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Abstract: In further study of our series of six-membered ring-containing nucleic acids, 

different 1',3'-di-O-methyl altropyranoside nucleoside analogs (DMANA) were synthesized 

comprising all four base moieties, adenine, cytosine, uracil and guanine. Following assembly 

into oligonucleotides (ONs), their affinity for natural oligonucleotides was evaluated by 

thermal denaturation of the respective duplexes. Data were compared with results obtained 

previously for both anhydrohexitol (HNAs) and 3'-O-methylated altrohexitol modified ONs 

(MANAs). We hereby demonstrate that ONs modified with DMANA monomers, unlike 

some of our previously described analogues with constrained 6-membered hexitol rings, did 

not improve thermodynamic stability of dsRNA complexes, most probably in view of an 

energetic penalty when forced in the required 1C4 pairing conformation. Overall, a single 

incorporation was more or less tolerated or even positive for the adenine congener, but 

incorporation of a second modification afforded a slight destabilization (except for A), while 

a fully modified sequence displayed a thermal stability of −0.3 °C per modification. The 

selectivity of pairing remained very high, and the new modification upon incorporation into 

a DNA strand, strongly destabilized the corresponding DNA duplexes. Unfortunately, this 

new modification does not bring any advantage to be further evaluated for antisense or 

siRNA applications. 
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1. Introduction 

Gene silencing has become a standard technique for studying gene functions or in trying to obtain 

therapeutic effects and theoretically can be attained by interfering with transcription (via formation of 

triple stranded complexes [1] or translation processes. The latter can be obtained via steric blocking 

antisense oligonucleotides (ASOs) or via mRNA cleavage of double stranded complexes with RNAseH 

activating ASOs [2–4]. However, the vast majority of researchers nowadays have turned to the use of 

RNA interference (RNAi)-based strategies, which has recently become the technique of choice to silence 

gene expression in mammalian cell culture and is envisaged as a first choice for therapeutic treatment as 

well [5–7]. However, we need to point out that at the moment only one aptamer [8] and one antisense 

oligonucleotide have been effectively FDA approved for gene silencing [9], and also exon-skipping 

oligonucleotides are receiving considerable attention [10]. 

In cell culture in general unmodified siRNAs are highly efficient, however for in vivo application 

some chemical modifications are warranted to stabilise the siRNAs and to increase their selectivity and 

to promote delivery [11,12]. In the past, we and others have studied a wide variety of strategies for both 

ASO and siRNA modification as reviewed several times [13–15]. 

Our group has been very successful in increasing the affinity for RNA using modified building blocks 

based on 6-membered hexitol rings which resulted in the hexitol nucleic acids series [16–19]. However, 

the LNA monomers of the Wengel group [20] consistently showed the strongest affinity for RNA, and 

the series comprises many alternative structures [21]. Overall, both our hexitol nucleic acids and the 

LNA series of compounds take on a pre-organized conformation, fitting the A-form of dsRNA and 

rationalizing the strong hybridization characteristics noticed. 

Herein, hexitol nucleic acids (HNA, Figure 1) are composed of 2,3-dideoxy-D-arabino-hexitol units 

with a nucleobase situated in the 2-(S)-position (in cis to the hydroxymethyl substituent as in natural 

nucleosides). Addition of a supplementary hydroxyl at the 3'-α-position resulted in D-altritol nucleic acid 

(ANA, Figure 1) analogs with increased affinity for RNA strands [18,22]. More recently, we finally 

reported on the 3'-O-methylated ANA congeners (MANA, Figure 1) resulting in a further increase of 

0.5 °C/modification when evaluating melting temperatures (Tm) upon hybridisation to RNA [23]. Herein, 

both the heterocyclic base and the 3'-O-methyl moiety are located in an axial position with a 4C1 

conformation. However, assembly of the hexitol series of nucleosides is long-routed starting with 

synthesis of the 1,5-anhydrohexitol ring. In view of the positive results obtained for the MANA series 

of congeners and the abundance of cheap α-D-methylglucoside, we now planned to prepare and evaluate 

“bis-methylated altritol nucleosides”, or more correctly di-O-methylated altropyranoside nucleic acids 

(DMANA, Figure 1). 
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Figure 1. Structures of the different hexitol based nucleic acids (HNA, ANA and MANA) as 

discussed above and the newly envisaged structure DMANA, based on methyl-altropyranoside. 

2. Results and Discussion 

2.1. Chemical Synthesis of the New Building Blocks 

The 1'-O-methylglycosidic protected analogues 4, 6 and 9 (Scheme 1) were obtained starting from 

ubiquitous methyl glucopyranoside 1, which in three steps was converted to 2 in 51.4% overall yield 

according to literature procedures [24]. Herein, regioselective epoxide ring opening of 2 with the sodium 

salts of uracil or adenine in DMF at 120–130 °C afforded the corresponding altrohexitol derivatives 3 

and 7 in 66%–85% yield. Chemoselective methylation of 7 and 3 was accomplished using NaH, MeI in 

dry THF at low temperature for 1 h to afford the methylated nucleosides 4 and 8 in 65% and 75% yield, 

respectively. The selective O- vs. N-methylation mainly depends upon the dielectric constant of the 

solvent [23,25] and the stability of sodium-enolate chelation [26]. Hence, low dielectric constant and 

high chelation stabilizing capacity of THF afforded a higher O-selectivity compared to DMF. The one 

pot conversion of compound 3 to the triazolide derivative [27] using 1,2,4-triazole, POCl3, and 

triethylamine, and subsequent treatment with aqueous ammonia/dioxane (1:1) at ambient temperature 

for 18 h yielded the cytidine derivative (5) with 58% (overall yield for 2 steps). Base protection of 5 and 

8 using benzoylchloride in pyridine at rt for 3 h afforded 6 and 9 in 83 and 88% yield, respectively. 

Due to the scalability, solubility and reproducibility of the reaction it proved advantageous to use the 

guanine derivative 10 for the epoxide ring opening reaction. The latter was obtained via Mitsunobu 

reaction of N2-acetylguanine [28] and 2-(trimethylsilyl)ethanol in analogy with the previously described 

protocol for O6-[2-(p-nitrophenyl)ethyl]guanine [29]. Selective epoxide ring opening was accomplished 

with the lithium salt of 10 (Scheme 2) in DMF at 130 °C and afforded 41% of 11 along with 26% of 

recovered 10. Remarkably, the acetyl protection was lost in 11 upon the prolonged heating in DMF. 

Further chemoselective methylation using NaH (60%) and MeI in DMF and DCM at low temperature 

for 4 h gave 12 in 94% yield. Deprotection of 12 was done by 1 M TBAF in THF at rt for 2 h to yield 

75% of 13. The more base labile N2-dimethylformamidine (dmf) [30–32] group was introduced using  

N,N-dimethylformamide diethylacetal in methanol under reflux for 12 h to afford 14 with 85% yield. 
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Reagents and Conditions: (i) (a) C6H5CHO, ZnCl2, 72 h (66%); (b) 6 eq. CH3C6H4SO2Cl, pyridine, 60 °C,  

72 h (78%); (c) 5.3 M in MeOH, CH2Cl2, rt, 12 h (99%); (ii) NaH (60%), DMF, 20 °C, 12 h (33.3% of 3 along 

with 40.1% recovery of 2 and 75% of 7); (iii) NaH (60%), CH3I, THF, 0 °C, 1 h (64.7%); (iv) (a) POCl3,  

1H-1,2,4-triazole, Et3N, pyridine, rt, 2 h; (b) 1,4 dioxane, aq. NH3, rt, 12 h (58.17% overall 2 steps); (v) Benzoyl 

chloride, pyridine, rt, 3 h (87.6% of 6 and 83% of 9; (vi) NaH (60%), CH3I, THF, −78 °C, 4.5 h to −30 °C,  

1 h (75%). 

Scheme 1. Synthetic scheme of the protected DMANA congeners for uracil, cytosine and adenine.  

 
Reagents and Conditions: (i) LiH, DMF, 130 °C, 18 h (42% of 11 along with 26% recovery of 10); (ii) NaH 

(60%), CH3I, DMF, DCM, −30 °C to −20 °C, 4 h (94%); (iii) TBAF, THF, rt, 2 h (75%); (iv) Me2NCH(OEt)2, 

MeOH, reflux for 12 h (85%). 

Scheme 2. Synthetic scheme for the protected guanine containing analog.  

Deprotection of the benzylidene protecting group under mild conditions using AcOH:H2O (3:1) at  

45 °C for 12 h afforded 15a–d in 50%–94% yield (Scheme 3), which was followed by classical 

dimethoxytritylation and phosphitylation. Hereto, the nucleosides 15a–d were selectively protected at 

the 6'-OH by reaction with DMTrCl in pyridine at rt for 3 h to furnish the corresponding protected 

derivatives 16a–d in 74%–93% yield. Phosphitylation of 16a–d at the 4'-OH with 2-cyanoethyl  

N,N-diisopropylchlorophosphoramidite in anhydrous CH2Cl2 at 0 °C for 1.5 h afforded the corresponding 
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phosphoramidite building blocks 17a–d in 65%–93% yield, to be used for oligomer assembly. Assembly 

of all oligonucleotides and purification was carried out as described before [33]. 

 
Reagents and Conditions: (i) AcOH: H2O (3:1), 45 °C, 12 h (50% to 94%); (ii) DMTrCl, pyridine, rt, 3 h (74% 

to 93%); (iii) (iPr)2N(OCE)PCl, DIPEA, DCM, 0 °C, 1.5 h (65% to 93%). 

Scheme 3. Scheme for assembly of the different phosporamidites.  

2.2. Oligonucleotide Affinity Measurements 

First, following incorporation of a single DMANA modification into an dsRNA nonamer sequence 

[5'-GCGU-X*-UGCG/5'-CGCAYACGC], the respective affinities for complementary RNA were 

studied in a 0.1 M NaCl buffer and were compared with the melting temperatures (Tm) of previously 

studied six-membered ring structures substituting for the ribose ring (Table 1). Within the context of all 

four natural bases, the HNA (anhydrohexitol) and ANA (altritol) substitutions proved advantageous and 

considerably stabilized the RNA helix. Where ANA modifications were either slightly less stabilizing 

(for pyrimidines) or more stabilizing (as with purines) versus HNA modifications, methylation of the  

3'-hydroxyl moiety of ANA congeners further improved the affinity for RNA systematically with 

approximately 0.5 °C. However, converting the hexitol into a methyl hexopyranoside via attachment of 

a second “methoxy substituent” at the 1'-position as in our DMANA constructs, wiped out the advantage 

which was gained before in using constrained hexitol moieties. The obtained affinities of these DMANA 

containing constructs more or less matched those of the corresponding fully complementary RNA 

sequences. Incorporation of a single DMANA building block slightly destabilized the RNA duplex for 

substitution of a pyrimidine, but on contrast slightly stabilized the duplex in case of guanine and to a 

larger extent upon substitution of adenine within this sequence context (Table 1 and Figure 2, base matches). 

As on average the DMNA pairing affinity to RNA was not advantageous nor really detrimental, we 

further studied their mismatch behavior within the same RNA nonamer constructs (5'-GCGU-X*-

UGCG/5'-CGCAYACGC; Figure 2) in comparison to different constructs. The graphical chart displays 

the destabilization in relation to the respective matched sequence as obtained for DMANA building 

blocks in comparison to discrimination properties for HNA and MANA ([23] and within dsRNA 

duplexes. Analogous discrimination properties were noted, and especially for dmanaC very selective 

pairing to guanosine was obtained with −22 °C to −24 °C of destabilization for the different mismatches. 
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However, no overall advantage can be seen in terms of either pairing selectivity or universal base pairing 

capabilities. Hence, normal WC pairing can be assumed. 

Table 1. Tm values of complementary RNA duplexes [5'-GCGU-X*-UGCG/5'-CGCAYACGC]. 

X* Structure Tm (°C) X* Structure Tm (°C) 

U* 

RNA 50.4 ± 0.0 

G* 

RNA 60.4 ± 0.0 
HNA 53.4 ± 0.1 HNA 62.4 ± 0.1 
ANA 53.0 ± 0.2 ANA 62.9 ± 0.1 

MANA 53.8 ± 0.2 MANA 63.4 ± 0.1 
DMANA 50.6 ± 0.2 DMANA 61.6 ± 0.1 

C* 

RNA 60.8 ± 0.1 

A* 

RNA 52.5 ± 0.1 
HNA 62.0 ± 0.0 HNA 55.0 ± 0.2 
ANA 60.9 ± 0.1 ANA 56.5 ± 0.1 

MANA 61.4 ± 0.0 MANA 57.0 ± 0.1 
DMANA 60.1 ± 0.2 DMANA 55.5 ± 0.1 

Conditions: as determined in 100 mM NaCl buffer containing 20 mM KH2PO4 and 0.1 mM EDTA, pH 7.5, 

with a duplex concentration of 4 µM. Annotations U*, C*, A* and G* denote either a RNA, HNA, ANA, 

MANA or DMANA monomer respectively, versus the natural complementary base Y. 

 

Figure 2. Base pairing selectivity for different 6-membered ring analogues. Conditions: 

graphical overview of the (de)stabilization of the matched and mismatched nonamer 

sequences following a single incorporation of a sugar modified nucleoside (MANA in red, 

DMANA in green and HNA in purple) wherein the selectivity of pairing is shown by 

destabilization of the respective mismatches. The pairing selectivity for RNA is shown in blue. 

  

-35

-30

-25

-20

-15

-10

-5

0

5

RNA

MANA

DMANA

HNA



Molecules 2015, 20 4026 

 

 

This picture was confirmed with a second substitution within different nonamer dsRNA sequences 

(Table 2), with the largest destabilization noted for dmanaC building blocks (−1.8 °C/modification) 

while still an increase in stability of 1.1 °C/modification was seen with incorporation of 2 dmanaA 

blocks. The stabilizing effects of the HNA and 3'-methylated ANA constructs (MANA) are included for 

comparative reasons. We therefore decided to prepare a fully modified DMANA octamer and hybridized 

it to the complementary RNA sequence (Table 2, bottom). Where the natural RNA duplex displayed a 

Tm of 40.6 °C, the DMANA construct still paired albeit with slightly lower affinity (−0.3 °C/modification). 

The different hexitol constructs on the other hand strongly increased the affinity for the RNA complement 

as documented before [23,34]. It hence can be concluded that the DMANA analogues are different from 

the previous hexitol series of compounds with a constrained 6-membered ring conformation fit for 

pairing to RNA. 

Table 2. Thermal stability for RNA duplexes containing a double modification. 

Sequences X* Tm (°C) ∆Tm/Modification (°C) 

5'-GCU*GUGU*CG-3' 

RNA 55.6 ± 0.4 Reference 
MANA 62.6 ± 0.2 3.5 

DMANA 54.5 ± 0.1 −0.5 
HNA 60.2 ± 0.1 2.3 

5'-GCC*AUAC*CG-3' 

RNA 57.1 ± 0.1 Reference 
MANA 59.3 ± 0.1 1.1 

DMANA 53.4 ± 0.1 −1.8 
HNA 58.2 ± 0.1 0.6 

5'-GCG*UUUG*CG-3' 

RNA 51.3 ± 0.2 Reference 
MANA 54.3 ± 0.1 1.5 

DMANA 51.1 ± 0.1 −0.1 
HNA 53.0 ± 0.2 0.8 

5'-GCA*CUCA*CG-3' 

RNA 57.1 ± 0.1 Reference 
MANA 63.5 ± 0.1 3.2 

DMANA 59.3 ± 0.1 1.1 
HNA 62.1 ± 0.1 2.5 

5'-G*C*G*U*A*G*C*G*-3' 

RNA 40.6 ± 0.1 Reference 
MANA 61.1 ± 0.3 2.6 

DMANA 38.1 ± 0.2 −0.3 
ANA 59.6 [34]  2.4 
HNA 52.0 [34]  1.4 

Conditions: Tm as determined in 100 mM NaCl buffer containing 20 mM KH2PO4 and 0.1 mM EDTA, pH 7.5, 

with a duplex concentration of 4 µM. U*, C*, A* and G* denote either a RNA, MANA, DMANA, ANA or a 

HNA monomer, respectively. At the bottom the results are given for the fully modified strands paired to the 

complementary RNA strand. 

Finally, incorporation of a single DMANA building block into dsDNA 13-mer sequences  

[5'-CACCGX*TGCTACC-3'/3'-GTGGCYACGATGG-5'] was evaluated at 0.1 M salt concentration 

(Table 3) for both match and mismatch sequences. However, a single DMANA incorporation already 

afforded respectively 9 °C (for dmanaU and dmanaC), 5 °C (for dmanaA) or 6 °C (for dmanaG) of 

destabilization for the different matched pairs within this sequence context. A slightly better result could 
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be expected if we could compare the dmanaT construct instead of dmanaU in view of the stabilizing 

effect of a 5-methyl substituent on the base, but this still would have resulted in a destabilization of 7 to 

8 °C. The selectivity of pairing is adequate but gives a mixed picture, with selectivity being dependent 

probably on the base and the sequence context. In view of the fairly strong destabilization versus DNA 

sequences it is clear however that these DMANA blocks do not have a DNA like conformation. 

Table 3. Hybridization studies following incorporation into a DNA strand. 

Y A T G C 

X* (X) Tm ΔTm Tm ΔTm Tm ΔTm Tm ΔTm 

U* 47.7 - 40.9 −6.8 41.7 −6.0 38.3 −9.4 
T 57.1 - 46.7 −10.4 50.3 −6.8 44.2 −12.9 

A* 41.9 −10.8 52.7 - 45.3 −7.4 41.4 −11.3 
A 46.6 −10.7 57.3 - 52.9 −4.4 44.4 −12.9 
C* 41.8 −10.3 40.8 −11.3 52.1 - 38.5 −13.6 
C 44.4 −16.5 45.6 −15.3 60.9 - 40.6 −20.3 

G* 42.9 −11.0 48.9 −5.0 46.0 −7.9 53.9 - 
G 51.6 −8.4 51.0 −9.0 53.5 −6.5 60.0 - 

Conditions: Tm values are provided for a single incorporation of a DMANA (X*) modification into a mixed 

DNA sequence [5'-CACCGX*TGCTACC-3'/3'-GTGGCYACGATGG-5'] for the match and the different 

mismatch sequences (Y) at 0.1 M salt and 4 M of duplex concentration. 

2.3. Discussion 

The MedChem group of the Rega Institute has already been elaborating for many years on nucleoside 

analogues with a 6-membered ring system substituting for ribose for various applications. Especially the 

analogues with a 1,5-anhydrohexitol ring having the base at the C2' in syn orientation with the remaining 

hydroxymethyl substituent (HNA, ANA and MANA) turned out to be well pre-organized for pairing 

with RNA, and are thus strongly stabilizing for RNA duplexes. Several biological studies have been 

undertaken with both HNA and ANA [22,35,36] and interesting results were obtained more recently 

regarding their use as xeno-nucleic acids [37,38]. Highest affinities so far however were obtained with 

MANA building blocks [23]. We therefore started to study the influence of DMANA analogues carrying 

an additional methoxy substituent on the 6-membered ring system. However, as shown by the various 

Tm studies, incorporation of the new modification does not further increase the affinity for RNA, but 

overall rather tends to slightly destabilize dsRNA complexes, while strongly destabilizing DNA upon 

incorporation. Therefore the modification still resembles more closely RNA monomers with their  

3'-endo conformation as in RNA duplexes. 

These findings are further corroborated by inserting in silico a modified building block into a dsRNA. 

As can be seen in Figure 3, no steric hindrance occurs when substituting a DMANA residue having two 

OMe groups at the sugar 1' and 3' positions for a uridine into an RNA duplex for which the model of 

Mooers was used [39]. The HNA sugar conformation upon pairing with RNA is 1C4 having an axial base 

orientation. Likewise, for the DMANA structure incorporated into the dsRNA, both methoxy 

substituents likewise are oriented axially with no apparent steric clashes. However, it is well known that 

apart from forces like the anomeric effect, substituents in 6-membered rings prefer the equatorial 
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orientation to avoid 1,3-diaxial interactions. Energy calculations for the monomers using Amber force 

field [40] indeed show a slight preference for having the base and both methoxy groups in an all-equatorial 

configuration (with 4'-OH and 6'-CH2OH in axial orientation), opposite to what is found for HNA and 

ANA building blocks with an axial oriented heterocyclic base. Increasing the number of OMe 

substituents therefore may destabilize the 1C4 chair conformation giving preference to 4C1, which is less 

compatible with the RNA duplex. Hence, the energy penalty to preserve the DMANA monomer in a 1C4 

conformation to allow for pairing within a dsRNA strand, might upset the entropic gain as expected of 

a pre-organized monomer.  

 

Figure 3. RNA duplex following insertion of a DMANA modification (DMANA modification 

in purple; picture generated using Chimera (UCSF Chimera—a visualization system for 

exploratory research and analysis [41]). 

Table 4 indeed shows the largest energy difference for both chair conformations for DMANA 

constructs. This energetic penalty for a forced change in conformation could be the basis of the reduced 

fitness of DMANA analogues for pairing with RNA.  



Molecules 2015, 20 4029 

 

 

Table 4. Energy calculations for monomers with different scaffold. 

Base and OMe 
Orientation 

Axial Equatorial 
Base and OMe 

Orientation 
Axial Equatorial 

HNA −205.31 −205.79 MANA −195.22 −200.35 
ANA −200.58 −198.19 DMANA −187.62 −194.82 
Chair 1C4 4C1 Chair 1C4 4C1 

Conditions: Final energies in kcal/mol are shown following minimization using Amber force field. Nucleotides 

all have a thymine base, uncharged residues (phosphate groups protonated), with parametrization via antechamber, 

Gaff force field, 5000 steps of energy minimization, born solvation energy model. 

3. Experimental Section 

3.1. General 

All chemicals including methylglucopyranoside were provided by Sigma-Aldrich (Diegem, Belgium) 

or Acros Organics (Geel, Belgium) and were of the highest quality. 1H and 13C-NMR spectra were 

determined with a 300, 500 and 600 MHz Varian Gemini apparatus (currently Agilent Technologies, 

Santa Clara, CA, USA) with tetramethylsilane as internal standard for the 1H NMR spectra (s = singlet, 

d = doublet, dd = double doublet, t = triplet, br. s = broad signal, m = multiplet) and the solvent signal; 

CD3OD-d4 (δ = 48.9 ppm), DMSO-d6 (δ = 39.6 ppm) or CDCl3 (δ = 76.9 ppm) for the 13C-NMR spectra. 

Exact mass measurements were performed with a quadrupole/orthogonal acceleration time-of-flight 

tandem mass spectrometer (qTOF2, Micromass, Manchester, UK) fitted with a standard electrospray 

ionization (ESI) interface. All solvents were carefully dried or bought as such. 

3.2. 1',5';2',3'-Dianhydro-4',6'-O-benzylidene-1'-O-methyl-D-allopyranoside (2) 

To a solution of the 4',6'-O-benzylidene-2',3'-ditosyl intermediate (10.0 g, 17 mmol) in CH2Cl2  

(80 mL) was added NaOMe (5.3 M in MeOH, 12.8 mL, 67.8 mmol). After stirring for overnight at room 

temperature, the reaction mixture was concentrated and the residue was dissolved in CH2Cl2 (150 mL), 

and washed twice with brine (50 mL). The aqueous layer was again extracted with CH2Cl2 (2 × 80 mL). 

Combined organic layers were dried over anhydrous Na2SO4, filtered and evaporated to get pure epoxide 

2 (4.45 g, 99%). 1H-NMR (300 MHz, CDCl3): δ 7.60–7.33 (m, 5H, Ar-H), 5.60 (d, J = 6.1 Hz, 1H,  

Ph-CH), 4.92 (dd, J = 6.1, 2.7 Hz, 1H, 1'-H), 4.32–4.22 (m, 1H, 6'-He), 4.18–4.05 (m, 1H, 5-H), 3.98 

(dd, J = 9.0, 6.2 Hz, 1H, 4-H), 3.71 (m, 1H, 6-Ha), 3.58–3.45 (m, 5H, 2'-H, O-Me). 13C-NMR (75 MHz, 

CDCl3): δ 137.11 (Ar-Ci); 129.19; 128.28 (Ar-Cp+o); 126.27 (Ar-Cm); 102.71 (Ph-C); 95.27 (C-1'); 77.83 

(C-4'); 68.86 (C-6'); 59.99 (C-5'); 55.82 (OMe); 53.07 (C-3'); 50.66 (C-2'); HRMS calcd. for 

C14H16O5Na+ [M+Na]+ 287.0890, found 287.0891. 

3.3. 4',6'-O-Benzylidene-1'-O-methyl-2'-deoxy-2'-(uracil-l-yl)-D-altropyranoside (3) 

To a solution of uracil (4.62 g, 38.6 mmol) in dry DMF (30 mL) was added NaH (60% dispersion in 

oil, 1.29 g, 41.2 mmol). The reaction mixture was heated at 120 °C under an argon atmosphere for 1 h 

and to this reaction mixture epoxide 2 (3.4 g, 12.9 mmol) in dry DMF (20 mL) was added and stirring 

was continued for overnight at same temperature. The reaction mixture was then cooled and evaporated 
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to dryness. The residue was dissolved in ethyl acetate (150 mL) and the organic layer was washed with 

a saturated aqueous NaHCO3 solution (2 × 50 mL). The aqueous layer was again extracted with EtOAc 

(3 × 50 mL). The combined organic layers were washed with brine (2 × 50 mL), dried over Na2SO4, and 

concentrated under vacuo and purification by silica gel column chromatography (elution with 2% MeOH 

in DCM) afforded 3 (1.61 g, 33%) as a white foam while recovering a large part of the starting epoxide 

2 (1.94 g, 40% yield). 1H-NMR (500 MHz, CDCl3): δ 7.75 (d, J = 8.1 Hz, 1H, 6-H), 7.49–7.41 (m, 2H, 

Ar-H), 7.39–7.30 (m, 3H, Ar-H), 5.77 (d, J = 8.1 Hz, 1H, 5-H), 5.62 (s, 1H, Ph-CH), 4.83 (s, 1H, 1'-H), 

4.81 (s, 1H, 2'-H), 4.48 – 4.38 (m, 2H, 5'-H, 6'-He), 4.16 (brs, 1H, 3'-H), 3.81 (t, J = 9.9 Hz, 1H, 6'-Ha), 

3.69 (dd, J = 9.9, 2.4 Hz, 1H, 4'-H), 3.41–3.51 (m, 4H, OMe, -OH). 13C-NMR (125 MHz, CDCl3): δ 

163.08 (C-4); 150.60 (C-2); 141.14 (C-6); 136.81 (Ar-Ci); 129.26 (Ar-Cp); 128.28 (Ar-Cm); 126.18  

(Ar-Co); 102.91 (C-5); 102.27 (Ph-C); 98.99 (C-1'); 75.61 (C-3'); 68.94 (C-4'); 67.02 (C-6'); 58.19 (C-5'); 

57.91 (OMe); 55.97(C-2'). HRMS calcd. for C18H20N2O7Na+ [M+Na]+ 399.1163, found 399.1156. 

3.4. 4',6'-O-Benzylidene-1',3'-di-O-methyl-2'-deoxy-2'-(uracil-l-yl)-D-altropyranoside (4) 

To a solution of 3 (1.51 g, 4.0 mmol) in dry THF (15 mL) was added NaH (60% dispersion in oil, 

404 mg, 12.04 mmol) at 0 °C and the reaction mixture was stirred at 0 °C for 1h under argon atmosphere. 

Methyl iodide (0.37 mL, 6.02 mmol) in dry THF (1 mL) was added and stirring was continued for 

another 1 h at the same temperature. The reaction mixture was quenched with 5 mL MeOH. The solution 

was concentrated and dissolved in ethyl acetate (150 mL) and washed with saturated aqueous NaHCO3 

(150 mL). The aqueous layer was again extracted with ethyl acetate (3 × 50 mL). The combined the 

organic layers were dried over Na2SO4, filtered, concentrated under vacuo, and purification by silica gel 

column chromatography (elution with 2% MeOH in DCM) afforded the dimethylated nucleoside 4  

(1.01 g, 65%). 1H-NMR (500 MHz, CDCl3): δ 9.41 (s, 1H, N3-H), 7.80 (d, J = 8.2 Hz, 1H, 6-H),  

7.47–7.35 (m, 5H, Ar-H), 5.80 (dd, J = 8.1, 1.7 Hz, 1H, 5-H), 5.55 (s, 1H, Ph-CH), 4.90 (d, J = 1.7 Hz, 

1H, 1'-H), 4.80 (s, 1H, 2'-H), 4.48–4.36 (m, 2H, 6'-He, 3'-H), 3.77 (t, J = 10.3 Hz, 1H, 6'-Ha),3.72–3.67 

(m, 2H, 4'-H, 5'-H), 3.62 (s, 3H, OMe), 3.46 (s, 3H, OMe). 13C-NMR (125 MHz, CDCl3): δ 162.98  

(C-4); 150.39 (C-2); 141.18 (C-6); 137.06 (Ar-Ci); 129.20 (Ar-Cp); 128.28 (Ar-Cm); 126.21 (Ar-Co); 

102.86 (C-5); 102.48 (Ph-C); 98.84 (C-1'); 76.06 (C-3'); 75.95 (C-4'); 69.11 (C-5'); 59.59 (C-6'); 58.56 

(OMe); 55.94 (OMe); 55.81(C-2'). HRMS calcd. for C19H23N2O7 [M+H]+ 391.1500, found 391.1494. 

3.5. 4',6'-O-Benzylidene-1',3'-di-O-methyl-2-deoxy-2'-(cytosin-1-yl)-D-altropyranoside (5) 

A solution of triazole (1.05 g, 15.2 mmol) and phosphorus oxychloride (0.3 mL, 3.18 mmol) was 

prepared in pyridine (8 mL) at 0 °C. Triethylamine (2.03 mL, 14.5 mmol) was added dropwise at 0 °C 

and the solution was stirred 30 min. The uracil derivative 4 (0.650 g, 1.66 mmol) dissolved in dry 

pyridine (8 mL) was added at 0 °C and the solution was stirred for 2 h at room temperature and 

concentrated and co-evaporated with toluene (2 × 20 mL). The crude product was dissolved with DCM 

(150 mL) and washed twice with brine (60 mL). The aqueous layer was extracted with DCM (30 mL). 

Combined organic layers were dried over anhydrous Na2SO4, filtered and evaporated. The residue was 

dissolved in 1,4-dioxane (30 mL), cooled to 0 °C and aqueous ammonia 25% (13 mL) were added. The 

solution was left overnight at RT. The solution was evaporated and co-evaporated with toluene (3 × 20 mL). 

The residue was purified by silica gel column chromatography (elution with 10% MeOH/dichloromethane) 
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and afforded the dimethylated cytidine analog 5 (377 mg, 58%) as a white foam. 1H-NMR (500 MHz, 

CD3OD): δ 7.91 (d, J = 7.5 Hz, 1H, 6-H), 7.50–7.42 (m, 2H, Ar-H), 7.38–7.26 (m, 3H, Ar-H), 5.95 (d,  

J = 7.5 Hz, 1H, 5-H), 5.63 (s, 1H, Ph-CH), 4.93 (s, 1H, 2'-H), 4.91 (d, J = 2.1 Hz, 1H, 1'-H), 4.34–4.30 (m, 

1H, 6'-He), 4.28 (dd, J = 9.9, 5.3 Hz, 1H, 5'-H), 3.84 (dd, J = 11.0, 2.3 Hz, 1H, 6'-Ha), 3.81 (dd, J = 6.6, 

2.3 Hz, 1H, 4'-H), 3.67 (t, J = 2.3 Hz, 1H, 3'-H), 3.57 (s, 3H, OMe), 3.42 (s, 3H, OMe). 13C-NMR  

(125 MHz, CD3OD): δ 167.49 (C-4); 158.15 (C-2); 144.10 (C-6), 139.09 (Ar-Ci), 129.97 (Ar-Cp), 129.07  

(Ar-Cm), 127.44 (Ar-Co), 103.41 (Ph-C), 100.28 (C-5), 96.46 (C-1'), 77.40 (C-3'), 76.86 (C-4'), 70.05 

(C-6'), 59.93 (C-5'), 59.13 (OMe), 57.45 (OMe), 55.84 (C-2'). HRMS calcd. for C19H24N3O6
+ [M+H]+ 

390.1654, found 390.1653. 

3.6. 4',6'-O-Benzylidene-1',3'-O-methyl-2'-deoxy-2'-(N6-benzoylcytosin-1-yl)-D-altropyranoside (6) 

The analog 5 (0.35 g, 0.9 mmol) was co-evaporated with dry pyridine (6 mL), dissolved in dry 

pyridine (4 mL), and cooled at 0 °C. Benzoyl chloride (0.314 mL, 2.7 mmol) was added and the solution 

was allowed to come to RT. The solution was stirred for 3 h at RT. The mixture was cooled to 0 °C and 

water (0.25 mL) was added. Then, aqueous ammonia 25% (2 mL) was added and the solution was stirred 

for 30 min at RT. The volatiles were removed under reduced pressure and co-evaporated, each time with 

toluene (3 × 5 mL). The residue was adsorbed on silica by co-evaporation from DCM and purified by 

silica column chromatography (elution with 2% MeOH/DCM) affording the protected nucleoside 6  

(370 mg, 83% yield) as a white foam. 1H-NMR (300 MHz, CDCl3): δ 8.24 (d, J = 7.5 Hz, 1H, 6-H), 7.94 

(d, J = 7.3 Hz, 2H, Bz-H), 7.70–7.33 (m, 9H, 5-H, Ar-H, Bz-H), 5.56 (s, 1H, Ph-CH), 5.12 (d, J = 1.6 Hz, 

1H, 1'-H), 4.90 (s, 1H, 2'-H), 4.55–4.37 (m, 2H, 5'-H, 6'-He), 3.86–3.71 (m, 2H, 6'-Ha, 3'-H), 3.74 (dd, 

J = 9.5, 3.1 Hz, 1H, 4'-H), 3.68 (s, 3H, OMe), 3.49 (s, 3H, OMe). 13C-NMR (75 MHz, CDCl3): δ 167.76 

(PhCONH); 162.14 (C-4); 137.11 (C-2); 133.34 (C-6); 129.18, 129.08, 128.28, 127.60, 126.23 (Ar-C, 

Bz-C); 102.48 (Ph-C); 99.00 (C-5); 97.14 (C-1'), 78.35 (C-3'), 75.77 (C-4'); 75.33 (C-5'); 69.20 (C-6'); 

59.51 (OMe); 58.72 (OMe); 56.03 (C2'). HRMS calcd. for C26H28N3O7
+ [M+H]+ 494.1922, found 494.1919. 

3.7. 4',6'-O-Benzylidene-1'-O-methyl-2'-deoxy-2'-(adenin-9-yl)-D-altropyranoside (7) 

To a solution of adenine (3.22 g, 23.85 mmol) in dry DMF (40 mL) was added NaH (60% dispersion 

in oil, 890 mg, 22.26 mmol). The reaction mixture was heated at 90 °C under argon atmosphere for 1 h, 

after which the epoxide 2 (2.1 g, 7.95 mmol) in dry DMF (15 mL) was added and stirring was continued 

overnight at 120 °C. The reaction mixture was quenched with MeOH (15mL) and following evaporation 

the residue was partitioned between EtOAc and saturated aqueous NaHCO3 solution. The organic layer 

was separated and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined the organic 

layers were dried over Na2SO4, filtered, concentrated in vacuo, and purification by normal silica gel 

column chromatography (elution with 3% MeOH in DCM) afforded compound 7 (2.37 g, 75%).  
1H-NMR (300 MHz, CDCl3): δ 8.30 (s, 1H, 8-H), 8.18 (s, 1H, 2-H), 7.50–7.29 (m, 5H, Ar-H), 6.00 (s, 

2H, -NH2), 5.55 (s, 1H, Ph-CH), 5.15 (s, 1H, 1'-H), 5.07 (s, 1H, 2'-H), 4.64− 4.52 (m, 1H, 5'-H), 4.46 

(dd, J = 9.9, 4.7 Hz, 1H, 6'-He), 4.33 (brs, 1H, 3'-H), 3.86 (t, J = 9.9 Hz, 1H, 6'-Ha), 3.73 (d, J = 8.3 Hz, 

1H, 4'-H), 3.54 (s, 3H, OMe). 13C-NMR (75 MHz, CDCl3): δ 155.60 (C-6); 153.44 (C-2); 149.77 (C-4); 

138.45 (C-8); 136.86 (C-5); 129.28, 128.26, 126.15, 118.89 (Ar-C); 102.35 (Ph-C); 99.66 (C-1'); 75.87 
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(C-5'); 69.14 (C-3'); 67.03 (C-4'); 58.52 (C-6'); 57.18 (OMe); 56.13 (C-2'). HRMS calcd. for 

C19H22N5O5
+ [M+H]+ 400.1615, found 400.1613. 

3.8. 4',6'-O-Benzylidene-1',3'-di-O-methyl-2'-deoxy-2'-(adenin-9-yl)-D-altropyranoside (8) 

The adenine analog 7 (2.36 g, 5.9 mmol) was co-evaporated with dry DMF (40 mL).The foam was 

dissolved in dry DMF (70 mL), cooled to −78 °C and NaH (330 mg, 8.28 mmol) was added and the 

mixture was stirred at −78 °C for 30 min under argon. Subsequently, methyl iodide (0.590 mL, 9.46 mmol) 

was dissolved in dry DCM (20 mL) and the solution was added drop wise over 30 min to the reaction 

mixture at the same temperature. Stirring was continued for another 4.5 h at −78 °C and at −30 °C for 

an additional 1 h before quenching of the reaction with MeOH (10 mL). The solution was warmed to 

RT and concentrated to dryness under vacuum. The residue was dissolved in ethyl acetate (150 mL) and 

washed with aqueous saturated NaHCO3 (130 mL). The organic layer was then washed with brine  

(130 mL), and the combined aqueous layers were again extracted with ethyl acetate (2 × 150 mL). The 

combined organic layers were dried over Na2SO4, filtered, and concentrated. Purification by silica 

column chromatography (0%–3% MeOH/DCM) afforded the methylated nucleoside 8 (1.84 g, 75.4%). 
1H-NMR (500 MHz, CDCl3): δ 8.39 (s, 1H, 8-H), 8.20 (s, 1H, 2-H), 7.47–7.40 (m, 2H, Ar-H),  

7.37–7.31 (m, 3H, Ar-H), 5.92 (s, 2H, -NH2), 5.49 (s, 1H, Ph-CH), 5.15 (d, J = 2.5 Hz, 1H, 1'-H), 5.07 

(s, 1H, 2'-H), 4.54 (td, J = 10.1, 5.3 Hz, 1H, 5'-H), 4.44 (dd, J = 10.5, 5.3 Hz, 1H, 6-He), 3.88 (t, J = 2.6 Hz, 

1H, 3'-H), 3.83 (t, J = 10.5 Hz, 1H, 6'-Ha), 3.79 (dd, J = 9.8, 2.5 Hz, 1H, 4'-H), 3.71 (s, 3H, OMe), 3.52 

(s, 3H, OMe). 13C-NMR (125 MHz, CDCl3): δ 155.57 (C-6); 153.54 (C-2); 149.99 (C-4); 138.56 (C-8); 

137.11, 129.15, 128.26, 126.16 (Ar-C); 119.10 (C-5); 102.48 (Ph-C); 99.47 (C-1'); 76.25 (C-5'); 76.19 

(C-3'); 69.26 (C-4'); 60.06 (C-6'); 58.81 (OMe); 56.06 (OMe); 55.05 (C-2'). HRMS calcd. for 

C20H24N5O5
+ [M+H]+ 414.1772, found 414.1767. 

3.9. 4',6'-O-Benzylidene-1',3'-di-O-methyl-2'-deoxy-2'-(N6-benzoyladenin-9-yl)-D-altropyranoside (9) 

The obtained analog 8 (1.59 g, 3.85 mmol) was co-evaporated with dry pyridine (2 mL), dissolved in 

dry pyridine (16 mL), and cooled at 0 °C. Benzoyl chloride (1.34 mL, 11.54 mmol) was added and the 

solution was allowed to come to RT. The solution was stirred 3 h at RT. The mixture was cooled to 0 °C 

and water (4 mL) was added. Then, aqueous ammonia 25% (8 mL) was added and the solution was 

stirred 30 min at RT. The volatiles were removed under reduced pressure and co-evaporated, each time 

with toluene (3 × 25 mL). The residue was adsorbed on silica by co-evaporation and purified by silica 

column chromatography (elution with 2% MeOH/DCM) affording the protected nucleoside 9 (1.70 g, 

83% yield) as a white foam. 1H-NMR (500 MHz, CDCl3): δ 9.43 (s, 1H, NH), 8.78 (s, 1H, 8-H), 8.43 

(s, 1H, 2-H), 8.05 (d, J = 7.5 Hz, 2H, H-Bz), 7.66–7.29 (m, 8H, Bz-H, Ar-H), 5.49 (s, 1H, Ph-CH), 5.22 

(d, J = 2.1 Hz, 1H, 1'-H), 5.09 (s, 1H, 2'-H), 4.55 (td, J = 10.0, 5.3 Hz, 1H, 5'-H), 4.44 (dd, J = 10.4,  

5.2 Hz, 1H, 6'-He), 3.88 (brs, 1H, 3'-H), 3.85–3.76 (m, 2H, ,6'-Ha, 4'-H), 3.71 (s, 3H, OMe), 3.52 (s, 3H, 

OMe). 13C-NMR (125 MHz, CDCl3): δ 164.86 (C=O); 152.77 (C-6); 152.06 (C-2); 149.78 (C-4); 141.06 

(C-8); 137.01, 133.35, 132.75, 129.09, 128.72, 128.19, 128.00, 126.11 (Ar-C, Bz-C); 122.75 (C-5); 

102.43 (Ph-C); 99.19 (C-1'); 76.11 (C-5'); 76.08 (C-3'); 69.16 (C-4'); 59.98 (C-6'); 58.83 (OMe); 56.01 

(OMe); 55.13 (C-2'). HRMS calcd. for C27H28N5O6
+ [M+H]+ 518.2034, found 518.2031. 
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3.10. 4',6'-O-Benzylidene-1'-O-methyl-2'-deoxy-2'-(2-amino-6-(2-trimethylsilyl-ethoxy)purin-9-yl)-D-

altropyranoside (11) 

A mixture of 4.5 g (15.4 mmol) of 10 and 0.266 g (33.5 mmol) of lithium hydride in 60 mL of dry 

DMF was stirred under nitrogen at 90 °C for 2 h. After addition of 2.6 g (9.8 mmol) of the epoxide 2 

dissolved in 20 mL of dry DMF, stirring was continued for 18 h at 130 °C. The reaction mixture was 

cooled and evaporated to dryness. The residue was dissolved in ethyl acetate (100 mL) and washed with 

brine (100 mL). A small part of the base precipitated during extraction and was filtered off and kept for 

recycling. The aqueous layer was again extracted with EtOAc (3 × 50 mL). The combined organic layers 

were dried over Na2SO4, filtered, concentrated under vacuo, and purification by silica gel column 

chromatography (elution with 3% MeOH in DCM) afforded 11 (2.11 g, 42%) while recovering a large 

point of the starting 10 (1.5 g, 26%). 1H-NMR (300 MHz, CDCl3): δ 8.03 (s, 1H, 8-H), 7.39 (m, 5H,  

Ar-H), 5.55 (s, 1H, Ph-CH), 5.27 (d, J = 1.8 Hz, 1H, 1'-H), 5.04 (s, 1H, 2'-H), 4.83–4.60 (m, 3H, -NH2, 

5'-H), 4.59–4.38 (m, 3H, 6'-He, 6'-Ha, 3'-H), 4.36–4.29 (m, 1H, 4'-H), 3.89–3.73 (m, 2H, OCH2-), 3.55 

(s, 3H, OMe), 1.21–1.10 (m, 9H, -SiC3H9). 13C-NMR (75 MHz, CDCl3): δ 161.74 (C-6); 159.43 (C-2); 

152.79 (C-4); 137.10 (C-8); 136.53 (Ar-Ci), 129.53 (Ar-Cp), 128.34 (Ar-Cm), 126.46 (Ar-Co); 115.06 

(C-5); 102.58 (Ph-C); 100.05 (C-1'); 76.14 (C-4'); 69.25 (C-6'); 66.10 (C-5'); 65.09 (C-3'); 58.63  

(OCH2-); 57.19 (OMe); 56.40 (C-2'); 17.49 (CH2Si); −1.46 (-SiC3H9). 

3.11. 4',6'-O-Benzylidene-1',3'-di-O-methyl-2'-deoxy-2'-(2-amino-6-(2-trimethylsilylethoxy)-purin-9-

yl)-D-altropyranoside (12) 

The obtained foam 11 (2.11 g, 4.1 mmol) was dried overnight under vacuum. The foam was dissolved 

in dry DMF (42 mL), cooled to −30 °C and NaH (1.3 g, 32 mmol) was added and the mixture was stirred 

at −30 °C for 1 h under argon. Subsequently, methyl iodide (1 mL, 16 mmol) was dissolved in dry DCM 

(10.5 mL) and the solution was added drop wise over 30 min to the reaction mixture at −30 °C which 

was stirred further at −30 °C for 1 h. The reaction was finally running 3 h more at −30 °C to −20 °C 

before quenching with 10 mL of MeOH for 20 min. The solution was concentrated and dissolved in 

DCM (50 mL) and washed with brine (50 mL). The aqueous layer was again extracted with DCM  

(3 × 50 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated under 

vacuo, and purification by silica gel column chromatography (elution with 2% MeOH in DCM) afforded 

methylated nucleoside 12 (2.03 g, 94%) as a white foam. 1H-NMR (500 MHz, CDCl3): δ 7.98 (s, 1H,  

8-H), 7.49–7.40 (m, 1H, 2H, Ar-H), 7.38–7.30 (m, 3H, Ar-H), 5.47 (s, 1H, Ph-CH), 5.01 (s, 1H, 1'-H), 

4.98–4.92 (m, 1H, 5'-H), 4.66–4.55 (m, 1H, 3'-H), 4.53–4.46 (m, 1H, 4'-H), 4.41 (dd, J = 10.4, 5.3 Hz, 

1H, 6'-Ha), 1.26 (t, J = 12.1 Hz, 1H). 13C-NMR (126 MHz, CDCl3): δ 161.59 (C-6); 159.61 (C-2); 153.62 

(C-4); 137.21 (C-8); 136.93 (Ar-Ci); 129.07 (Ar-Cp); 128.21 (Ar-Cm); 126.16 (Ar-Co); 115.15 (C-5); 

102.42 (Ph-C); 99.45 (C-1'); 76.26 (C-4'); 76.06 (C-6'); 69.26 (C-5'); 65.04 (C-3'); 59.98 (OCH2-); 58.73 

(OMe); 55.97 (OMe); 54.82 (C-2'); 17.54 (CH2Si); −1.41 (3C, Si(CH3)3). HRMS calcd. For 

C25H36N5O6Si+ [M+H]+ 530.2429, found 530.2430. 
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3.12. 4',6'-O-Benzylidene-1',3'-di-O-methyl-2'-deoxy-2'-(guanin-9-yl)-D-altropyranoside (13) 

A 1 M solution of tetrabutylammonium fluoride in dry THF (15.10 mL) was added to the guanine 

derivative 12 (2.0 g , 3.77 mmol) and the mixture was stirred at room temperature under N2 for 2 h after 

which water (15 mL) was added. The pH was adjusted to 5 with acetic acid and the mixture was 

evaporated. The residue was purified by silica gel column chromatography (elution with 10% MeOH in 

DCM) affording 13 (1.25 g, 75%). 1H-NMR (500 MHz, CDCl3): δ 11.99 (s, 1H, NH), 7.86 (s, 1H, 8-H), 

7.42 (m, 2H, Ar-H), 7.31 (m, 3H, Ar-H), 6.73 (s, H, 2H, 2-NH2), 5.49 (s, 1H, Ph-CH), 5.07 (s, 1H,  

1'-H), 4.81 (s, 1H, 2'-H), 4.50–4.42 (m, 1H, 5'-H), 4.37 (dd, J = 10.1, 5.0 Hz, 1H, 6'-He), 3.78 (s, 3H,  

3'-H, 6-Ha, 4'-H), 3.58 (s, 3H, OMe), 3.53 (s, 3H, OMe). 13C-NMR (125 MHz, CDCl3): δ 159.03 (C-6); 

154.05 (C-2); 151.58 (C-4); 137.20 (Ar-Ci); 135.42 (C-8); 129.08, 128.22, 126.19 (Ar-Cm+o+p); 116.24 

(C-5); 102.40 (Ph-C); 99.23 (C-1'); 76.11 (C-4'); 76.04 (C-6'); 69.19 (C-5'); 59.76 (C-4'); 58.68 (OMe); 

55.98 (OMe); 54.79 (C-2'). HRMS calcd. For C20H24N5O6
+ [M+H]+ 430.1721, found 430.1711. 

3.13. 4',6'-O-Benzylidene-1',3'-di-O-methyl-2'-deoxy-2'-(N2-(dimethylamino)methylene-guanin-9-yl))-

D-altropyranoside (14) 

An amount of 13 (0.66 g, 1.54 mmol) was co evaporated three times with pyridine, dissolved in  

30 mL of dry MeOH (20 mL) and N,N-dimethylformamide diethyl acetal (0.824 mL, 6.16 mmol) was 

added. The mixture was stirred at reflux for 2 h under argon, after which it was evaporated and  

co-evaporated with toluene (3 × 30 mL). The residue was purified by silica gel column chromatography 

(2%–5% MeOH/dichloromethane) affording the analog 14 (0.634 g, 85%). 1H-NMR (500 MHz, CDCl3): 

δ 9.78 (s, 1H, N1-H), 8.65 (s, 1H, N=CH-N), 7.97 (s, 1H, 8-H), 7.45 (m, 2H, Ar-H), 7.40–7.30 (m, 3H, 

Ar-H), 5.51 (s, 1H, Ph-CH), 5.02 (s, 1H, 2'-H), 4.99 (d, J = 2.2 Hz, 1H, 1'-H), 4.50 (td, J = 10.4, 5.3 Hz, 

1H, 5'-H), 4.41 (dd, J = 10.4, 5.3 Hz, 1H, 6-He), 3.90–3.80 (m, 3H, 3'-H, 6-Ha, 4'-H), 3.68 (s, 3H, OMe), 

3.50 (s, 3H, OMe), 3.18 (s, 3H, NMe), 3.15 (s, 3H, NMe). 13C-NMR (125 MHz, CDCl3): δ 158.12 

(N=CH-N); 157.97 (C-6); 157.04 (C-2); 150.18 (C-4); 137.20 (C-8); 136.08, 129.05, 128.19, 126.14 

(Ar-C); 119.85 (C-4); 102.39 (Ph-CH); 99.31 (C-1'); 76.47 (C-4'); 76.12 (C-6'); 69.17 (C-3'); 60.14  

(C-5'); 58.67 (OMe); 55.89 (OMe); 55.13 (C-2'); 41.44 (NMe); 35.23 (NMe). HRMS calcd. for 

C23H29N6O6
+ [M+H]+ 485.2143, found 485.2145. 

3.14. 1',3'-Di-O-methyl-2'-deoxy-2'-(uracil-1-yl)-D-altropyranoside (15a) 

Compound 4 (0.9 g, 2.31 mmol) was dissolved in 60 mL of AcOH-H2O (3:1) at rt. The reaction 

mixture was slowly heated at 45 °C and reaction progress was monitored using TLC. After 12 h, the 

mixture was concentrated and co evaporated with toluene (30 mL). The crude residue was purification 

by flash silica gel column chromatography (elution with 5% MeOH in DCM) afforded compound 15a 

(0.66 g, 94%). 1H-NMR (600 MHz, DMSO-d6): δ 11.15 (s, 1H, NH), 7.71 (s, 1H, 6-H), 5.56 (d, J = 5.5 Hz, 

1H, 5-H), 4.93 (d, J = 3.9 Hz, 1H, 1'-H), 4.88 (t, J = 5.0 Hz, 1H, 2'-H), 4.84–4.60 (m, 1H, 3'-H), 4.03 

(dd, J = 9.8, 5.5 Hz, 1H, 5'-H), 3.77 (q, J = 5.5 Hz, 1H, 4'-H), 3.65–3.53 (m, 2H, 6'-H), 3.26, (s, 3H, 

OMe), 3.22 (s, 3H, OMe). 13C-NMR (150 MHz, DMSO-d6): δ 170.83 (C-4); 163.61 (C-2); 151.66  

(C-6); 101.62 (C-5); 99.07 (C-1'); 77.52 (C-5'); 76.08 (C-3); 63.67 (C-4'); 61.12 (C-6'); 60.23 (OMe); 

56.65 (OMe); 55.39 (C-2'). HRMS calcd. For C12H19N2O7
+ [M+H]+ 325.1006, found 325.1005. 
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3.15. 1',3'-Di-O-methyl-2'-deoxy-2'-(N6-benzoylcytosin-1-yl)-D-altropyranoside (15b) 

Compound 6 (0.36 g, 0.73 mmol) was dissolved in 24.1 mL of AcOH:H2O (3:1) at rt. The reaction 

mixture was slowly heated at 45 °C and further treated as per the synthesis of 15a affording the nucleoside 

analog 15b (0.28 g, 50%). 1H-NMR (300 MHz, CD3OD): 8.23–7.94 (m, 3H, 6-H, Bz-H), 7.68–7.51 (m, 

4H, 5-H, Bz-H), 5.26 (brs, 1H, 1'-H), 4.87–4.81 (m, 1H, 2'-H), 4.23–4.09 (m, 1H, 5'-H), 4.03 (q, 1H,  

J = 5.5 Hz, 4'-H), 3.80–3.66 (m, 2H, 3'-H, 6'-He), 3.30 (s, 6H, 2OMe), 3.26–3.20 (m, 1H, 6'-Ha).  
13C-NMR (150 MHz, CD3OD): 169.07 (PhCONH), 164.69 (C-4), 158.61 (C-2), 134.65 (C-6), 134.13, 

130.47, 129.84, 129.59, 129.19 (Bz-C), 100.35 (C-5), 98.59 (C-1'), 64.94 (C-3'), 64.74 (C-5'), 63.46  

(C-4'), 62.47 (C-6'), 57.75 (OMe), 56.05 (OMe), 49.85 (C-2'). HRMS calcd. for C19H24N3O7
+ [M+H]+ 

406.1609, found 406.1608. 

3.16. 1',3'-Di-O-methyl-2'-deoxy-2'-(N6-benzoyladenin-9-yl)-D-altropyranoside (15c) 

Following the procedure for 15a, compound 9 (1.65 g, 3.19 mmol) was treated 82.85 mL of 

AcOH:H2O (3:1) at rt. The reaction mixture was slowly heated at 45 °C and reaction progress was 

monitored using TLC. After 12 h, the mixture was concentrated and co evaporated with toluene, and 

after purification afforded (0.78 g, 57%) of 15c. 
1H-NMR (300 MHz, CD3OD): δ 8.76 (s, 1H, 8-H), 8.52 (s, 1H, 2-H), 8.13 (d, J = 7.4 Hz, 2H, Bz-H), 

7.77–7.53 (m, 3H, Bz-H), 5.39 (d, J = 5.5 Hz, 1H, 1'-H), 4.88–4.82 (m, 1H, 2'-H), 4.31 (dd, J = 8.8,  

3.7 Hz, 1H, 5'-H), 4.26–4.21 (m, 1H, 3'-H), 4.13 (q, J = 5.5 Hz, 1H, 4'-H), 4.00–3.9 (m, 2H, 6'-H), 3.42 

(s, 3H, OMe), 3.36 (s, 3H, OMe). 13C-NMR (75 MHz, DMSO-d6): δ 165.20 (C=O); 152.25 (C-6); 150.77 

(C-2); 149.68 (C-4); 143.85 (C-8); 132.92 (C-5); 131.89, 127.95, 127.91, 125.07 (Bz-C); 97.91 (C-1'); 

77.10 (C-5'); 75.44 (C-3'); 62.37 (C-4'); 59.78 (C-6'); 55.75 (OMe); 55.53 (OMe); 54.53 (C-2'). HRMS 

calcd. for C20H24N5O6
+ [M+H]+ 430.1721, found 430.1716. 

3.17. 1',3'-Di-O-methyl-2'-deoxy-2'-(N2-(dimethylamino)methylene-guanin-9-yl))-D-altro-pyranoside (15d) 

Compound 14 (0.58 g, 1.2 mmol) was dissolved in 30 mL of AcOH:H2O (3:1) at rt. The reaction 

mixture was slowly heated at 45 °C and reaction progress was monitored using TLC. After 12 h, the 

mixture was concentrated and co-evaporated with toluene. The crude residue was purified by flash silica 

gel column chromatography (elution with 10% MeOH in DCM) afforded compound 15d (0.4 g, 81%). 
1H-NMR (500 MHz, CD3OD): δ 8.65 (s, 1H, N=CH-N), 7.85 (s, 1H, 8-H), 5.21 (d, J = 5.3 Hz, 1H,  

2'-H), 4.64–4.57 (m, 1H, 1'-H), 4.10 (m, 2H, 4'-H, 3'-H), 4.00 (dd, J = 8.8, 4.1 Hz, 1H, 5'-H), 3.84 (d,  

J = 4.6 Hz, 2H, 6'-H), 3.33 (s, 3H, OMe), 3.30 (s, 3H, OMe), 3.16 (s, 3H, OMe), 3.07 (s, 3H, OMe).  
13C-NMR (125 MHz, CD3OD): δ 160.31 (N=C-N); 159.83 (C-6); 158.79 (C-2); 152.31 (C-4); 140.37 

(C-8); 120.48 (C-5); 100.37 (C-1'); 78.41 (C-5'); 76.47 (C-3'); 65.24 (C-4'); 62.66 (C-6'); 57.94 (OMe); 

57.74 (OMe); 56.17 (C-2'); 41.53 and 35.34 (NMe2). HRMS calcd. for C16H25N6O6
+ [M+H]+ 397.1830, 

found 397.1827. 

3.18. 6'-O-Dimethoxytrityl-1',3'-di-O-methyl-2'-deoxy-2'-(uracil-1-yl)-D-altropyranoside (16a) 

To a solution of the nucleoside 15a (0.4 g, 1.32 mmol) in anhydrous pyridine (10 mL) and under 

argon atmosphere, dimethoxytrityl chloride (0.49 g, 1.45 mmol) was added under stirring on an ice bath. 
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After stirring at room temperature for 3 h, 5% aqueous NaHCO3 solution (1 mL) was added, the reaction 

solvent was evaporated, diluted with CH2Cl2 (50 mL) and washed with 5% aqueous NaHCO3 (2 × 30 mL). 

The aqueous layers were back extracted once with 30 mL CH2Cl2. The combined organic layer was dried 

(Na2SO4), evaporated under reduced pressure and the crude residue was purified by flash 

chromatography (CH2Cl2/MeOH 96:4) affording the corresponding dimethoxytritylated nucleoside 16a 

(0.745 g, 93% yield) as a white foam. 1H-NMR (125 MHz, CDCl3): δ 9.31 (brs, 1H, NH), 7.48–7.43 (m, 

2H, 6-H, Ar-H), 7.37–7.33 (m, 4H, Ar-H), 7.31–7.26 (m, 2H, Ar-H), 7.24–7.19 (m, 1H, Ar-H),  

6.85–6.82 (m, 4H, Ar-H), 5.69 (dd, J = 8.0, 1.6 Hz, 1H, 5-H), 5.30 (brs, 1H, 1'-H), 4.94 (brs, 1H, 2'-H), 

4.08–3.95 (m, 2H, 5'-H, 3'-H), 3.79 (s, 3H, OMe), 3.78–3.77 (m, 4H, OMe, 4'-H), 3.50–3.42 (brs, s, 6H, 

2OMe), 3.42–3.40 (m, 2H, 6'-H). 13C-NMR (125 MHz, CDCl3): δ 163.28 (C-4); 158.50 (C-2); 150.68 

(C-6); 144.85, 135.84, 130.09, 130.06, 128.10, 127.80, 126.81, 113.11 (Ar-C); 102.35 (C-5); 98.36  

(C-1'); 86.20 (CTr-O); 77.14 (C-5'), 76.87 (C-3'); 64.05 (C-4'); 62.88 (C-6'); 57.93 (OMe); 55.69 (OMe); 

55.19 (2OMe, C-2'). HRMS calcd. for C33H36N2O9Na+ [M+Na]+ 627.23186, found 627.2311. 

3.19. 6'-O-Dimethoxytrityl-1',3'-di-O-methyl-2'-deoxy-2'-(N6-benzoylcytosin-1-yl)-D-altropyranoside (16b) 

Compound 16b (0.346 g, 87% yield) was synthesized from compound 15b (0.228 g, 0.56 mmol) 

using dimethoxytrityl chloride (0.09 g, 1.29 mmol) in anhydrous pyridine (10 mL) according to the 

procedure used for the synthesis of compound 16a. 1H-NMR (500 MHz, CDCl3) : δ 8.75 (brs, 1H, NH), 

7.90 (d, J = 7.3 Hz, 2H, 6-H, Ar-H), 7.64–7.45 (m, 6H, Ar-H), 7.40–7.19 (m, 8H, 5-H, Ar-H), 6.86 (d, 

J = 8.8 Hz, 4H, Ar-H), 5.29 (s, 1H, 1'-H), 5.03 (brs, 1H, 2'-H), 4.11–3.95 (m, 2H, 5'-H, 3'-H),  

3.83–3.77 (m, 7H, 2OMe, 4'-H), 3.60–3.37 (m, 8H, 6'-H, 2OMe), 2.50 (s, 1H, 4-OH). 13C-NMR  

(126 MHz, CDCl3): δ 166.13 (C=0), 162.13 (C-4), 158.47 (C-4), 144.71 (C-6), 136.02, 133.17, 130.03, 

129.01, 128.20, 127.79, 127.50, 126.80, 113.10 (Ar-C), 98.06 (C-5), 96.85 (C-1'), 86.11 (CTr-O), 77.13 

(C-5'), 76.88 (C-3'), 65.62 (C-4'), 62.73 (C-6'), 58.04 (OMe), 55.72 (OMe), 55.18 (C-2, 2OMe). HRMS 

calcd. For C40H42N3 O9
+ [M+H]+ 708.29208, found 708.2909. 

3.20. 6'-O-Dimethoxytrityl-1',3'-di-O-methyl-2'-deoxy-2'-(N6-benzoyladenin-9-yl)-D-altropyranoside (16c) 

Compound 16c (0.77 g, 91% yield) was synthesized from compound 15c (0.5 g, 1.16 mmol) using 

dimethoxytrityl chloride (0.44 g, 1.27 mmol) in anhydrous pyridine (10 mL) according to the procedure 

used for the synthesis of compound 16a. 1H-NMR (500 MHz, CDCl3): δ 9.15 (brs, 1H, 2-H), 8.12 (s, 

1H, 8-H),8.03 (d, J = 8.0 Hz, 2H, Ar-H), 7.60 (t, J = 7.4 Hz, 1H, Ar-H), 7.52–7.49 (m, 3H, Ar-H), 7.40 

(d, J = 8.8 Hz, 4H, Ar-H), 7.34–7.21 (m, 5H, Ar-H), 6.85 (d, J = 8.8 Hz, 3H, Ar-H), 5.29 (t, J = 1.1 Hz, 

1H, 1'-H), 5.20 (d, J = 4.8 Hz, 1H, 2'-H), 4.79–4.68 (m, 1H, 6'-He), 4.27 (q, J = 5.5 Hz, 1H, 5'-H), 4.18 

(dd, J = 7.9, 3.8 Hz, 1H, 4'-H), 4.07 (t, J = 4.7 Hz, 1H, 3'-H), 3.79 (s, 6H, OMe), 3.53 – 3.47 (m, 2H,  

6'-Ha, OH), 3.41 (s, 3H, OMe), 3.29 (s, 3H, OMe). 13C-NMR (125 MHz, CDCl3): δ 164.63 (C-6); 158.52 

(Ar-C); 152.46 (C-2); 151.78 (C-4); 149.56 (C-8); 144.66, 143.58, 135.84, 133.67, 132.75, 130.05, 

128.84, 128.17, 127.85, 126.84, 123.11, 113.16 (Ar-C); 98.31 (C-1'); 86.33 (CTr-O); 76.26 (C-5'); 72.89 

(C-3'); 64.68 (C-4'); 62.90 (C-6'); 57.89 (OMe); 56.87 (OMe); 55.94 (OMe); 55.19 (OMe); 53.38 (C-2'). 

HRMS calcd. for C41H42N5O8
+ [M+H]+ 732.30332, found 732.3030. 
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3.21. 6'-O-Dimethoxytrityl-1',3'-di-O-methyl-2'-deoxy-2'-(N2-(dimethylamino)methylene-guanin-9-yl))-

D-altropyranoside (16d) 

Compound 16d (0.51 g, 74% yield) was synthesized from compound 15d (0.39 g, 0.974 mmol) using 

dimethoxytrityl chloride (0.362 g, 1.07 mmol) in anhydrous pyridine (10 mL) according to the procedure 

used for the synthesis of compound 16a. 1H-NMR (500 MHz, CDCl3): δ 9.20 (s, 1H, NH), 8.61 (d,  

J = 4.2 Hz, 1H, N=CH-N), 8.52 (s, 1H, 8-H), 7.79 (s, 1H, Ar-H), 7.68 (tt, J = 7.7, 1.8 Hz, 1H, Ar-H), 

7.52–7.48 (m, 2H, Ar-H), 7.41–7.36 (m, 4H, Ar-H), 7.33–7.20 (m, 5H, Ar-H), 6.87–6.82 (m, 4H,  

Ar-H), 5.29 (s, 1H, 1'-H), 5.09 (d, J = 3.1 Hz, 1H, 2'-H), 4.79 (dd, J = 6.4, 3.1 Hz, 1H, 3'-H), 4.17–4.11 

(m, 1H, 5'-H), 4.01 (brs, 1H, -OH), 3.88 (dd, J = 6.4, 4.0 Hz, 1H, 4'-H), 3.52 (dd, J = 10.2, 2.9 Hz, 1H, 

6-He), 3.46 (s, 3H, OMe), 3.44 (s, 3H, OMe), 3.35 (dd, J = 10.2, 5.5 Hz, 1H, 6'-Ha), 3.05 (s, 3H, OMe), 

2.93 (s, 3H, OMe). 13C-NMR (125 MHz, CDCl3): δ 158.50 (N=CH-N); 157.92 (MMTr); 157.78 (C-6); 

156.55(C-2); 150.39(C-4); 149.81 (C-8); 144.84 (Ar-C), 137.33, 135.98, 135.87, 130.06, 130.02, 128.10, 

127.85, 126.81, 123.70, 120.37, 113.13 (Ar-C); 99.83 (C-1'); 86.17 (CTr-O); 78.04 (C-5'); 71.31 (C-3'); 

64.79 (C-4'); 63.87 (C-6'); 58.37 (OMe); 55.65 (OMe); 54.56 (C-2'); 41.12 and 35.12 (-NMe2). HRMS 

calcd. for C37H43N6O8
+ [M+H]+ 699.3142, found 699.3121. 

3.22. General Procedure for Nucleoside Phosphitylation 

To a solution of the dimethoxytritylated nucleoside 16a (0.73 g, 1.2 mmol) in anhydrous CH2Cl2  

(6 mL) at 0 °C and under argon atmosphere, freshly dried diisopropylethylamine (0.063 mL, 3.6 mmol) 

and 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (0.040 mL, 1.8 mmol) were added. The 

reaction mixture was stirred at 0 °C for 90 min after which completeness of the reaction was indicated 

by TLC. Saturated NaHCO3 solution (2 mL) was added, the solution was stirred for another10 min and 

partitioned between CH2Cl2 (50 mL) and aqueous NaHCO3 (30 mL). The organic layer was washed with 

brine (3 × 30 mL) and the aqueous phases were back extracted with CH2Cl2 (30 mL). After solvent 

evaporation, the resulting oil was purified by flash chromatography (hexane/acetone/TEA = 62/36/2). 

The yellow solid was then dissolved in CH2Cl2 (2 mL) and precipitated twice in cold hexane (160 mL, 

−30 °C) to afford the desired corresponding phosphoramidite nucleoside 17a (0.908 g, 93% yield) as a 

white powder. The obtained product was dried under vacuum and stored overnight under argon at  

−20 °C. 31P-NMR (CDCl3): δ = 150.84. HRMS calcd. for C42H54N4O10P1
+ [M+H]+ 805.35773, found 

805.3557; 31P-NMR (CDCl3): δ = 150.84. 

Compound 17b (0.34 g, 79% yield) was synthesized from compound 16b (0.34 g, 0.47 mmol), dry 

diisopropylethylamine (0.025 mL, 1.42 mmol), 2-cyanoethyl-N,N-diisopropylchloro-phosphoramidite 

(0.016 mL, 0.71 mmol) and anhydrous CH2Cl2 (10 mL) according to procedure used for the synthesis of 

compound 17a. 31P-NMR (CDCl3): δ = 150.96. HRMS calcd. for C49H59N5O10P1 [M+H]+ 908.39993, 

found 908.3981. 

Compound 17c (0.83 g, 85% yield) was synthesized from compound 16c (0.76 g, 1.03 mmol), dry 

diisopropylethylamine (0.054 mL, 3.09 mmol), 2-cyanoethyl-N,N-diisopropylchloro-phosphoramidite 

(0.034 mL, 1.54 mmol) and anhydrous CH2Cl2 (10 mL) according to procedure used for the synthesis of 

compound 17a. 31P-NMR (CDCl3): δ = 150.287 and 151.231. HRMS calcd. for C50H59N7O9P1
+ [M+H]+ 

932.41116, found 932.4103. 



Molecules 2015, 20 4038 

 

 

Compound 17d (0.42 g, 65% yield) was synthesized from compound 16d (0.5 g, 0.71 mmol), dry 

diisopropylethylamine (0.037 mL, 2.13 mmol), 2-cyanoethyl-N,N-diisopropylchloro-phosphoramidite 

(0.025 mL, 1.15 mmol) and anhydrous CH2Cl2 (10 mL) according to procedure used for the synthesis of 

compound 17a. 31P-NMR (CDCl3): δ = 150.065 and 151.206. HRMS calcd. for C46H60N8O9P1
+ [M+H]+ 

899.42206, found 899.4240. 

4. Conclusions 

A new nucleoside analogue scaffold for incorporation into oligonucleotides was developed and all 

four monomers with the natural heterocyclic bases have been prepared and evaluated on their 

hybridization potential with natural DNA and RNA. While it was anticipated that the constraint imposed 

by the 6-membered ring structure could afford the entropic advantage as seen with HNA and ANA 

constructs, an entropic penalty to preserve the 1C4 conformation required for pairing with RNA annulated 

the affinity gain which one could expect from a pre-organized structure. 
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