMP disruption; Bcl-2/Bcl-xL decrease 
[80] 

U937, HL-60 
Lymphoma, 

leukemia 
Caspase activation; ROS production [81–83] 

SiHa, HeLa Cervical cancer Caspase activation; Telomerase downregulation [84] 

BBR pro-apoptotic effects could be mediated through the modulation of the HER2/PI3K/Akt [71,72] 

and/or JNK/p38 signaling pathway [76] an impact of BBR on the NF-kB pathway, leading to 

inactivation of this factor with consequent triggering of the apoptotic process, cell cycle and invasion 

pathway arrest, was reported [85].The inhibition of the transcription factor AP-1 by BBR caused 

apoptosis in human hepatoma [86], oral [87], breast [88] and colon [89] cancer cells. 

BBR modulates the activity of the Bcl-2 family members; increased expression of pro-apoptotic 

protein Bax (Bcl-2-associated X protein) together with decrease of Bcl-2/Bcl-xL after BBR treatment 

was observed not only in human prostate epithelial (PWR-1E) or carcinoma cells (DU145, PC-3 and 

LNCaP), but also in promyelocytic leukemia, gastric carcinoma and lung cancer cells, inducing cell 

death (Table 1). 

Caspase-dependent apoptosis was reported in colon carcinoma cells treated with 13-arylalkyl BBR 

derivatives [33]. BBR has been used to treat TRAIL-sensitive breast cancer cells, and found to be able 

to sensitize also TRAIL-resistant breast cancer cells to apoptosis [48,49]. BBR suppresses HPV 

transcription in dose and time dependent manner in cervical cancer cell lines [84]. 



Molecules 2014, 19 12356 

 

 

4.1. Combined Use with Drugs and Radiation 

BBR has been used in combination with drugs or radiation. It was found as an adjuvant  

therapeutic agent in combination with taxol, a frequently used clinical chemotherapeutic drug, in 

HER2-overexpressing breast cancer cells (SKBR-3) [71]. Furthermore, administration of BBR with 

arsenic trioxide [90,91], cisplatin [92] and evodiamine [93] increased their cytotoxic effect on many 

cancer cell types. A similar effect was reported for the combined treatment of MCF-7 (estrogen 

receptor ER-wt) and MDA-MB-231 (ER-null) cells with BBR and ER antagonists [94]. BBR was 

combined with irinotecan to potentiate the cytotoxicity on colon cancer cells; the effect was due to an 

increased rate of apoptosis, possibly mediated by the inhibition of the NF-κB activation [95]. The use 

of BBR in combination with the microtubule poison vincristine has been proved to be efficient against 

hepatoma cell lines by potentiating the pro-apoptotic effect of the single drug [96]. Also the 

combination of conventional radiotherapy and BBR exerts a synergistic cytotoxic effect on different 

tumor cell lines [97,98]. Ionizing radiation combined with BBR treatment was applied to esophageal 

squamous cell carcinoma (ESCC) cell lines, showing that the drug could display radiosensitization 

properties. The same effect was recorded in vivo when tumor cells were injected into nude mice [99]. 

4.2. Effect on Tumor Progression and Metastasis 

Of note, BBR could interfere with tumor progression and invasion, possibly through the inhibition 

of 12-O-tetradecanoylphorbol 13-acetate (TPA), GTPase [68], PE2 receptor agonist [43],  

TGF-β1-mediated epithelial-to-mesenchymal transition [100] and Rho kinase-mediated ezrin [101].  

A reduced migration in vitro could be related to the inhibition of FAK, IKK, NF-κB, u-PA, MMP-2, 

and MMP-9 [68,85,88,101]. The effect of BBR on the metastatic potential of cancer cells could be 

mediated by the activation of AMPK signaling, with the consequent reduction of ERK activity and 

COX-2 expression [102]. The property of BBR to exert anti-invasive and anti-metastatic effect was 

supported both by in vivo and in vitro analyses in B16F-10 cells, where BBR affected MMP expression 

through a negative regulation of ERK [103]. The activator effect of BBR on AMPK impaired the 

migration of colon carcinoma SW480 and HCT116 cells by interfering with the integrin β1  

pathway [104]. The same signaling pathway could be responsible for the anti-migration action of BBR 

on chondrosarcoma cells, which are characterized by high invasion ability [105]. 

Metastatic lung cancer A549 cells also appeared to be blocked in tumor progression and invasion by 

BBR, due to the down-regulation of several transcription factors such as c-fos, c-jun and NF-κB [106]. 

The same cell line was used to identify the regulators of cell migration impairment by BBR; in fact,  

it was found that BRR impact on epithelial-to-mesenchimal factors plays a crucial role in the inhibition 

of lung cancer metastasis [100]. 
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4.3. Induction of Autophagy 

Autophagy contrasts cellular stress conditions including nutrient deprivation and produces recycled 

energy originated from macromolecule degradation, thus regulating cellular homeostasis. The function 

of autophagy in cancer cells is to sense the presence of damaged DNA and organelles caused by 

chemotherapy and to degrade them, according to its own function; in this way, continuous energy is 

produced, which ensures cancer cell survival [107–110]. Enforced autophagy could act as a genuine 

Programmed Cell Death type II [111,112].  

The analysis of the potential ability of BBR to induce autophagy revealed that in non-small-cell and 

Lewis lung cancer cell lines as well as mice with Lewis lung carcinoma xenografts, in fact autophagic 

hallmarks (activation of Beclin-1, inhibition of mTOR and conversion of LC3I into LC3II) were 

detected [113,114]. Accordingly, human hepatocarcinoma cell survival was affected by BBR through 

the activation of both apoptosis and autophagy [115]. The molecular analysis of the complex network 

between apoptosis and autophagy [113,116] revealed that BBR acts on the interaction between Bcl-2 

family members, promoting the dissociation/assembly of complexes in charge of regulating the 

balance between apoptosis and autophagy [116]. 

Several derivatives of BBR have been evaluated in the HCT116 colon carcinoma cell line and 

found to be capable of inducing vesicle formation at cytoplasmic level, where LC3I was converted into 

its lipidated form LC3II [33].  

5. BBR Derivatives for Anticancer Drug Discovery 

Berberine offers ready functionalization and decoration at various positions on its skeleton, and can 

be readily converted into derivative compounds by known synthetic methodologies [117–119]. 

In particular, arylalkyl derivatives of berberine have been investigated [33,119]. Unprecedented 

features of this class of analogues are aromatic groups bonded to the C-13 position of the parent 

berberine via a linker of variable length, in a fashion to create a propensity for additional non-covalent 

aromatic interactions with the cellular target. These types of interactions are ubiquitous in nature [120] 

and their geometry is relevant for the molecular recognition in biological systems and for a possible 

effect on cancer cell proliferation and migration [18,121–123]. 

6. Conclusions and New Perspectives 

The above discussed evidences suggest that multiple effects of BBR are mediated by the impact on 

different pathways, leading essentially to cell cycle arrest, apoptosis and controlled inflammation 

(Figure 2). The promising data obtained on cancer cells support an active role of BBR in inhibiting 

cancer cell proliferation. To improve this relevant property, many derivatives (essentially with aromatic 

groups in the position 9 or 13 of the alkaloid skeleton) have been designed and synthesized [119].  

In general, derivatives proved to be more efficient than the lead compound, thus opening new perspectives 

for drug discovery. 

Among the multiple studies aiming at defining the mechanism of action of BBR, it is noteworthy to 

mention the evidence that BBR could regulate microRNAs (miRNAs), short non-coding RNA 

molecules (21–23 nucleotides) generated in the nucleus and involved in a variety of biological 
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processes, including development, cell proliferation and death. Deregulated expression of miRNAs 

was observed in many human cancer types, where they can act either as tumor suppressor or 

oncogenes [124]. Recent studies have demonstrated a key role of miRNA as targets of BBR; in fact, in 

hepatocellular carcinoma, miRNA expression (especially of miR-21-3p) was increased by BBR, 

contributing to decrease cancer cell proliferation and induce apoptosis. The mechanism of action of 

miR-21-3p was postulated to be correlated to the expression of methionine adenosyltransferase  

(MAT) genes (MAT2A and MAT2B) [125]. In different experimental contexts, i.e., human multiple 

myeloma [126] and cisplatin-resistant SKOV3 ovarian cancer cells treated with BBR [127], a dose 

dependent downregulation of miRNA-21 was observed. Further experiments are required to clearly 

depict the impact of BBR on microRNA dynamics. 

Figure 2. Effect of BBR on cell cycle, apoptosis, autophagy and inflammation through the 

modulation of different targets. 
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