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Abstract: The liver has become an increasingly interesting target for oligonucleotide therapy. 

Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, 

result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). 

Misfolded variants of TTR are linked to the establishment of extracellular protein deposition 

in various tissues, including the heart and the peripheral nervous system. Recent progress in the 

chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed 

for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific 

molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to 

RNA in a sequence specific manner but exploit different mechanisms. Here we describe major 

developments that have led to the advent of therapeutic oligonucleotides for treatment of 

TTR-related disease. 
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1. Introduction 

Therapeutic oligonucleotides bind via Watson-Crick hybridization to their molecular RNA targets that 

are known to be central for the pathomechanism of a disease, ultimately aiming at clinical improvement. 

Antisense oligonucleotides (ASO) and small interfering RNAs (siRNA) leading to RNA interference 

(RNAi) are amongst the two most widely used therapeutic oligonucleotides that were identified some 

decades ago [1,2]. One outstanding property of such oligonucleotides is the specificity of target binding 

which is much higher as compared to other drugs, commonly represented by small molecules or, more 

recently, by antibodies. Typically, the latter class of drugs can intercept with a receptor or an enzymatic 

reaction. In contrast, due to the property of oligonucleotides to target any given RNA, an outstanding 

number of possible targets can now be envisioned [3]. Supportive progress of the concept of therapeutic 

oligonucleotides stems from analyses derived from the Human Genome Project and large-scale 

transcriptome studies that have significantly broadened our understanding of how genetic information 

modifies disease. In this line, the previous dogmatic view on mRNA as the sole regulator of gene 

expression is now being replaced by a more complex picture. Various RNA species that are derived both 

from sense and antisense DNA strands giving rise to non-coding RNAs (ncRNAs), e.g., microRNAs, 

siRNA, and antisense RNAs, were identified to orchestrate gene expression as well as manifestation of 

disease [4,5]. The estimation of ~10,000 genes present in the human genome which are related to disease is 

therefore likely outnumbered by the various ncRNAs that are associated to disease. The continuing molecular 

characterization of disease therefore demonstrates the enormous potential of therapeutic oligonucleotides. 

Thus, therapeutic oligonucleotides significantly extend the range of clinical interventions, possibly 

supporting Ehrlich’s dream of a “magic bullet”, a drug so precisely targeted that its effectiveness is perfect 

and without any collateral damage. On a mechanistic view, different consequences can be achieved by 

therapeutic oligonucleotides. While downregulation of one Mendelian disease-causing gene is currently 

the most common application of therapeutic oligonucleotides, repair of disease-causing mRNA splicing 

events during the process of RNA maturation as well as upregulation of gene expression, e.g., by 

knockdown of RNA repressors, can be achieved [6–8]. Upregulation of a specific gene can be induced 

by oligonucleotides that inhibit the natural antisense transcripts of the gene, or interact with promoter/ 

3′ UTR binding sites of repressor genes [8,9]. 

Since the first establishment of the proof-of principle in numerous preclinical models, direct transfer 

of therapeutic oligonucleotides to the clinic has, however, suffered from major technological hurdles. 

Different molecular barriers important for an efficient and safe targeting of the RNA have to be overcome. 

To achieve therapeutic efficacy, a high accumulation of the oligonucleotide in the target tissue as well as 

appropriate intracellular trafficking to the subcellular compartments harboring the enzymatic machinery 

for interaction with the target RNA have to be obtained [6,10]. Unwanted off-target effects that can be 

caused by immune responses directed to the oligonucleotide sequence itself or to other moieties residing 

in the drug formulation have to be critically monitored. It is therefore of no surprise that only a small 

fraction of oligonucleotides that passed first evaluations in preclinical models are further investigated in 

clinical studies. In the past couple of years, more than 100 ASO and RNAi-based therapies entered clinical 

trials [11–13]. From previous clinical studies, only fomivirsen (Vitravene; ISIS Inc., Carlsbad, CA, USA) 

and pegaptanib (Macugen; Pfizer/Eyetech Pharmaceuticals, Cedar Knolls, NJ, USA) were approved by 

United States Food and Drug Administration (FDA), the former in 1988 and the latter in 2004. Fomivirsen 
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is an ASO, blocking translation of essential viral mRNA of cytomegalovirus (CMV), and was used for the 

treatment of immunocompromised patients, including patients with AIDS. Due to more effectice therapy 

for HIV patients, fomivirsen is no longer on the market. Pegaptanib, which binds to vascular endothelial 

growth factor (VEGF) rather than RNA represents an aptamer used for treatment of age-related macular 

degeneration. However, both drugs are delivered locally by intravitreal injection and therefore do not 

fully meet the breath of the many promises of therapeutic oligonucleotides, e.g., repeated systemic 

administration. The ups and downs in the development of therapeutic oligonucleotides for the market 

have resulted in some disillusionment and posing the question whether RNAi might be still alive [14]. 

In recent years however, continuous efforts from both academy and industry have obtained much progress 

for a refined development of therapeutic oligonucleotides allowing clinical use. In 2013, the first FDA 

approved therapeutic oligonucleotide, mipomersen, involving repeated and systemic administration, 

entered the market. Mipomersen (Kynamro; ISIS Inc.), is an ASO that targets apolipoprotein B (apoB) 

in patients with familial hypercholesterolemia [15]. This approval may now constitute an important 

nucleus for the field of therapeutic oligonucleotide. 

The liver has evolved as a model target tissue where the concept of therapeutic oligonucleotides can be 

excellently evaluated [11]. Much of the attention to the liver as a model for therapeutic oligonucleotides is 

attributed to its central localization within the human circulatory system and a unique architecture of the 

organ. A significant number of genes involved in disease have been described for the liver that may allow 

therapeutic intervention by oligonucleotides [16]. Transthyretin (TTR), a human serum protein expressed 

by the liver, is the cause of familial amyloid polyneuropathy (FAP) [17]. Oligonucleotides directed against 

TTR mRNA are now under investigation in advanced clinical trials and attract major attention to the 

field, since the next clinical verification of the concept of therapeutic oligonucleotides seems to be close. 

This review will focus on recent advances in the ongoing clinical studies that involve ASO and siRNA 

directed against TTR. 

2. TTR Amyloidosis 

The phenotype, inheritance and organ specificity of TTR amyloidosis is highly different and three major 

clinical forms, TTR-FAP, TTR-FAC and TTR-SSA, have been described. TTR-FAP (OMIM: 176300) is 

a rare genetic disorder caused by mutations of the TTR gene in chromosome 18q12.1 and is inherited in 

an autosomal dominant manner [17]. First reports in 1952 by Corino de Andrade described a disease with 

characteristic paresis and impairment of neurological, digestive, and gastric function in several families 

from Portugal [18]. Subsequent histopathological studies revealed that the disease was associated with 

TTR deposits of amyloid in various organs and tissues [19]. The first description of mutated TTR protein 

was in 1983 and identified an amino acid substitution of methionine for valine at position 30 of the mature 

polypeptide [20]. This mutation, found in Portuguese patients, was subsequently shown to be the most 

prevalent form of TTR-FAP worldwide. While the frequency of Val30Met mutation is especially high in 

endemic areas of Portugal, Sweden and Japan, other local predominant mutations were identified around 

the world [21–24]. To date, more than 130 disease-causing TTR mutations have been described. 

The homotetrameric TTR protein (about 55 kDa) comprises four subunits of the 127 amino acid protein 

and functions primarily as a carrier of retinol (vitamin A) and of thyroxine (T4) [17]. TTR is one of the 

most predominant serum proteins (160–350 mg/L) and has a half-life in blood of about 48 h [25]. Although 
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having diverse biological functions, TTR knockout in mice was followed by viable offsprings without 

overt disease that, however, show reduction of circulating T4 and vitamin A levels [26,27] suggesting that 

in the absence of TTR major biological functions of the carrier can be compensated. TTR is predominantly 

produced in the liver (>95%) and secreted into blood with only a small amount of protein synthesized in 

the choroid plexus and retinal pigment epithelium. 

The pathogenic process that is involved in TTR amyloid deposition is believed to be attributable to a 

decreased thermodynamic stability of tetramers containing mutant subunits that are prone to dissociation 

into dimers and monomers (Figure 1) [28]. Of note, tetramers found in the serum can be composed of a 

variable number of both wild type and mutant TTR. In vitro, TTR monomers can undergo partial unfolding 

allowing self-aggregation and ultimately polymerization into fibrils causing amyloidosis [29]. The exact 

molecular mechanism of TTR amyloid deposition in the tissues and its relevance to induce pathogenesis 

is however not completely understood. In vitro studies of tetrameric TTR dissociation demonstrated that 

even wild-type TTR tetramers can undergo conformational changes into amyloidogenic forms [30]. While 

extracellular deposits contain 30%–40% wild type monomers and also TTR cleavage products [24,31], 

the role of wild type TTR monomers to initiate or modulate plaque formation in vivo has to be further 

studied. It is of interest that in a different form of TTR-related disease, senile systemic amyloidosis (SSA), 

no mutation of TTR has been observed. SSA is highly common in males and predominantly affects the 

heart at an age of >60 years [32,33]. Plaques were found in 25% of a Finnish cohort above 85 years indicating 

that SSA is of high importance for countries with a high proportion of the elderly population [34]. At least 

in SSA, in the absence of mutant TTR, wild type TTR protein may therefore add to pathogenesis. 

 

Figure 1. Schematic illustration of FAP amyloidosis. Wild-type and mutant TTR (open and 

closed circle, respectively) are secreted by the liver into blood as a tetrameric protein that is 

unstable when comprising mutant protein. Tetramers dissociate into monomers which misfold 

and aggregate. Deposition of TTR fibrils is observed in peripheral tissues and organs. In order 

to treat FAP, antisense oligonucleotides (ASO) and small-interfering RNAs (siRNA) that 

target TTR mRNA in the liver are currently evaluated in clinical studies. 
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The phenotype of TTR-related amyloidosis is diverse and the extracellular deposition in various 

tissues, mainly peripheral neurons, gastrointestinal tract and the heart, shows plaques comprising TTR. 

TTR-FAP is associated with severe disease, including sensory, motor and autonomic neuropathy, and 

also cardiomyopathy is observed with a large continuum of disease symptoms in patients. Life expectancy 

of FAP patients is significantly reduced. Death is mostly observed after 5–15 years from onset of first 

symptoms. Cardiomyopathy-related amyloidosis is most frequently observed in patients of Danish  

and African ancestry having Leu111Met and Val122Ile mutations, respectively [35,36]. This clinical 

manifestation which usually has no pronounced neuropathy is known as familial amyloid cardiomyopathy 

(FAC). Diagnosis of TTR-related disease can therefore be challenging due to the variety of symptoms. 

Identification of amyloid deposits is confirmed by tissue biopsy usually from the skin. Light microscopy 

of tissues derived from the affected organ show an apple-green birefringence after congo red staining of 

fibrils. Isoelectric focusing (IEF) can be used to identify the TTR variant in serum. In case of the two 

hereditary forms of TTR amyloidosis, FAP and FAC, DNA sequencing is used to confirm the disease. 

While in some patient cohorts individual TTR mutations are linked to a major set of clinical manifestations, 

a direct genotype to phenotype correlation is not observed [37]. Patients in cohorts from Portugal with 

the Val30Met mutation start to develop symptoms at the age of 30 years and are classified by signs of 

autonomic and peripheral neuropathy [38,39]. However, Swedish patients, having the same genotype, 

show a later age at onset of about 56 years indicating that other factors influence disease [21]. Apart from 

polyneuropathy, some patients with Val30Met mutation can develop cardiomyopathy of late onset [40]. 

In a procedure called domino liver transplantation, where livers from FAP patients are transplanted, 

TTR related disease mechanism were observed after some years corroborating the disease-causing 

property of mutant TTR [41]. Orthotopic liver transplantation (OLT) to FAP recipients is used as a clinical 

option to treat the disease. OLT inhibits novel synthesis of mutant TTR protein by the liver and reduces 

the total mutant protein to about 1% of pre OLT serum values [42]. Liver transplantation of FAP patients 

having the TTR Val30Met mutation shows the best prognosis, particularly when recipients are at an early 

stage of the disease. However, a stabilization of disease rather than a complete remission can be achieved 

in most patients with a slow but ongoing progression of neuropathy [43]. Whether mutant TTR of choroid 

plexus (<5% of total TTR synthesis) that can pass the blood brain barrier is causative, remains to be 

investigated [44]. In the case of TTR amyloidosis with prominent heart involvement, it has been shown 

that wild type TTR itself accumulates on existing amyloid plaques after transplantation [45]. In patients 

diagnosed with FAC or FAP with prominent heart involvement, liver transplantation is therefore 

contraindicated since progression of cardiac disease is ongoing and would probably be exacerbated by 

wild type TTR synthesized by the donor liver [46,47]. As a consequence, OLT is not an option for almost 

two-thirds of FAP patients either due to age or advanced disease. 

Considering that tetramer dissociation is a critical aspect of fibril formation, previous research has put 

some emphasis on the development of small molecules counteracting this process via tetramer stabilization. 

The hydrophobic thyroxine binding sites of the TTR were targeted in these approaches [48,49]. Diflunisal 

(Merck and Co., Inc., Kenilworth, NJ, USA), an anti-inflammatory drug originally developed in 1971, 

has been recently evaluated in a double-blind, placebo controlled clinical study for FAP treatment [50]. 

Tafamidis (Pfizer, Inc., New York, NY, USA) is currently the only approved drug for treatment of TTR 

amyloidosis. Tafamidis was introduced in 2011 in various European countries for treatment of TTR 

amyloidosis in adult patients with stage 1 polyneuropathy [51–53]. However, as opposed to therapeutic 
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oligonucleotides, Tafamidis interferes after protein translation and does not reduce overall serum TTR. 

Specific inhibition of TTR mRNA by ribozymes as observed by in vitro studies seems to represent an 

alternative therapeutic option [54,55]. 

3. Molecular Mechanism of Antisense Oligonucleotides 

Since the first description of gene inhibition resulting from a 13-mer ASO against Rous sarcoma viral 

RNA [56], further research has explored the remarkable potential of synthetic oligonucleotides. ASO 

are short nucleic acids, mostly composed of ssDNA of ~12–20 nucleotides, that bind to target RNA via 

Watson-Crick base pairing [57]. Depending on the location of ASO binding to regions of the RNA target, 

several mechanisms of gene editing can be obtained. In the cytoplasm, ASO can bind to the starting 

AUG codon of the mRNA and consequently inhibit the formation of the translation initiation complex 

by formation of steric barriers [58]. In the nucleus, ASO binding to pre-mRNA close to the splicing sites 

can affect RNA processing [59]. 

3.1. RNase H Mediated Cleavage 

Most commonly, ASO binding to the RNA is followed by induction of RNase H activity resulting in 

RNA degradation (Figure 2). The process takes place in the nucleus where endonuclease is ubiquitously 

expressed as shown for oocytes from Xenopus laevis [60]. Early findings have suggested that translocation 

of ASO to the nucleus occurs by passive movement across the nuclear pore [61]. The role of transporters, 

like microRNA transporter exportin-1 (Exp1), for clearance of ASO from the nucleus was recently 

suggested [62]. Accumulation of the ASO to the nucleus can also be achieved by fusion to proteins or 

inclusion to carriers suggesting that an active nuclear complex transport mechanism can take place [63,64]. 

After entering the nucleus, the formation of a DNA-RNA duplex stimulates RNase H activity. Hydrolysis 

of the 3′-O-P-bond of the RNA is observed, followed by degradation of the RNA [65]. The specificity of 

the RNase H binding to its target is not completely understood. Recognition of RNase H substrate involves 

interaction with 2′-O-hydroxyl groups of RNA [66]. X-ray crystallography studies imply that DNA-RNA 

hybrids show a characteristic curvature that is likely recognized by RNase H [67]. As compared to the 

siRNA mechanism (see next chapter), the specificity of the RNase H mediated cleavage within the RNA 

target is somewhat broader. A preferred cleavage has been observed within a region of 8–12 nucleotides 

from the 5′-RNA-3′-DNA terminus of the duplex with a high preference for GU sequence motifs. A 

minimal hybrid length of about 6 nucleotides seems to be required for RNase clevage [68]. Of note, as 

ASO is released from the RNase H complex after cleavage, a repeated use of the ASO molecule after 

RNA cleavage has recently been suggested both in vitro and in vivo corroborating that the ASO induced 

inhibition mechanism is highly efficient [69]. 
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Figure 2. Schematic representation of ASO mediated gene silencing via RNase H cleavage. 

Upon delivery into the cell, ASO can traverse into the nucleus and binds to its complement 

in the target mRNA. The DNA/RNA hybrid is recognized by RNase H which cleaves the 

target mRNA. Cleavage by RNAse H is not absolute site specific and occurs within a small 

region of several nucleotides of the DNA/RNA duplex. After RNA cleavage, the ASO is 

believed to be reused for novel DNA/RNA hybrid formation. 

3.2. Nucelotide Modification 

One major obstacle of oligonucleotides is their rapid degradation in serum and cells after delivery. 

Promising therapeutic oligonucleotides were derived after steadily improvement of their stability and 

bioavailability achieved by chemical modifications of the nucleotides (Figure 3). Most modifications target 

the phosphodiester bond and the 2′-position of the ribose sugar. These variations have different effects on 

the corresponding duplex stability and nuclease resistance. One of the first nucleotide modifications used 

to stabilize oligonucleotides for in vivo delivery was successfully replacing the non-bridging oxygen in the 

phosphodiester backbone with sulfur to obtain a phosphorothioate deoxynucleotide and phosphorothioate 

(PS) modifications [70,71]. PS modified nucleotides have been found to predominately accumulate in the 

nucleus and induce formation of nuclear bodies believed to be important for antisense mechanism [72]. 

A pharmacokinetic (PK) benefit was observed due to binding of oligonucleotides to plasma proteins 

which decreased renal clearance and increased the half-life to about 1–3 days [73]. On the other hand, PS 

modifications decrease the melting temperature (Tm) as shown for various oligonucleotide combinations 

by roughly 8 °C per strand [74]. As a consequence, the affinity of the PS modified oligonucleotide to its 

target decreases as well. A so called second generation of ASO was developed to increase the affinity of 

the oligonucleotide to the mRNA and also to further improve the resistance to cellular nucleases and 

decrease cellular toxicity and side effects. The most significant chemical modifications to address these 
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issues were the addition of 2′-O-methyl (2′-OMe) and 2′-O-methoxyethyl (2′-MOE) residues to the  

2′-position of a ribose sugar [75]. 2′-OMe nucleotides can increase the Tm roughly by 1 °C per 

substitution [76]. Oligonucleotides covering these alkyl modifications show high stability to nucleases, 

increased affinity to target mRNA, lower toxicity, and an improved lipophilic character favorable for 

lipid bilayer diffusion [77]. The plasma half-life of ASOs in patients can be increased to around four 

weeks [78]. One drawback of alkyl-modified oligonucleotides is that the duplexes formed with target RNA 

have a decreased ability to induce RNase H activity [79]. The addition of locked nucleic acid (LNA) is 

amongst the most recent ASO modifications used for improvement of therapeutic oligonucleotides. LNAs 

show a modification of the ribose sugar at the 2′- and 4′-positions by means of a linkage with a methylene 

residue [80]. The formation of the methylene-bridge enhances the affinity of the oligonucleotide to the 

target RNA, strengthens the stability of the duplex, increases the lipophilic character, and improves the 

resistance to nucleases [81]. Introduction of LNA can increase Tm by up to 4 °C per substitution [82]. 

Kurreck and colleagues described a 10-fold increase in stability of LNA in comparison to unmodified 

oligonucleotides, which corresponds to a half-life of about 15 h vs. 12 h for 2′-OMe variations and 10 h 

for PS modifications [83]. 

 

Figure 3. Nucleotide modifications frequently used for gene silencing. Modifications  

of nucleotides mostly involve the 2′ position of the ribose sugar as shown here for  

2′-O-methoxyethyl (2′-MOE), 2′-O-methyl (2′-OMe), and 2′-O, 4′-C-methylene linked bicyclic 

ribofuranosyl modification (locked nucleic acids, LNA). Also note the phosphorothioate (PS) 

linkages in all molecules, where a non-bridging oxygen is replaced by sulfur, increasing its 

resistance to enzymatic hydrolysis. 

3.3. ASO Gapmer 

The development of chimeric ASO sequences called “gapmer” having a central phosphorothioate 

region of 8–12 deoxynucleotides responsible for binding of RNase H and flanked by 2′-alkyl-modified 
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nucleotides on both sides to increase stability (Figure 4), was essential for further improvement of 

therapeutic oligonucleotides [84]. Currently, most advanced therapeutic ASO platforms in the clinic 

contain a nucleotide modification of 2–5 bases on both ends of the oligonucleotide that have excellent 

stability and allow efficient RNase H cleavage. Modification of nucleotides have also been used to develop 

dsASO where the sense strand is chemically modified in a way that it is more susceptible to hydrolysis by 

phosphodiesterases leaving the stable antisense gapmer for inhibition [85]. Besides the molecular impact 

of the most advanced ASO platforms for gene silencing, off-target effects exerted by the oligonucleotide 

have to be considered. Off-target effects can result in significant toxicity and frequently associate with the 

class of nucleotide modifications rather than with a specific sequence. Broadly, hybridization-dependent, 

e.g., due to binding at off-target RNA, or hybridization-independent, e.g., cytoplasmic granule accumulation 

or pro-inflammatory effects, can be distinguished [86]. 

 

Figure 4. Gapmer. Current generations of ASO are frequently represented by a gapmer of 

typically 20 nucleotides with predominant phosphorothioate (PS) linkages. The central domain 

is composed of 8–12 deoxynucleotides that bind RNase H and induce efficient cleavage of 

the mRNA. At both ends of the gapmer (wings), 2–5 nucleotides having 2′ modifications, 

typically 2′-MOE and 2′-OMe, are inserted. The wings improve overall resistance of ASO 

to nucleases and increase the affinity to the target mRNA. 

The previously approved drug mipomersen features many of the above described chemical 

arrangements [15,87,88]. Mipomersen consists of a 20-base 2′-OMe gapmer having 5-mer “wings”.  

It belongs to the group of second generation ASOs and binds to a 20 nucleotide sequence of the human 

apolipoprotein B100 (apoB100) mRNA. In a recent placebo-controlled phase 3 clinical study the LDL 

concentration was found to be decreased by about 25% in the treatment group as compared to about 3% 

in the placebo group after having received 200 mg of ASO by weekly subcutaneous injections [89]. The 

most common adverse effects were noted in follow-up reports to be related to the injection site. Flu-like 

symptoms, increased ALT levels, and steatosis were also observed [90–93]. Alternative dose regimens 

of mipomersen have been suggested for long-term studies [94]. 

4. RNAi-Mediated Gene Silencing Using siRNAs 

RNAi is a post-transcriptional regulatory mechanism that involves small double stranded RNA 

(dsRNA) for gene silencing in a sequence-specific manner. It is believed that RNAi might have arisen 

as a defense mechanism against viruses and transposons, which usually involves dsRNA for propagation 

and replication. The first report of RNAi gene silencing was by the Nobel laureates Fire and Mello who 

described long, dsRNA in the nematode Caenorhabditis elegans [2]. Therapeutic application of siRNA 
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in a liver disease mouse model was demonstrated in 2003 via Fas silencing [95]. In the past decade, 

RNAi has become an attractive tool for development of therapeutic gene silencing [96,97]. 

4.1. RISC Mediated Cleavage 

Short dsRNA are classified as small interfering RNA (siRNA) and micro RNA (miRNA). A variety 

of RNA structures can be used to induce RNAi, including Dicer substrate RNAs or shorter siRNAs.  

In mammalian cells, siRNA is generated by cleavage of long dsRNA into smaller RNA molecules of 

~20–30 bp in length (Figure 5) [98,99]. Dicer, a large, multidomain RNase III endonuclease enzyme, 

complexed with the TAR-RNA binding protein (TRBP), is responsible for this cleavage [100]. The 

resulting siRNA has a 5′ phosphate and a two-nucleotide overhang at the 3′ end [101]. This unique 

characteristics allow recognization by the enzymatic complex termed RNA-induced silencing complex 

(RISC). The ~670 kDa RISC complex is composed of Argonaute 2 (Ago 2), Dicer, and TRBP [102]. 

Each siRNA duplex consists of a guide (antisense) strand and a passenger (sense) strand. The strand with 

the lowest duplex stability at the 5′ end (guide strand) is incorporated into RISC [103]. Unwinding and 

release of the passenger strand is accomplished by Ago 2, which forms the catalytic core of the RISC 

complex [104,105]. RISC uses the guide RNA to locate the complementary RNA sequence leading to 

endonucleolytic cleavage of target mRNA by Ago 2. In contrast to ASO, there is predominantly one 

cleavage event that takes place at the nucleotide position 10 upstream of the siRNA 5′ end [106]. The 

mechanism by which RISC finds the target mRNA is not completely understood. The accessibility of 

the target mRNA (e.g., by absence of secondary and tertiary structures) directly correlates to cleavage 

efficacy [107]. The guide RNA/protein complex is a multiple turnover enzyme and is recycled after 

cleavage allowing the initiation of an enzymatic cascade. Only one or few RNA molecules within the 

target cell are sufficient for cleavage which explains the remarkable efficiency of RNAi-mediated 

silencing [108,109]. Continuous inhibition of target mRNA has been observed in non-dividing cells, 

such as hepatocytes, for a period of 3–4 weeks on siRNA application [110]. Of note, for the liver it has 

been suggested that siRNA can be exchanged between cells, partially mediated by shuttling of exosomes, 

even without direct cell-cell contact which may further potentiate the efficacy [111]. The RNA loading 

and activity of the siRNA mechanism typically takes place in the cytoplasm; however, a nuclear 

localization of several siRNA components has recently blurred this view [112]. 

4.2. Modification of siRNA 

While RNAi is a popular gene silencing mechanism, there are obstacles that need to be overcome to 

exploit its properties for genetic manipulation of diseases. Like small molecule and monoclonal antibody 

modalities, understanding the PK and biodistribution of oligonucleotides is essential for its therapeutic 

application. Unmodified, naked siRNA has a very short plasma half-life (up to few minutes) making it 

highly susceptible to degradation [113]. Chemical modifications of nucleotides that enhance stability have 

helped in overcoming these problems (Figure 3). In principle, nucleotides that were used for generation 

of ASO (see previous chapter) can also be used for siRNA [114,115]. While it was shown that larger 

substituents at the 2′ position are frequently used in ASO, 2′-O-variations counteract with the silencing 

activity of siRNA due to limited compatibility with Ago2 [116,117]. Care must be taken since such 

modifications can reduce siRNA specificity and may result in higher toxicity. While the passenger strand 
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can be modified almost completely, only a few positions of the 3′ end and middle region of the guide 

strand can be changed without affecting the gene silencing ability of siRNA. 

 

Figure 5. Schematic representation of siRNA mediated gene silencing. Long dsRNA is 

cleaved by enzyme Dicer into 20–30 bp siRNA, which consists of a passenger strand (sense) 

and a guide strand (antisense). Alternatively, a mature siRNA containing a 5′ phosphate and 

a two-nucleotide overhang at the 3′ end can be delivered to cells. The multiprotein enzyme 

complex RISC recognizes the siRNA in the cytoplasm, unwinds the duplex siRNA and 

incorporates the guide strand (antisense) while the passenger strand is released. RISC then uses 

the guide strand to specifically target mRNA. For perfectly matching targets, the endonuclease 

Ago 2 within RISC induces one cleavage that takes place at position 10 upstream of the 5′ end. 

After cleavage, the siRNA-RISC complex is recycled to target other mRNA. 
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Critical problems with RNAi gene silencing are off-target effects, e.g., unintended downregulation of 

mRNA transcripts outside the target gene. This is caused due to partial sequence complementarity of 

sense or antisense siRNA strands to non-target mRNA. Off-target silencing of a large number of genes 

on treatment with siRNA was demonstrated by microarray technology [118]. Genome-wide expression 

profiling in mammalian cells revealed siRNA-specific rather than target-specific signatures, causing 

silencing of mRNAs having as few as 11 contiguous nucleotides of identity [118]. Furthermore, studies 

of siRNA transfected cells showed induction of toxic phenotype as a consequence of off-targeting [119]. 

Hence, stringent siRNA screening is mandatory to determine tolerable levels of off-targeting without 

affecting the phenotype. Of note, chemical modification of siRNA can reduce off-target effects, e.g., the 

addition of a methyl group to the 2′-position of the ribosyl ring in the siRNA guide strand can reduce 

off-target effects by 80% without reducing on-target silencing [120]. 

Introduction of dsRNA and ssRNA can activate innate immune responses via interactions with  

Toll-like receptors (TLRs) present on the cell surface leading to stimulation of pro-inflammatory 

cytokines and partial interferon response, namely via TLR3 and TLR7/8, respectively [121,122]. Such 

immune stimulatory effects are highly dependent on features of the siRNA, especially when the length 

exceeds 30 bp. The sequence, nucleotide modifications, and chemical conjugations also play a role.  

A particular sequence motif (5′-GUCCUUCAA-3′) was identified within siRNA which seems to be 

recognized by TLR7 of dendritic cells to activate immune responses [123]. Though stimulation of immune 

responses could be beneficial in some clinical application, it raises serious concerns for the safe use of 

RNAi in therapeutics. Sequence modifications including 2′-F, 2′-OME, and 2′-H substitutions in anti-HBV 

siRNA have been shown to abolish cytokine induction, thereby reducing immunogenicity [124]. Adverse 

effects observed in human studies that are caused by new generation siRNAs are generally mild; however, 

oral corticosteroids, histamine receptor (H1 and H2) blockers, and paracetamol are sometimes given to 

the patients shortly prior to administration [125]. 

5. Delivery of Oligonucleotides to the Liver: An Attractive Target for Therapeutic Oligonucleotides 

It has long been noted that radiolabeled oligonucleotides, when systemically applied to the human body, 

are greatly accumulated in the liver. While high oligonucleotide accumulation is also observed in the 

kidney, other organs, like the spleen, heart, pancreas, and the brain show far lesser concentrations [126]. 

The liver has a major role in the human body with numerous functions, including the homeostasis of 

glycogen, decomposition of red blood cells, synthesis of important plasma proteins, hormone production, 

and first entry level of detoxification. Currently, therapeutic oligonucleotides are subjected to clinical 

trials for prevention of various liver disease [11,87,127]. Liver cell uptake and subcellular distribution are 

essential for the pharmacological action of the oligonucleotides. Upon systemic administration following 

intravenous (i.v.), subcutaneous (s.c.), or intraperitoneal (i.p.) injection, oligonucleotides must overcome 

several biological barriers, like degradation by nucleases in serum and cells, renal filtration, rapid clearance 

via reticuloendothelial system (RES), endothelial cell barriers, and diffusion through extracellular matrix 

before entry into the target organ i.e., the liver. 

The liver is a well-perfused organ with an endothelium that acts like an accessible doorway (sinusoidal 

sieve) for larger moieties. Blood from the intestine and spleen is passed to the liver by the hepatic portal 

vein. The portal blood and the arterial blood, which transports the oligonucleotides after i.v. administration, 
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mix in the hepatic sinusoids before leaving via the hepatic vein. Lobules having hexagonal shape represent 

the organizational unit structure of epithelial hepatocytes, arranged into cords that are surrounded by 

vascular sinusoids. While a basal lamina is missing, relatively large fenestrations (100–200 nm diameter) 

between the endothelial cells allow for increased extravasation into the parenchyma in a unique architecture 

termed the space of Disse. Besides hepatocytes that represent about 80% of the liver parenchyma, other 

types of cells, prominently Kupffer cells, stellate cells and various cells of the immune system, can also 

take up significant amounts of the oligonucleotides. Depending on the dose, up to 80% of oligonucleotides 

can be found in non-parenchymal cells of the liver [128]. The timing of oligonucleotide administration is 

also an important factor. Delivery with slow infusion of ASO as opposed to bolus injection led to increased 

concentration in the liver [129]. It is therefore of interest that a strong pharmacokinetic/pharmacodynamic 

(PK/PD) relationship has been observed for most therapeutic oligonucleotides that are in late stage clinical 

trials, including mipomersen [130]. 

5.1. Biological Barriers for Liver Targeted Oligonucleotides 

Oligonucleotides can circulate freely or in a non-covalently bound form associated to plasma proteins. 

Following different injection routes (i.v., s.c., and i.p.), the i.v. administration resulted in much higher 

oligonucleotide levels in the liver, at least for a 2′-OMe ASO targeting the dystrophin gene [131]. In blood, 

the adsorption to various types of proteins, termed opsonins which mediate recognition and uptake  

by RES, has to be avoided. In a free and chemically unmodified form, renal filtration and clearance of 

oligonucleotides is extremely high. A hydrodynamic diameter of <5–6 nm is associated with renal 

clearance within minutes. Oligonucleotide-protein complexes pass across the vascular endothelial barrier 

and are transported by blood throughout the body, particularly to the liver. It has been shown that PS 

modifications can highly improve the binding efficiency to plasma proteins. The ASO “ISIS 2302” 

directed against ICAM-1 has been shown to attach to more than 97% of plasma proteins with albumin 

being the most frequent favoring delivery to the liver [132]. Without further modification, as shown for ASO 

that were linked to other tissue-specific and cell-penetrating peptides, the majority of the oligonucleotides 

are found in the liver [133,134]. 

The next barrier of the oligonucleotides is represented by the plasma membrane, e.g., of the hepatocyte. 

The high molecular weight and the overall negative charge of the oligonucleotide impede uptake by 

cells. While in vitro various transfection agents can compensate such shortcomings, these are mostly 

toxic and not in line with human use and clinical studies. Uptake of oligonucleotides by endocytosis, 

micropinocytosis, and lately also by direct translocation have been discussed [135]. Like other biological 

macromolecules, the oligonucleotides can enter the target organ via receptor-mediated endocytosis or by 

other pathways [134,136]. Coated pits invaginate into the cytoplasm and pinch off to form clathrin-coated 

vesicles followed by sequential vesicular trafficking from early endosome to late endosome and 

lysosomes [137]. However, clathrin-independent pathways of oligonucleotide uptake have also been 

observed. The PS-mediated uptake of naked siRNA follows a caveosomal mechanism and a direct 

translocation has been observed for peptide based nanoparticles [138,139]. Covalent conjugation of ASO 

and siRNA with cell-penetrating peptides (CPPs) has been established for effective delivery to mammalian 

cells and appropriate subcellular target delivery [140–142]. In vivo delivery of proteamine-antibody fusion 

proteins that bind siRNA could specifically deliver the oligonucleotide to HIV-1 envelope expressing 
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cells [143]. Conjugation of siRNA with aptamers binding to PSMA, a cell-surface receptor overexpressed 

in prostate cancer cells, has also resulted in cell-type specific delivery in vivo [144]. 

One final biological barrier is represented by endosomal escape. The mechanism of intracellular 

trafficking is however poorly understood and needs further research. Receptor-ligand complexes that have 

been endocytosed to the early endosomes behave in one of the two ways: they may return to the plasma 

membrane by vesicular transport or may be transported further to the lysosome, where they are degraded 

by hydrolytic enzymes. For a productive pathway, the oligonucleotide must reach its site of action in the 

nucleus or cytoplasm by exiting the endosomes. The productive pathway can account for less than 20% of 

the total oligonucleotide delivered to liver tissue [129]. In the mouse hepatocellular carcinoma cell line 

MHT, the productive siRNA pathway involves vesicles which are dependent on adaptor protein subunit 

AP2M1 but independent from clathrin or caveolin [145]. ASO that are bound to a conjugate via disulfide 

linkages can be released from carrier during endosomal exit due to weak intermolecular interaction  

that are prone to cleavage in acidic endosomal environment [146]. To obtain high accumulation of  

the therapeutic oligonucleotide inside the nucleus, there is need of an active transport mechanism. PS 

modified ASO were observed to shuttle between nucleus and cytoplasma via an active ATP-dependent 

mechanisms [147]. Conjugation of ASO with negatively charged liposomes can also result in high nuclear 

delivery [148]. Detailed understanding of these biological processes has helped design specific strategies 

in overcoming such barriers, e.g., conjugating oligonucleotides with endosomal release signal peptides or 

nuclear localization signal peptide [149,150]. Also, acid-labile maleamate bonds have been used to escape 

endosomal arrest after apoB targeting [151]. 

5.2. Molecular Strategies for Specific Liver Targeting 

In contrast to siRNA, most ASO of newer generations do not need formulations to exert robust 

antisense effects. However, in a side by side comparison of siRNA and ASO that were designed to target 

the tumor suppressor gene, phosphatase and tensin homologue (PTEN) unmodified and LNP formulated 

oligonucleotides were investigated after single i.v. administration [152]. Here, a significant downregulation 

of PTEN (>75%) was achieved in the liver by both oligonucelotides only after a LNP formulation was 

used. As estimated by determination of the integrity of both oligonucleotides in the liver (e.g., presence of 

5′ phosphate group essential for RNAi), siRNA seems to benefit most from LNP formulations. Basically, 

two broad approaches for stabilization of the delivery can be distinguished. The first involves incorporation 

of oligonucleotides into lipid or polymer nanocarries, like the shielding agent polyethylene glycol (PEG), 

allowing increased stability [153] while the second involves molecular conjugates where oligonucleotides 

are linked to ligands that binds to specific cell surface receptors with high affinity [154–156]. Additionally, 

dendrimers consisting of branched polymers, usually in the range of 10–100 kDa, have been reported for 

improved oligonucleotide uptake [157]. The protection by PEG involves lower unwanted protein binding 

and lower stimulation of the innate immune system [158,159]. PEG is used to mask the membrane 

disrupting activity via acid-cleavable carboxylated dimethyl maleic acid (CDM) [160]. The most advanced 

delivery platform for systemic administration is lipid nanoparticles (LNPs), with mipomersen as one 

prominent example. LNPs bind apolipoprotien E (apoE) in the circulation and the apoE complex facilitates 

receptor-mediated uptake by hepatocytes [161]. Stable nucleic-acid-lipid particle (SNALP) that consist 
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of a lipid bilayer containing a mixture of cationic and fusogenic lipids including PEG was used for siRNA 

delivery [124]. 

Oligonucleotides, having per se an inherent preference for accumulation in the liver, have been further 

subjected to refined, liver-specific delivery strategies that are thought to increase efficacy, e.g., for use of 

lower doses. Carbohydrate-based-ligands, e.g., galactose [162], galactose derivative N-acetylgalactosamine 

(NAG) [163], and lactose [164], are frequently employed. Conjugation of siRNA to GalNAc, a highly 

efficient ligand for the asialoglycoprotein receptor (ASPGR) is the leading carbohydrate-siRNA conjugate 

in clinical development. The ASGPR is almost exclusively found on hepatocytes where it is located at 

the basolateral membrane, directly facing the bloodstream. The number of ASGPR has been estimated to 

be ~500,000 copies/cell [165]. The receptor is highly conserved and binds serum glycoproteins followed 

by receptor-mediated endocytosis [166]. Conjugation of the 3′ terminus of siRNA with three molecules 

of N-acetylgalactosamine (GalNAc) resulted in sustained gene silencing after weekly administration for 

over 9 months with no adverse effects in rodents [163]. A s.c. delivery of GalNAc-siRNA conjugates 

seems to pose advantage over LNPs which had to be delivered i.v. to elicit favorable RNAi-mediated 

therapeutic effects [163]. However, s.c. administrated LNP can also give robust inhibition when intermediate 

size particles (~45 nm) or GalNAc were incorporated [167]. A co-administration strategy of GalNAc-

modified DPC polymer and cholesterol conjugated siRNA improved efficacy to about 500-fold over 

single use of cholesterol siRNA and resulted in 90% reduction in mice and non-human primates [168]. 

Of note, for efficient inhibition to take place intracellular cleavage seems to be necessary that removes 

conjugates [169,170]. 

6. Clinical Studies Employing ASO Directed against Human TTR 

Antisense compounds targeting human TTR were recently developed and transferred to clinical trials 

by ISIS Pharmaceuticals (www.ttrstudy.com). ISIS Inc. is targeting a variety of diseases, most notably 

by conducting advanced clinical trials in the fields of cardiovascular, metabolic, neurodegenerative 

diseases, and cancer. ISIS 420915 (TTRRx) is a second-generation ASO gapmer directed to human TTR, 

having wings of 2′-MOE-modified ribonucleotides and PS linkages. The sequence of the ASO is fully 

complementary to a region within the 3′ untranslated region (3′ UTR). A set of 400 TTR ASO compounds 

was originally screened in the human hepatoma cell line HepG2 and also evaluated in a TTR Ile84Ser 

transgenic mouse model [171]. Eight compounds were further selected for analysis in non-human primates 

and shown to suppress serum TTR. The anti-TTR ASO was effective in rodents [172,173]. A Phase 1 

trial of ISIS 420915 was conducted in healthy volunteers as a blinded, randomized, placebo-controlled, 

dose-escalation study designed to assess the safety and PK profile. After four weeks of dosing (50 mg 

to 400 mg), ISIS 420915 caused rapid and significant dose-dependent reduction of serum TTR levels. 

Reductions of up to 96% (average around 75%) were observed as compared to the pre-treatment levels. 

From the five doses studied, the 300 mg dose was chosen for the subsequent trials. The compound was 

generally well tolerated in all subjects and safety and tolerability profile supported the progression of 

ISIS 420915 directly to Phase 3 studies. 

In December 2012, a randomized, double blind, placebo controlled, international Phase 3 study was 

started with the collaborator GlaxoSmithKline. After an initial loading period (three s.c. injections on 

alternate days in the first week), ISIS 420915 was self-administered at home with one s.c. injection per 
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week for another 64 weeks. About 200 patients with mild stage neuropathy (stage 1 and stage 2) are 

envisaged to be enrolled in the study. FAP patients from various countries, including United States, 

France, Germany, Italy, Portugal, United Kingdom, Spain, and Argentina have already entered the trial. 

The mutations of the FAP patients represent a total of 37 different TTR mutations, with Val30Met being 

most prevalent. The current primary endpoint of the study is the efficacy as determined by nerve sensory 

measurements (modified Neuropathy Impairment Score mNIS + 7) as well as by quality-of-life (Norfolk 

Quality of Life Diabetic Neuropathy questionnaire). mNIS + 7 is an evaluation of muscle weakness, 

sensory/autonomic function, and nerve conductance, where the progression of neuropathy in FAP patients 

usually leads to an increased score over time. As a secondary endpoint of the study, the levels of TTR 

and retinol binding protein 4 (RBP4) will be assessed. Evidence regarding the efficacy of ISIS 420915 

to treat FAP disease is not yet available. Final data are awaited not before November 2016 (the final data 

collection date for primary outcome measure). However, the continuing, blinded safety analysis of the 

Phase 3 study shows that the injection site reactions were predominantly mild and infrequent, occurring 

in only about 1% of all injections. 

In 2015, ISIS Pharmaceuticals reported first results from an unblinded study, termed open-label 

extension (OLE) study. FAP patients that have completed the Phase 3 study were enrolled in this study 

in which all patients receive ISIS 420915 and no placebo group is implemented. A first group of patients 

(n = 13) at month three of the OLE study showed a reduction of serum TTR level up to 92 percent (median 

reduction of 78 percent) compared to the baseline at the Phase 3 study suggesting that ISIS 420915 is 

highly effective to reduce TTR levels of the FAP patients. Further clinical data with regard to the efficacy of 

FAP treatment are awaited soon. FAC patients were also recently included in study of ISIS 420915 [174]. 

Alternate Clinical Target of TTR ASO 

In an attempt to further improve the TTR ASO, ISIS developed a GalNAc conjugation of the 

oligonucleotide and evaluated the efficacy in the Ile84Ser transgenic mouse model [175]. As compared 

to the unconjugated ASO, the potency of TTR downregulation was increased by about 10-fold suggesting 

that a significant reduction of the ASO dose was achieved by the improved targeting of hepatocytes.  

In addition, recent experimental evidence obtained by ISIS using the standard TTR ASO platform suggests 

that the anti-TTR therapy could play a role for the treatment of type 2 diabetes [176]. It has long been 

known that RBP4 levels are increased in most insulin-resistant humans. In two insulin-resistant models, 

obese mouse (ob/ob) and the high-fat diet mouse model, application of TTR ASO resulted in a decrease 

by 80%–95% of circulating RBP4 concomitant with the decrease of TTR. Also, insulin level were found 

to be decreased by 30%–60% following TTR silencing. The finding suggests that reduction of the RBP4 

level by the TTR ASO could improve insulin resistance opening a wider field of clinical application for 

this therapeutic oligonucleotide [177]. 

7. Clinical Studies Employing siRNA Directed against Human TTR 

Alnylam Pharmaceuticals, dedicated to the development and clinical assessment of siRNA in  

various diseases, such as genetic, cardio-metabolic and hepatic infection disease, is currently the leader 

of siRNA-based approaches to silence human TTR (www.alnylam.com). A multicenter, randomized, 

single-blind, placebo-controlled Phase 1 study was reported for one of Alnylam’s most promising TTR 



Molecules 2015, 20 17960 

 

 

siRNA, termed ALN-TTR02 (Patisiran) [178]. ALN-TTR02 is a second generation siRNA, formulated 

with lipid nanoparticles that targets the 3′ UTR of the human TTR mRNA. ALN-TTR02 (doses of  

0.01 to 0.5 mg/kg) was applied to subjects via i.v. infusion. On administration of the compound no  

drug-related serious adverse events and significant changes in hematologic, liver, or renal measurements 

were observed. Mild-to-moderate infusion-related reactions (IRRs) occurred in 7.7% of the participants. 

Antibodies to the pegylated lipid component of the drug were not detected in patients. Reductions in 

TTR serum levels at doses of 0.15 mg/kg to 0.3 mg/kg were observed and ranged from 82.3% to 86.8%, 

with reductions of 56.6% to 67.1% at day 28. These reductions of TTR were associated with a reversible 

decline in levels of RBP and vitamin A that were however not found to be adverse. Of note, to reduce the 

risk of lipid-related reactions, an oral premedication (dexamethasone, paracetamol, H1 and H2 blockers) 

was given prior to Patisiran infusion. 

In a multi-center, dose-escalation Phase 2 study of ALN-TTR02 the safety and tolerability of the 

compound was further evaluated in FAP patients (n = 29). Patients received two doses of ALN-TTR02 

in 5 cohorts with doses ranging from 0.01 to 0.30 mg/kg, using either a once-every-four-week or  

once-every-three-week dosing regimen. Multiple doses of ALN-TTR02 were found to be generally safe 

and well tolerated with mostly IRRs that were observed in 10.3% of patients [179]. No IRRs were however 

reported in 12 patients who received 0.30 mg/kg once every three weeks. Infusion times of more than 

70 min seemed to be favorable to prevent adverse reactions including IRR. The multiple doses of  

ALN-TTR02 resulted in a rapid and sustained reduction of serum TTR levels, with mean reduction levels 

of >85%. 

A recent summary of a 12-month data-cut derived from the extended open label Phase 2 study (OLE) 

was reported by Alnylam. The data suggest a mean 2.5 point decrease in mNIS + 7 (modified Neuropathy 

Impairment Score) observed in a portion of the FAP patients (n = 20) as compared to historical data sets 

of untreated FAP patients with similar baseline characteristics. In this OLE study, ALN-TTR02 was 

administered once every 3 weeks at a dose of 0.3 mg/kg. These first results are encouraging and suggest 

for the first time that TTR knockdown may halt FAP disease progression. Other clinical measurements, 

including quality of life (QOL), a 10-m walk test to evaluate mobility, and modified body mass index 

(mBMI) were found unchanged in this preliminary analysis. For a more detailed analysis of the therapeutic 

efficacy, Alnylam has started a randomized, double-blind, placebo-controlled Phase 3 study of ALN-TTR02 

(APOLLO) in 2013. The primary endpoint of the study is the difference in the change in mNIS + 7 between 

ALN-TTR02 and placebo treated FAP patients at the end of the study (month 18). The trial is designed 

to enroll 200 FAP patients (stage 1 or stage 2). First data are awaited towards the end of 2016. 

GalNac Modification of TTR siRNA 

A second siRNA compound, termed ALN-TTRSC (Revusiran), also directed against human TTR, 

was recently developed by Alnylam. In ALN-TTRSC the sense strand of the siRNA was covalently linked 

to GalNAc. Due to Alnylam’s modified siRNA platform chemistry a lipid formulation does not seem to 

be necessary to stabilize the GalNAc oligonucleotide. ALN-TTRSC is administered by s.c. injection to 

patients. A premedication procedure prior administration of ALN-TTRSC is not reported. The compound 

has already been subjected to Phase 1 and Phase 2 clinical trials. Preliminary results of the Phase 2 study 

have been reported for 14 FAC and 12 SSA patients. Revusiran was administered initially as daily s.c. 
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doses for five days and then once weekly for five weeks at doses of 5.0 mg/kg or 7.5 mg/kg. The data 

indicate that ALN-TTRSC results in a high serum TTR knockdown of up to 98.2% while the compound 

is well tolerated with only mild adverse reactions (IRR in 23% of patients). The knockdown was observed 

in FAC and SSA patients corroborating that the compound target mutant and wild type TTR with equally 

high efficiency. As expected from the short treatment time of 5 weeks, no other significant changes of the 

disease could be determined in this study. In December 2014, a randomized, double-blind Phase 3 

multicenter study of ALN-TTRSC (ENDEAVOUR) was started by Alnylam for therapy of FAC. Patients 

received weekly s.c. injections of 500 mg ALN-TTRSC or placebo. Here, a walk test to assess the physical 

fitness of the patients is the primary endpoint and will be compared between groups at the end of the study 

at month 18. The presumed final data collection date for primary outcome is scheduled for 2018. 

8. Concluding Remarks 

Over the past decades there has been an exponential growth in the pursuit of exploiting the properties 

of oligonucleotides in therapy. Oligonucleotide-mediated therapy has become a powerful technique for 

ablation of targeted gene expression in mammalian cells. As observed in various preclinical studies, the liver 

is an excellent target for therapeutic oligonucleotides and, besides mipomersen, various oligonucleotides 

addressing different liver diseases are now studied [11]. Targeting the TTR gene by ASO and siRNA is 

now under evaluation in advanced clinical studies and could be highly valuable to further confirm the 

clinical feasibility of the concept (Table 1). From both the clinical and molecular perspective, stunningly 

high TTR downregulation rates of around 80% have been achieved in the patients over several months 

of treatment. Presently, observation times of more than one year have documented only minor adverse 

effects, mostly related to the injection sites while the TTR silencing seems to be robust. The anti-TTR 

oligonucleotides are administered by systemic routes in a routine interval of one or three weeks 

corroborating that such regimen allows for a stable gene inhibition, even when a highly expressed gene, 

like TTR, is targeted. Once inhibition was established in patients, TTR expression only gradually increased 

after last injection suggesting that the molecular mechanism of inhibition is quite sustained over a period of 

1–3 weeks, outperforming the short half-life of the TTR protein. As discussed here and elsewhere [6,97,136], 

the therapeutic oligonucleotides have to pass several biological barriers to finally target TTR mRNA 

which is thought to take place in the cytoplasm (RNAi) or nucleus (ASO). Stoichiometric calculations 

of the effective number of molecules needed per cell are limited. It is known that one molecule of the 

oligonucleotide can be reused for several rounds of inhibition [69,109] suggesting that a relative low 

number of molecules associated to the enzymatic machinery, either RNase H or RISC, are sufficient for 

mRNA silencing in hepatocytes. The liver of an adult male (1.5 kg) harbors ~2 × 1011 hepatocytes [180]. 

From the current doses (300 mg ASO and 0.3 mg/kg siRNA) applied to FAP patients it can be calculated 

that ~1018 to 1019 oligonucleotides are administered. Further molecular knowledge from ongoing human 

clinical trials as well as from preclinical studies will be valuable to identify and optimize the rate limiting 

steps of oligonucleotide delivery for human administration. Although oral administration of oligonucleotides 

seems to be far less efficient, such a route of administration may allow to augment the comfort of patients 

when using improved formulations [181]. 
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Table 1. Therapeutic oligonucleotides currently used in clinical trials of TTR amyloidosis. 

 
ISIS-TTRRx  

(ISIS Pharmaceuticals) 

ALN-TTR02  

(Alnylam Pharmaceuticals) 

ALN-TTRSC  

(Alnylam Pharmaceuticals) 

mRNA target 3′ UTR 3′ UTR 3′ UTR 

Oligoncleotide DNA RNA RNA 

Nucleotide modification PS, 2′-MOE LNP GalNAc 

mRNA degradation RNase H-dependent RISC  RISC 

Primary site of action nucleus cytoplasm cytoplasm 

Administration subcutaneous systemic infusion subcutaneous 

Premedication No Yes No 

Study start-estimated completion 12/2012–11/2016 a 11/2013–01/2017 b 12/2014–12/2018 c 

Dosing weekly 300 mg (3 doses first week) 0.3 mg/kg every 3 weeks weekly 500 mg (5 doses first week) 

Serum TTR knockdown ~80% d ~80% d ~80% d 

Disease FAP, FAC, SSA FAP FAC 

a NCT01737398; b NCT01960348; c NCT02319005; d preliminary report. 

As anti-TTR oligonucleotides are subjected to turnover, the compounds have to be taken lifelong in order 

to maintain a reduction or halt of the disease burden. Off-targeting effects, immune responses, and efficacy 

will have to be carefully monitored during prolonged administration. On the other hand, such long periods 

of TTR downregulation may give unprecedented insights into molecular mechanisms of the disease as 

compared to previous therapies that could not achieve reduction of wild type TTR synthesis [43,45]. It will 

be interesting to learn whether overall reduction of TTR in the circulation (~80%) will be accompanied 

by a regeneration of already diseased tissue, e.g., by downsizing of established plaques in the heart or 

elsewhere. Such processes might take several years and direct measurements of respective clinical 

endpoints may be included in long-term follow up studies. Downregulation of TTR, being the carrier of 

retinol and thyroxine, does not seem to grossly impact physiological functions [26,27] suggesting that a 

preventive supplementation with vitamin A, if necessary at all, might suffice to compensate any deficiencies 

in human. This peculiarity of TTR biology has to be kept in mind when other gene targets are addressed 

by therapeutic oligonucleotides, since vast inhibition of other target genes could impair physiological 

function. However, as downregulation of the target gene is not complete, residual levels of target  

gene expression might be sufficient for physiological function. The upcoming translation of TTR 

oligonucleotide-mediated therapy to the clinic represents a crucial turning point in treating a wide array 

of diseases that were previously considered “undruggable”. While we have focused in this review on the 

benefits of ASO/siRNA for treatment of TTR-related disease, the scope of therapeutic oligonucleotides 

might however go beyond liver disease. 
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Abbreviations 

Ago 2 Argonaute 2 

ALT Alanine transaminase 

ASO Antisense oligonucleotide 

ASPGR Asialoglycoprotein receptor 

CDM Carboxylated dimethyl maleic acid 

CPPs Cell-penetrating peptides 

ds Doublestranded 

FAP; FAC; SSA Familial amyloid polyneuropathy/cardiomyopathy; senile systemic amyloidosis 

GalNAc N-acetylgalactosamine 

i.p. Intraperitoneal 

IRR infusion-related reactions 

i.v. Intravenous 

kDa Kilodalton 

LDL Low-density lipoprotein 

LNA Locked nucleic acid 

miRNA Micro RNA 

NAG N-acetyl galactosamine 

ncRNAs Non-coding RNAs 

2′-OMe 2′-O-methyl 

2′-MOE 2′-O-methoxyethyl 

PD Pharmacodynamic 

PEG Polyethylene glycol 

PK Pharmacokinetic 

PS Phosphorothioate 

RBP retinol binding protein 

RES Reticuloendothelial system 

RISC RNA-induced silencing complex 

RNA Ribonucleic acid 

RNAi RNA interference 

s.c. Subcutaneous 

siRNA Small interfering RNA 

SNALP Stable nucleic-acid-particle 

TLRs Toll-like receptors 

Tm Melting temperature 

TTR Transthyretin 
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