# **Supplementary Materials**

1. Cis-shisonin

 $[M]^+ m/z 757.1965$ molecular formula: C<sub>36</sub>H<sub>37</sub>O<sub>18</sub><sup>+</sup> MS<sup>1</sup>



## MS<sup>2</sup> precursor ion 757.1965



## MS<sup>3</sup> precursor ion 595.1422



Uv-Vis 250-800 nm



 $[M]^+$  m/z 773.1932 molecular formula: C<sub>36</sub>H<sub>37</sub>O<sub>19</sub><sup>+</sup> MS<sup>1</sup>



## MS<sup>2</sup> precursor ion 773.1932



## MS<sup>3</sup> precursor ion 611.1394



Uv-Vis 250-800 nm



#### $[M]^+ m/z 859.1926$ molecular formula: C<sub>39</sub>H<sub>39</sub>O<sub>22</sub><sup>+</sup> MS<sup>1</sup>



MS<sup>2</sup> precursor ion 859.1926



## MS<sup>3</sup> precursor ion 535.1085



Uv-Vis 250-800 nm



#### 4. Malonyl-cis-shisonin



MS<sup>2</sup> precursor ion 843.1965



MS<sup>3</sup> precursor ion 535.1077



## MS<sup>3</sup> precursor ion 595.1440



Uv-Vis 250-800 nm



#### 5. Shisonin

#### $[M]^+ m/z 757.1973$ molecular formula: C<sub>36</sub>H<sub>37</sub>O<sub>18</sub><sup>+</sup> MS<sup>1</sup>



MS<sup>2</sup> precursor ion 757.1973



## MS<sup>3</sup> precursor ion 595.1427



Uv-Vis 250-800 nm



[M]+ *m*/*z* 787.2097 molecular formula: C37H39O19+ MS<sup>1</sup>



MS<sup>2</sup> precursor ion 787.2097



MS<sup>3</sup> precursor ion 625.1547



Uv-Vis 250-800 nm



#### 7. Malonyl-shisonin

 $[M]^+ m/z 843.1952$ molecular formula: C<sub>39</sub>H<sub>39</sub>O<sub>21</sub><sup>+</sup> MS<sup>1</sup>

















Formula Predictor (isotope pattern comparison)



| ass Calculator       |      |          |         |         |          | *                 |
|----------------------|------|----------|---------|---------|----------|-------------------|
| ormula Calculator    |      |          |         | 1       | c have   | *                 |
| 43.9942 MI 43.9942   | TOUL | ar 🞽 Ci  | larye:  |         | 6 TIICS; |                   |
| Mass Type:           | #    | Mass     | Diff    | Formula | DBE      | Calc. Formulae    |
| Mono-isotopic 🛛 🗸    | 1    | 43.9898  | 0.00437 | C 02    | 2.0      |                   |
|                      | 2    | 44.0262  | 0.03202 | C2 H4 O | 1.0      |                   |
| Error Margin:        | 3    | 44.0626  | 0.06840 | C3 H8   | 0.0      |                   |
| 1.000 Da 🗸           | 4    | 44.0837  | 0.08953 | H12 02  | -5.0     |                   |
|                      | 6    | 44.3443  | 0.21902 | H20 0   | -21.0    |                   |
| DBE Range:           | Ŭ    | 11101110 | 0,00010 |         | 2110     |                   |
| Fixed -0.5 - 1000.0  |      |          |         |         |          |                   |
| Electron Ions:       |      |          |         |         |          |                   |
|                      |      |          |         |         |          |                   |
| Both configurations  |      |          |         |         |          |                   |
| HC Ratio:            |      |          |         |         |          |                   |
|                      |      |          |         |         |          |                   |
| Chine 0.0 - 3.0      |      |          |         |         |          | A data and        |
|                      |      |          |         |         |          | Adducts           |
| Apply Nitrogen Rule  |      |          |         |         |          | Advanced Settings |
| E00 Maurinum Danulta |      |          |         |         |          | Elements          |

Accurate Mass Calculator (neutral loss calculation)

The choice of concentration was justified according to a previous anti-proliferation assay using a modified MTT assay (CCK-8 method).

#### Method:

The effect of anthocyanins on cell proliferation was determined using the CCK-8 assay, which has a higher sensitivity than other traditional proliferation analysis such as MTT or XTT. Briefly, Hela cells with a concentration of  $5 \times 10^4$  cell/mL were seeded into a 96-well plate ( $5 \times 10^3$  cells for each well), which was placed in the 5% CO<sub>2</sub> incubator for 24 h at 37 °C. The cells were then treated with different concentrations of anthocyanins (50, 100, 150, 200, 250, 300 µg·mL<sup>-1</sup>) for 12 h. At the end of the incubation, 10 µL CCK-8 was added in each well, which was cultured for 2 h in the incubator and then the absorbance was measured with a microplate reader at 450 nm wavelength to calculate the inhibition rate.

#### **Results:**

The proliferation assay was performed by a modified MTT assay (CCK-8 method) testing, and the result showed that cell viability in the model group was obviously lower than that of control group, indicating Perilla Anthocyanin has inhibited Hela cell proliferation with evident dose-dependency (Figure 1). The IC<sub>50</sub> (12 h) value of 253.4  $\mu$ g·mL<sup>-1</sup> was obtained by SPSS simulation.



Figure S1. Effects of Perilla anthocyanins on Cell proliferation; Data are mean  $\pm$  SD of three independent experiments; Values are expressed in percentage and referred to control cells.

The concentrations of apoptosis was chosen on the basis of the IC<sub>50</sub> value. Concentrations around 253.4  $\mu$ g·mL<sup>-1</sup> was tested in the following apoptosis experiment.

DAPI Fluorescence Staining with different concentrations.



**Figure S2.** Laser scanning confocal microscope (200×) results of Perilla anthocyanin treated cells (A) 0  $\mu$ g·mL<sup>-1</sup>; (B) 100  $\mu$ g·mL<sup>-1</sup>; (C) 150  $\mu$ g·mL<sup>-1</sup>; (D) 200  $\mu$ g·mL<sup>-1</sup>; (E) 250  $\mu$ g·mL<sup>-1</sup>; and (F) 300  $\mu$ g·mL<sup>-1</sup>.

Typical apoptosis morphology was shown in the main article (Figure 5).