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Abstract: A series of imidazolium and pyridinium ionic liquids with different anions (Cl´, Br´,
BF4

´, PF6
´) has been evaluated for their adsorption activity on silica gel. Quantification of the

ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing
an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the
experimental data in order to investigate the kinetics of the adsorption process. The experimental
data showed good fitting with this model, confirmed by considerably high correlation coefficients.
The adsorption kinetic parameters were determined and analyzed. The relative error between
the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%.
The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent,
kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale
study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic
liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids.
The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile)
but it was not sensitive to the change of temperature in the range of 5–40 ˝C.
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1. Introduction

Ionic liquids (ILs) are a broad class of salts melting at or below 100 ˝C. Over the last few years
they have gained immense popularity in various fields of chemistry thanks to their environmentally
friendly properties and the opportunities of matching their structure to a particular purpose. Initially,
ionic liquids were used as reaction media for organic synthesis and biphasic catalysis primarily
on industrial scale as an alternative to organic solvents [1–5]. So far different organic reactions
like esterification, transesterification, nitration, and acetylation have been carried out using ionic
liquids [6–13]. The high yields of all the above mentioned reactions indicate that ionic liquids possess
huge potential in dedicated technologies of interest to the chemical industry. Currently increasing
interest can also be observed in the use of ionic liquids on an analytical scale [14–16]. So far, ionic
liquids have found a number of beneficial applications in electrochemistry [17–25] and separation
techniques. There are examples of ionic liquid applications in the extraction of both ionic inorganic
compounds, for instance metal cations [26], organic compounds [27] and biomolecules like peptides
and proteins [28]. The leading role in the liquid-liquid extraction, even in a miniaturized version
called liquid phase microextraction (LPME), is played by water-insoluble ionic liquids. In turn,
the hydrophilic ionic liquids are used to create aqueous biphasic systems (ABS) in the presence of
highly hydrated inorganic salts with kosmotropic (salting-out) properties. Such two phase systems
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are usually used for extractions, as an alternative to traditional liquid-liquid or liquid-solid partition
systems. The resulting extraction system is especially suitable for the analysis of aqueous samples,
and the use of the ABS technique for the extraction of hormones, alkaloids, vitamins, antibiotics from
biological and environmental samples has been described [29–35].

The thermomorphic behavior of some ionic liquids allows carrying out the so-called
homogenous liquid-liquid extraction (HLLE), wherein the phase separation is induced by
temperature changes.

In recent years, attempts have been made to use ionic liquids to modify adsorbents by
immobilization onto silica or polymeric supports [36–39]. The resulting so-called supported ionic
liquid phases (SILPs) are used as sorptive materials in solid-phase extraction techniques. The first
adsorbent subjected to modification was silica gel with immobilized 1-butyl-3-methylimidazolium
hexafluorophosphate, which was further applied to the isolation of metals from aqueous media [40].

The aim of this research is the study of the adsorption process of imidazolium and pyridinium
ionic liquids with different anions (Cl´, Br´, BF4

´, PF6
´) on silica gel. The influence of the kind of

solvent, temperature, and the kind of anion and cation on adsorption efficiency were all examined.
The adsorption mechanism of the examined ionic liquids with anions of different chaotropicity was
studied with a pseudo-second-order kinetic model.

2. Results and Discussion

2.1. HPLC Conditions for Ionic Liquids Determination

There exist only a few papers dealing with high-performance liquid chromatography methods
suitable for IL quantification [41–44]. Cations derived from ionic liquids can be analyzed separately in
reversed-phase mode on different stationary phases. However, when using conventional octadecyl
bonded phases with two component organic-aqueous mobile phases, the efficiency and separation
selectivity tend to be poor.

Table 1. Structures of the investigated ionic liquids.

BMIM PF6
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It was proved that a significant improvement of peak shape and selectivity can be achieved by
addition of acidic buffers and small amounts of a chaotropic salt to the mobile phase. The investigated
ionic liquids (Table 1) have been analyzed on a Zorbax Extend-C18 (150 mm ˆ 4.6 mm I.D., 5 µm)
column using multicomponent mobile phases. The composition of eluent systems has been chosen
according to the IL cation structure (polarity). The mobile phase components together with obtained
peak parameters are collected in Table 2.

Table 2. The mobile phase components suitable for HPLC analysis of appropriate ionic liquids on a
Zorbax Extend-C18 column.

Ionic Liquid The Mobile Phase Composition RT (min) k As N (EUP) λmax

BMIM PF6
15%MeOH, 30 mM phosphate buffer,

30 mM NaBF4
3.87 1.98 1.73 38,480 220

BMIM Cl
15%MeOH, 30 mM phosphate buffer,

30 mM NaBF4
3.92 2.02 1.11 26,233 220

EMIM PF6
5%MeOH, 50 mM phosphate buffer,

30 mM NaPF6
3.20 1.46 1.32 12,673 220

EMPyr Br
8%MeOH, 30 mM phosphate buffer,

30 mM NaPF6
4.24 2.26 1.36 21,626 255

EPyr BF4
5%MeOH, 50 mM phosphate buffer,

30 mM NaPF6
2.61 1.01 1.34 20,300 255

The following equation was used to calculate the number of theoretical plates (N) according to USP standards:
N = 16(RT/w)2, where RT is the actual full retention time of the appropriate peak, w is the peak width obtained
by drawing tangents to each side of the peak and calculating the distance between the two points where the
tangents meet the baseline. The tailing factor (As) is based on the measurement of the half-width parameters
A and B at 5% of the peak height, and is calculated as As = 1/2(1 + B/A). The detection was set at wavelength
(λmax) according to the recorded spectra. The retention factor k is expressed as: (RT ´ t0)/t0 where t0 is the
retention time of void volume marker.

As it can be seen, there is no significant difference in the retention times between ILs
differing only in the kind anion (cf. BMIM Cl and BMIM PF6). The difference in retention times
(3.92 ´ 3.87 = 0.04 min) is within the uncertainty in the measurements. Therefore, in subsequent
figures (Figure 1A,B), only a kind of cation was illustrated.

The detection of the peaks was set at an appropriate wavelength chosen according to the
recorded spectra in the range from 220 nm to 400 nm illustrated in Figure 1B.
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Figure 1. (A) Comparison of peaks: a—EMPyr Br, b—BMIM PF6, c—EMIM PF6, d—EPyr BF4 obtained 
on a Zorbax Extend-C18 column using the mobile phases listed in Table 2; (B) UV spectra obtained 
for the investigated ionic liquids: EMPyr Br, BMIM PF6, EMIM PF6, EPyr BF4. 
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liquids their adsorption efficiency decreases constantly almost half of the entire value. Coating the
silica gel surface by ionic liquids ions is definitely enhanced by chaotropic anions. Summarizing,
the order of ionic liquids regarding the percentage of their adsorption on silica gel increases from
BMIM PF6 > EMIM PF6 > BMIM Cl to the remaining pyridinium cations: EMPyr > EPyr. In the
case of pyridinium ionic liquids, the kind of anion is less significant in terms of adsorption capacity.
Considering the fact that the ionic liquids at the beginning have the imidazolium cation but different
anions, their adsorption ability would be affected mostly by the nature of anions.

Hexafluorophosphates (∆Ghyd = ´214 kJ/mol) are characterized by a more positive Gibbs free
energy of hydration of the ions (∆Ghyd) in comparison to chlorides (∆Ghyd = ´347 kJ/mol) favoring
electrostatic interactions in aqueous solution. Furthermore, ionic viscosity B coefficients of the Jones
Dole equation (more positive for chlorides) differ significantly if comparing anions [46]. Thus the
trend for the adsorption ability of these ionic liquids is in agreement with the order of the ∆Ghyd
values and viscosity of the associated counterions.
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Figure 2. Influence of ionic liquid concentration on adsorption efficiency.

2.4. Influence of Solvent Kind and Concentration on Adsorption Efficiency

Different solvents were investigated: pure water and water mixed with organic additives
(methanol, acetonitrile). The adsorption efficiency was the highest for pure water and decreases
constantly after addition of an organic solvent. Generally addition of 5% of organic solvent to
water causes an adsorption efficiency decrease of about 5%, so pure water was adopted as solvent
in further experiments.
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2.5. Influence of Temperature on Adsorption Efficiency

It is common knowledge that temperature can be an important parameter influencing adsorption
processes. Here, two imidazolium derivatives (BMIM PF6 and BMIM Cl) were used as representative
ionic liquids to evaluate the effect of temperature on the adsorption effectiveness (Figure 4).
The percentage of adsorption was determined in the range from 5 to 90 ˝C, and found to be in
the range of measurement errors for both liquids up to 40 ˝C. At higher temperature, lowering of
adsorption capacity was observed for ionic liquid with polyfluorinated anions indicating its possible
decomposition. Simultaneously, this reflects a huge role of this anion in the adsorption process.
The obtained results clearly indicate that in the temperature in the range of: 5–40 ˝C, the adsorption
of ionic liquids is not sensitive to the temperature of the system. Therefore, the adsorption can be
performed at room temperature, which is important in practice.
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2.6. Kinetics of Adsorption Process

The phenomenon of adsorption at the solid/liquid interface plays a crucial role in processes
applied on an industrial scale. The study of this phenomenon consists in analyzing the state of the
adsorption equilibrium. Kinetic studies were conducted under optimum conditions determined in
the preliminary experiments (initial concentration of ionic liquid 20 µg¨mL´1, solution volume 2 mL,
adsorbent mass 20 mg, temperature 25 ˝C). For the purpose of evaluating the effect of time on the
adsorption efficiency, the time range from 0–30 min. was tested. Figure 5 shows that the adsorption
efficiency gradually increased up to 5 min. In the region from 5 to 30 min. a type of saturation effect
was observed, where no other significant changes in adsorption with time were observed.

Description of kinetic processes provides empirical or semi-empirical equations such as
pseudo-first-order or pseudo-second-order. The pseudo-second-order equation which best fits the
experimental data has been proposed by Ho et al. [47,48] and Blanchard [49]:

dqptq
dt

“ k2pqe ´ qptqq2

Assuming q(t = 0) = 0, the linearized form of the above equation is the following one:

t
qptq

“
1

k2qe2 `
t
qe

where qe is the amount of the solute (ionic liquid) adsorbed at equilibrium (mg/g), k2 (g¨mg´1¨min.)
is the equilibrium rate constant of pseudo-second-order model. The uptake of the adsorbate at time
t, qt (mg/g) was calculated by the following equation:

qt “ V
c0 ´ ct

m

22063



Molecules 2015, 20, 22058–22068

where ct is the concentration of the ionic liquid in the solution at time t. The qe and k2 values
were determined from the slope and the intercept of the curves of t/q vs. t. Figure 6 shows
the linearized form of the pseudo-second-order kinetic model. The determined kinetic parameters
are shown in Table 4. As it can be seen, the correlation coefficients (R2), are considerably high,
reinforcing the applicability of pseudo-second-order kinetic model. Furthermore, the calculated
and experimental q values were very close to each other, giving ∆q (%) smaller than 7%. All these
confirm the pseudo-second-order model of ionic liquids adsorption on silica gel indicating the strong
physisorption as dominating the adsorption mechanism.
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Table 4. Kinetic parameters for ionic liquids adsorption onto silica gel at 25 ˝C.

Ionic Liquid Slope Intercept R2 qe k2 ∆q (%) 1 er (%) 2 qexp

BMIM PF6 2.1272 1.1717 0.9989 0.470 3.862 5.1 7.3 0.232
BMIM Cl 7.4047 7.3303 0.9950 0.135 7.479 7.0 9.9 0.121

EMIM PF6 5.8594 1.1926 0.9905 0.170 28.788 6.2 9.3 0.160
EMPyr Br 8.7030 6.2926 0.9934 0.114 12.036 3.2 4.6 0.215
EPyr BF4 15.0048 5.3759 0.9855 0.066 41.880 6.1 8.7 0.069

1 ∆qp%q “

d

rpqexp ´ qcalq{qexps
2

N´ 1
x100; 2 erp%q “ 100

ˇ

ˇqexp ´ qcal |

qexp
.

3. Materials and Methods

3.1. Reagents

Investigated compounds (Table 1) were obtained from Sigma (St. Louis, MO, USA) except
for 1-ethyl-3-methylimidazolium hexafluorophosphate (EMIM PF6), which was from Fluka
(Sigma-Aldrich Group, Lausanne, Switzerland). HPLC gradient-grade acetonitrile (ACN) and
methanol (MeOH) were purchased from Merck (Darmstadt, Germany). Silica gel (LiChrospher
Si 1000, mean particle size 10 µm) used as adsorbent was obtained from Merck. Prior to the adsorption
process, the adsorbent was washed with distilled water to eliminate impurities, dried at 120 ˝C
for 2 h. HPLC water was obtained from a Barnstead Deionising System (Dubuque, IA, USA).
All mobile phases were buffered by the phosphate buffer (pH: 2.9–3.0). Its concentration was 30
or 50 mmol¨L´1 in the whole mobile phase. The eluents were prepared by mixing the buffer solution,
organic solvent and appropriate amounts of sodium hexafluorophosphate, sodium tetrafluoroborate.

3.2. Calibration Solutions

The stock solutions of ionic liquids at concentration of 1.0 mg¨mL´1 and the calibration solutions
were prepared gravimetrically and stored in darkness at 4 ˝C in glass vials. The calibration
curves representing the dependence of the peak area on the concentration were used to perform
quantitative analysis.

3.3. HPLC Quantification

Experiments were performed using a Merck Hitachi LaChrom HPLC (Merck) model equipped
with a diode array detector, L-7350 column oven and L-7612 solvent degasser. The columns
(250 mm ˆ 4.6 mm I.D.) were packed with 5-µm Zorbax Eclipse XDB C18 (Agilent Technology,
Waldbronn, Germany) pore size: 80 Å, surface area: 189 m2/g; with void volume determined by
the injection of thiourea. Retention data were recorded at a flow-rate of 1 mL¨min´1. The column
was thermostated at 25 ˘ 0.1 ˝C. The detection was set at wavelength chosen accordingly with the
recorded spectra. Typical injection volumes were 20 µL.

3.4. Adsorption Experiments

Batch adsorption experiments were carried out by an accurately weighed amount of adsorbent
(0.02 g). Known weight of adsorbent was added to 5 mL centrifugal tube containing 2 mL of ionic
liquid solution. The following conditions of the adsorption experiments were applied: temperature
in the range 5–90 ˝C, time in the range 0–30 min., IL concertation from 5 to 50 µg/mL. The tubes
were shaken in a temperature-controlled shaker (Gallenkamp Orbital Incubator, Loughborough, UK)
at a constant speed of 180 rpm. After that the mixture was centrifuged at 9000ˆ g. An aliquot of the
supernatant was further analysed by a HPLC procedure.
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4. Conclusions

In this work, solid-liquid equilibria were determined and analyzed for systems composed of
imidazolium and pyridinium ionic liquids and silica gel. It was found that imidazolium ionic
liquids with a longer alkyl chain (BMIM) and a chaotropic anion (PF6

´) with lower Gibbs free
energy of hydration exhibited stronger adsorption ability in comparison to cations with shorter
alkyl substituents: EMIM, EMPyr, EPyr and less chaotropic anions: Cl´, Br´, BF4

´. Adsorption
data fitting to Ho and Blanchard’ linear relationship: t/q(t) vs. t [37–39] enabled the selection of
a pseudo-second-order kinetic model (PSO). Developed relationships could be used to extrapolate
the kinetic data and estimate the values of qe with a relative error of no more than 10%. Under the
optimized conditions adsorption processes were not sensitive to the temperature in the range 5–40 ˝C,
thus in practice they should be very effective media for the effective and economical recovery of ionic
liquids from water at room temperature.
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