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Abstract: Compounds isolated from essential oils play an important role in the prevention 

and treatment of cancer. Monoterpenes are natural products, and the principal constituents 

of many essential oils. The aim of this study was to investigate the cytotoxic potential of  

p-menthane derivatives. Additionally, analogues of perillyl alcohol, a monoterpene with 

known anticancer activity, were evaluated to identify the molecular characteristics which 

contribute to their cytotoxicity, which was tested against OVCAR-8, HCT-116, and SF-295 

human tumor cell lines, using the MTT assay. The results of this study showed that  

(−)-perillaldehyde 8,9-epoxide exhibited the highest percentage inhibition of cell proliferation 

(GI = 96.32%–99.89%). Perillyl alcohol exhibited high cytotoxic activity (90.92%–95.82%), 

while (+)-limonene 1,2-epoxide (GI = 58.48%–93.10%), (−)-perillaldehyde (GI = 59.28%–

83.03%), and (−)-8-hydroxycarvotanacetone (GI = 61.59%–94.01%) showed intermediate 
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activity. All of the compounds tested were less cytotoxic than perillyl alcohol, except  

(−)-perillaldehyde 8,9-epoxide (IC50 = 1.75–1.03 µL/mg). In general, replacement of C-C 

double bonds by epoxide groups in addition to the aldehyde group increases cytotoxicity. 

Furthermore, stereochemistry seems to play an important role in cytotoxicity. We have 

demonstrated the cytotoxic influence of chemical substituents on the p-menthane structure, 

and analogues of perillyl alcohol. 

Keywords: cytotoxic activity; cytotoxicity; essential oils; monoterpenes; p-menthane; 

natural products; anticancer; antitumoral; perillyl alcohol 

 

1. Introduction 

Cancer is a disease in which certain cells in the body grow in an uncontrolled way. It is one of the 

world’s most serious illnesses, and together with heart attacks, it kills more people than any other 

disease. Its hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic 

diseases. They include sustained proliferative signaling, evading growth suppressors, resisting cell death, 

enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis [1]. 

Nature is an important source of new candidates for therapeutic compounds; a large chemical diversity 

is found in several species of plants, animals, and microorganisms [2]. Prakash and collaborators [3] 

have reported that natural products, since ancient times, have been used for health purposes by all 

cultures, as well as being a source of medicines. It has been estimated that about 80%–85% of the global 

population relies on traditional medicines for their primary health care needs, and it is assumed that a 

major part of traditional therapy involves the use of plant extracts or their active principles [4–6]. Although 

many recent investigations and advancements in the treatment and control of cancer progression have been 

carried out, significant work and room for improvement remain. The main disadvantage of synthetic 

drugs is their associated side effects. However, natural therapies, that use plants or plant-derived natural 

products are being found beneficial to combat cancer [3]. The search for antitumor agents from plant 

sources started in the 1950s with the discovery and development of the vinca alkaloids (vinblastin and 

vincristine), and the isolation of other cytotoxic compounds [7]. 

Antitumor activity has been reported for essential oils against several tumor cell lines [8–11]. Essential 

oils have been demonstrated to have antitumor activity in a variety of cell lines, and this is attributed to their 

chemical constituents, including monoterpenes such as myrcene [12], citronellol [13], terpinen-4-ol [14], 

and limonene [15], which are found respectively in Vepris macrophylla and Myristica fragrans [16]. 

Some antitumor essential oils have a high percentage of monoterpenes in their chemical compositions. 

These substances often contribute to the pharmacological activity of these essential oils [16]. Monoterpenes 

are found in the essential oils of many plants including fruits, vegetables, and herbs. They have been 

shown to have a large number of diverse cellular and molecular effects both in vitro and in vivo, in 

addition to preventing the process of carcinogenesis at both the initiation and the promotion/progression 

stages [16,17]. They are effective in treating early and advanced cancers. Because of results like these, 

about 74% of drugs in the anticancer area are either natural products or derived from natural products [18]. 
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Compounds such as thymol, perillic acid, and perillyl alcohol, among others, have been shown to prevent 

mammary, liver, lung, and other cancers [16,19]. Perillyl alcohol, a naturally occurring monoterpene 

found in lavender, cherries, and mint, has been suggested as an effective agent against a variety of 

tumors [20,21]. Perillyl alcohol has shown antitumor activity against pancreatic carcinomas [22,23], 

anti-metastatic activity in a chorioallantoic membrane model [24], and it inhibits the proliferation of 

human adenocarcinoma (A549), squamous cell carcinoma (H520) [21], and in vitro cultured A549 and 

BroTo cells [25]. Among the monoterpenes perillyl alcohol is thus one of the most promising anticancer 

agents. As a chemotherapeutic agent it has advanced to phase II clinical trials in cancer patients, and 

the preliminary results indicate that it is well tolerated [26,27]. 

According to Sobral and collaborators [16], many studies evaluate the cytotoxic activity of essential 

oils, and the isolation of their main constituents, but do not correlate their chemical structures with 

biological activity. Therefore considering the anticancer bioactivity of perillyl alcohol, this study aims to 

evaluate the cytotoxic activity of 18 p-menthane derivatives structurally correlated with perillyl alcohol, 

and to investigate their structure-activity relationships against human tumor cell lines. 

2. Results and Discussion 

2.1. Antiproliferative Effect of Compounds 

Based on the excellent cytotoxic activity of perillyl alcohol and several monoterpenes found in 

essential oils, we chose 18 structurally correlated compounds (Figure 1) to evaluate their cytotoxic 

activity against tumor cell lines and establish the corresponding SAR. 

The cytotoxic activity of the eighteen monoterpenes was evaluated against several human tumor  

cell lines: HCT-116 (colon), OVCAR-8 (ovarian), and SF-295 (brain). In the screening program for the 

discovery and development of potential anticancer of compounds, the criteria of the American National 

Cancer Institute were adopted for the selection of cells [2,28,29]. The results were assessed by comparing 

the cell growth inhibition percentage (GI%) values, expressed in percentage. (GI%) values are presented 

as the mean ± SD of three replicates measured by MTT assay after 72 h of incubation, as summarized 

in Table 1. The results of the cytotoxicity assays revealed that all of the test compounds exhibit cytotoxic 

activity against these tumor cell lines, as shown in Table 1. The results were evaluated using an intensity 

scale for each tested cell line as follows: samples with weak cytotoxic activity (GI < 50%), intermediate 

activity (GI 51%–75%), and high activity (GI > 75%) [30]. The compounds 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 17 and 18 demonstrated GI < 50% for the three cell lines studied, being classified as compounds 

with weak cytotoxic activity. 

Compound 16 exhibited high cytotoxicity when compared with the other monoterpenes, with a GI 

value ranging from 96.32%–99.89%, inducing almost 100% mortality in the cells, at a concentration of 

25 µg/mL. A comparison of perillyl alcohol and its analogues showed that all tested analogues  

(Figure 1) were found to have less potent cytotoxic activities than perillyl alcohol itself (Table 1), except 

for 16. Compound 16, an aldehyde monoterpene, was significantly the most cytotoxic compound  

(GI = 96.32%–99.89%), followed by perillyl alcohol (14) (GI = 90.92%–95.82%), (−)-8-hydroxy-

carvotanacetone (3) (GI = 61.59%–94.01%). (+)-limonene 1,2-epoxide (12) (GI = 58.48%–93.10%) 
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and (−)-perillaldehyde (15) (GI = 59.28%–83.03%), which exhibited cytotoxic activity ranging 

between high and intermediate depending on the cell line observed, as described in Table 1. 
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Figure 1. Structures of evaluated compounds. 

In in vitro cell culture systems, cytotoxic compounds interfere with cellular attachment, resulting in 

significant alteration in morphology, adversely affecting cell growth rate, or causing cell death [31]. 

Therefore, the cell proliferation assays were performed with structurally correlated compounds. This 

experimental model is a well-characterized colorimetric assay that is based on the enzymatic reduction of 

the tetrazolium salt MTT in living, metabolically active cells, but not in dead cells. It has been widely used 

to determine the cytostatic/cytotoxic potential of medicinal agents in screening programs [28,29,32]. 

Among the five structurally related compounds with cytotoxic activity ranging from intermediate to 

high, the compounds 12 [33], 14 [21], and 15 [25] exhibit cytotoxic activity and are already described 

in the literature. Therefore, we determined the median inhibitory concentration able to induce 50% of 

maximal effect (IC50) of the compounds 3 and 16, which have no cytotoxic activity described in  

the literature. Since compound 16 was more potent, it was subjected to additional evaluation of its 

cytotoxic activity against HL-60, with the intention of assessing the cell death process. The HL-60 cell 

is more sensitive to chemotherapeutic agents, with well-defined methods for checking cellular death 

processes [34–36]. 
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Table 1. Cell growth inhibition percentage of compounds tested at the concentration of  

25 μg/mL against tumor cell lines. 

Compounds 

Cells 

HCT-116 
SD 

OVCAR-8
SD 

SF-295 
SD 

IG% IG% IG% 

(−)-Carvone (1) 11.94 ±2.54 2.28 ±1.38 12.28 ±1.13 
(+)-Carvone (2) 46.15 ±2.46 48.07 ±1.20 34.39 ±3.47 
(−)-8-Hydroxycarvotanacetone (3) 75.2 ±2.62 94.01 ±1.38 61.59 ±3.10 
(+)-8-Hydroxycarvotanacetone (4) 4.76 ±1.85 3.12 ±2.96 16.36 ±1.07%
(−)-Carvone epoxide (5) 29.24 ±1.00 8.21 ±0.49 10.93 ±0.06 
(+)-Carveol epoxide (6) 12.43 ±4.31 4.58 ±8.58 35.35 ±2.44 
(−)-cis-Carveol (7) 9 ±2.38 3.61 ±9.96 21.16 ±1.19 
(−)-8-Acetoxycarvotanacetone (8) 10.36 ±9.38 1.62 ±1.58 30.47 ±3.51 
(+)-Pulegone (9) 10.25 ±5.85 14.41 ±8.08 27.44 ±9.95 
(R)-Pulegone oxide (10) 43.21 ±2.31 17.62 ±10.45 16.02 ±6.43 
(−)-trans-Isopulegone (11) 18.96 ±5.08 5.98 ±0.89 7.56 ±6.73 
(+)-Limonene 1,2-epoxide (12) 73.13 ±2.77 93.1 ±0.10 58.48 ±1.07 
(−)-Sobrerol (13) 9.78 ±7.24 41.4 ±4.20 34.21 ±3.57 
(S)-(−)-Perillyl alcohol (14) 95.82 ±0.30 91.68 ±7.06 90.92 ±0.39 
(−)-Perillaldehyde (15) 83.03 ±1.54 70.24 ±1.43 59.28 ±5.78 
(−)-Perillaldehyde 8,9-epoxide (16) 98.64 ±0.74 96.32 ±1.51 99.89 ±0.24 
(−)-Perillyl acetate (17) 14.25 ±5.38 3.06 ±2.34 16.41 ±4.32 
(S)-Perillyl benzoate (18) 5.02 ±2.67 2.86 ±1.72 4.53 ±2.13 
Doxorubicin 99.24 ±0.15 100 ±0.63 99.57 ±0.31 

Cell lines: OVCAR-8 (ovarian adenocarcinoma), HCT-116 (colon carcinoma), and SF-295 (glioblastoma) 

humans. GI% values are presented as the mean ± SD of three independent experiments measured by the MTT 

assay after 72 h of incubation. All compounds were tested at a concentration of 25 μg/mL. Doxorubicin was 

used as the positive control. 

Evaluating the IC50 of compound 16, besides presenting the highest percentage of inhibition of cell 

proliferation, 16 was more potent than 3, showing high cytotoxicity in all three cell lines, with IC50 

values ranging from 1.03–1.75 µg/mL, as shown in Table 2. 

2.2. Hemolytic Assay 

Since compound 16 showed high cytotoxicity in tumor cells, it was tested for its ability to induce 

lysis in mouse erythrocytes (data not shown). The mechanical stability of the erythrocyte membrane is 

a good indicator of in vitro damage in cytotoxicity assays, since many drugs can alter this delicate 

structure [37]. Red blood cells provide a preliminary model to study protective effects, substance 

toxicity, (or conditions associated with oxidative stress), where they are a possible indicator of such 

damage [38–41]. However, compound 16 was not hemolytic even at the highest tested concentration 

(500 μg/mL). This suggests that the cytotoxicity mechanism is probably related to a more specific pathway. 
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Table 2. Cytotoxic activity of (−)-perillaldehyde 8,9-epoxide and (−)-8-

hydroxycarvotanacetone on tumor cell lines. Experiments were performed in triplicate. 

Cells 
Doxorubicin  

µg/mL 
(−)-Perillaldehyde 8,9-epoxide 

µg/mL 
(−)-8-Hydroxycarvotanacetone 

µg/mL 

HCT-116 
0.01  

0.01–0.02 
1.03  

0.79–1.34 
1.08  

0.71–1.42 

OVCAR-8 
1.20  

0.90–1.60 
1.15  

0.93–1.44 
1.44  

0.93–2.23 

SF-295 
0.24  

0.17–0.36 
1.75  

1.05–2.93 
3.24  

2.47–4.26 

HL-60 
0.02  

0.01–0.02 
0.64  

0.07–0.09 
____ 

Cell lines: OVCAR-8 (ovarian adenocarcinoma), HCT-116 (colon carcinoma), SF-295 (glioblastoma), and 

HL-60 (leukemia) humans. Data are presented as IC50 values (μg/mL) and their 95% confidence interval 

obtained by non-linear regression from three independent experiments performed in triplicate, measured by 

the MTT assay after 72 h of incubation. Doxorubicin was used as the positive control. 

2.3. (−)-Perillaldehyde 8,9-epoxide Inhibits the Proliferation of Human Leukemia in HL-60 Cells 

Three concentrations of compound 16, ½ IC50 (0.32 µg/mL), IC50 (0.64 µg/mL) and 2 × IC50  

(1.28 µg/mL) were chosen against HL-60. The anti-proliferative effects of 16 were demonstrated 

through the trypan blue dye exclusion test (Figure 2). It showed a reduction in the number of viable 

cells, and increases in the number of non-viable cells in a concentration-dependent manner after  

24 h of incubation. The quantitative decrease in viable cells is common in cytotoxic compounds, as 

demonstrated by de Barros and collaborators [42], with a thiazacridine derivative, which decreases the 

number of viable HCT-8 cells in a concentration and time dependent manner. 

 

Figure 2. Effect of 16 on leukemic cell (HL-60) proliferation as measured by the trypan 

blue dye exclusion method after 24 h of incubation. The negative control was treated with 

the same vehicle (NC, 0.1% DMSO) used for diluting the test substance. Doxorubicin  

(PC, 0.3 µg/mL) was used as the positive control. Data are presented as mean values ± 

S.E.M. of two or three independent experiments performed in duplicate. * p < 0.05 

compared to negative control by ANOVA followed by Student-Newman-Keuls test. 

NC PC 0.32 0.64 1.28 
0

20

40

60

80

(-)-Perillaldehyde 8,9-epoxide

 (µg/mL)

*

*

*
*

*

*

*
*

Viable cells
Non-viable cells

C
el

ls
 n

um
be

r
(x

 1
04

/m
L

)



Molecules 2015, 20 13270 

 

 

2.4. (−)-Perillaldehyde 8,9-epoxide Induces Apoptosis and Necrosis in Human Leukemia HL-60 Cells 

Attempting to ascertain the cellular death process (as induced by 16), in cancer cells, two tests were 

performed, fluorescence microscopy using acridine orange/ethidium, and hematoxylin-eosin coloration 

analyzed by optical microscopy. After 24-h incubation, the effects of 16 were evaluated based on cell 

morphology using hematoxylin-eosin. All concentrations and showed severe drug-mediated changes. 

The hematoxylin-eosin stained HL-60 cells treated with 16 presented a morphology consistent with 

apoptosis, including a reduction in cell volume, chromatin condensation, and nuclei fragmentation,  

as well as, necrosis with membrane disruption, cell swelling and rupture leading to inflammation. The 

acridine orange/ethidium bromide stained and treated cells also displayed a morphology consistent 

with apoptosis and necrosis, in a concentration-dependent manner (p < 0.05) (Figure 3). 

NC PC 0.32 0.64 1.28
0

20

40

60

80

100

(-)-Perillaldehyde 8,9-epoxide

(µg/mL)

*

*

*

*

*

*
*

*

*
Necrotic cells
Apoptotic cells
Viable cells

C
el

ls
 (

%
)

 

Figure 3. The effect of 16 on the viability of human leukemic cells (HL-60). Cell viability 

(viable cells-black bar; apoptotic cells-gray bar; and necrotic cells-white bar) was determined 

respectively by fluorescence microscopy using acridine orange/ethidium bromide after  

24-h incubations. The data are presented as the mean values ± S.E.M. of three independent 

experiments performed in duplicate. The negative control was treated with the same 

vehicle (NC, 0.1% DMSO) that diluted the test substance. Doxorubicin (PC, 0.3 μg/mL) 

served as the positive control. * p < 0.05 compared to negative control by ANOVA, followed 

by a Student Newman-Keuls test.  

Compound 16 caused cell death by apoptosis in the three concentrations tested, as shown in Figures 3 

and 4. The induction of apoptosis is an important target in cancer therapy, achieved by compounds 

such as the vinca alkaloids, taxanes and colcichine [43]. It is the most well-known mechanism of cell 

death which functions to maintain homeostasis of the cells [44]. It is characterized by phosphatidylserine 

exposure, loss of mitochondrial membrane potential, caspase activation, chromatin condensation, 

nuclear fragmentation, and results in phagocytosis of membrane bound apoptotic bodies [45]. 

Besides the apoptotic process in doses of 0.64 and 1.28, compound 16 presented necrotic cell death 

simultaneously. This type of cell death is characterized by swelling of cellular organelles, cell membrane 

rupture, cell lysis (unlike apoptosis), and the core becomes distended yet substantially intact. Necrotic 

death is typically followed by inflammatory reactions [46]. This appears to be a limiting factor as the 

concentration of 16 is increased. 
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Figure 4. Effect of 16 on cell morphology for HL-60 human leukemia cells. The cells were 

stained with hematoxylin-eosin and analyzed by optical microscopy after 24 h incubation at 

concentrations of 0.32 (C); 0.64 (D); and 1.28 μg/mL (E). Negative control (A) was treated 

with the vehicle (0.1% DMSO) used for diluting the test substance. Doxorubicin (0.3 μg/mL) 

was used as the positive control (B). Continuous arrows show nuclear fragmentation and 

non-continuous arrows show accumulation of metaphases cells. 

Various chemical agents such as β-lapachone described by Li and collaborators [47], induce cellular 

death by necrosis concomitant with apoptosis in a variety of cancer cells such as ovarian, colon, lung, 

prostate and breast cancer. Furthermore, some forms of treatment such as alkylating agents of DNA and 

photodynamic treatment are also able to induce cell death, activating necrosis [48]. Thus we might 

consider 16 as a possible candidate for in vivo tests, even with the two processes of cell death responsible 

for its in vitro cytotoxicity. 

2.5. Structure-Activity Relationships (SAR) 

This evaluation is important due to the fact that perillyl alcohol and its analogues are structurally 

similar to many of the chemical constituents of essential oils and other natural products. Therefore the 

results obtained in this study may well provide a reference for the development of novel cytotoxic 

agents having an appropriate biological profile. 

The presence of an exocyclic aldehyde carbonyl and the conjugated C-C double bond seem to 

contribute to cytotoxicity, as (−)-perillaldehyde (15) displayed good cytotoxic activity, with a GI value 

of 59.28%–83.03%. Compounds 14 (absence of an epoxide group and replacement of an aldehyde by a 

hydroxyl group), and 15 (absence of an epoxide group and presence of an aldehyde function) were less 

cytotoxic (GI = 90.92%–95.82% and 59.28%–83.03%, respectively) than 16 (presence of both an 

epoxide and aldehyde group, GI = 96.32%–99.89%). This indicates that the presence of an epoxide 

and/or aldehyde function in the molecule is important for cytotoxicity. Further, the anti-proliferative 

activity was even more pronounced when these functional groups (epoxide and aldehyde) are both in 

the chemical structure, since (+)-limonene 1,2-epoxide (12) (GI = 58.48%–93.10%), which contains 

only the epoxide group, was less bioactive than 16 (GI = 96.32%–99.89%). On the other hand, 

comparing (+)-limonene 1,2-epoxide (12) with (−)-carvone epoxide (5), it appears that the endocyclic 
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ketone function does not contribute to cytotoxicity, as compound 12 (GI = 58.48%–93.10%) was 

approximately 2.5- to 11-fold more cytotoxic than 5 (GI = 8.21%–29.24%). 

The monoterpenes perillyl alcohol (14) and (−)-perillaldehyde (15) differ from each other only by a 

functional group. Compound 14 has a hydroxyl group whereas 15 presents an aldehyde function, both 

located at the same position in the p-menthane skeleton (C-7). Perillyl alcohol (14) (GI = 90.92%–95.82%) 

exhibited higher cytotoxicity compared to (−)-perillaldehyde (15) (GI = 59.28%–83.03%), suggesting 

that a hydroxyl group at C-7 position produces in a more potent inhibition of cell proliferation than an 

aldehyde group at the same position. 

To investigate the effect of the disposition of the ketone carbonyl group in cytotoxic activity, we 

compared the oxygenated monoterpenes (−)-carvone (1) (GI = 2.28%–12.28%), (+)-carvone (2)  

(GI = 34.39%–48.07%), (+)-pulegone (9) (GI = 10.25%–27.44%), and (−)-trans-isopulegone (11)  

(GI = 5.98%–18.96%). In the general, the evaluated ketones showed moderate to weak cytotoxicity, 

but considerable differences in their potencies were observed. We also noted that compounds 9  

(α,β-unsaturated ketone) and 11 (saturated ketone) displayed different cytotoxic effects against the 

three tumor cell lines. 

Replacement of a carbon-carbon double bond, conjugating the carbonyl with an epoxide group 

resulted in a modest enhancement of anti-proliferative effect. Improvement of the biological potency 

was observed thru comparison of (−)-carvone (1) (GI = 2.28%–12.28%) with (−)-carvone epoxide (5)  

(GI = 8.21%–29.24%) and (+)-pulegone (9) (GI = 10.25%–27.44%) with (R)-pulegone oxide (10)  

(GI = 16.02%–43.21%). Similar results were found comparing the compounds (+)-carveol epoxide  

(6) and (−)-cis-carveol (7), and (−)-perillaldehyde (15) and (−)-perillaldehyde 8,9-epoxide (16). 

Replacement of a non-conjugated C-C double bond by an epoxide function in 7 (GI = 3.61%–21.16%) 

and 15 (GI = 59.28%–83.03%), resulting in the respective compounds 6 (GI = 4.58%–35.35%) and 16 

(GI = 96.32%–99.89%), produces a subtle increase in cytotoxicity. 

To ascertain the influence of the disposition of the epoxide and ketone groups in cytotoxicity, we 

compared (−)-carvone epoxide (5) with (R)-pulegone oxide (10). Compounds 5 and 10 present a ketone 

and epoxide group in different positions in the p-menthane skeleton, and different biological effects for 

these monoterpenes was observed. (R)-Pulegone oxide (10) was more bioactive (GI = 16.02%–43.21%) 

than (−)-carvone epoxide (5) (GI = 8.21%–29.24%), suggesting that the position of these groups in the 

p-menthanic structure influence the cytotoxic activity. 

To examine whether the introduction of a hydroxyl group (hydroxylation of a double bond) in  

the molecular structure affects the cytotoxic activity, (−)-carvone (1) was compared with (−)-8-

hydroxycarvotanacetone (3), and (+)-carvone (2) with (+)-8-hydroxycarvotanacetone (4). Compound 1 

(GI = 2.28%–12.28%) was significantly less cytotoxic than 3 (GI = 61.59% to 94.01%), indicating that 

the presence of a hydroxyl group causes an enhancement of cytotoxicity. However, (+)-carvone (2)  

(GI = 34.39%–48.07%) was more bioactive than its corresponding monoterpene alcohol  

(+)-8-hydroxycarvotanacetone (4) (GI = 3.12%–16.36%). In addition, we also evaluated the effect of 

adding a second hydroxyl group to the p-menthane structure. It was observed that (−)-sobrerol (13)  

(two hydroxyl groups) showed a significant decrease in the inhibition rate of cell proliferation as 

compared to (−)-8-hydroxycarvotanacetone (3) (one hydroxyl group), with GI values of 9.78%–41.10% 

and 61.59%–94.01%, respectively. Thus, these results revealed that the more polar monoterpenes, such 

as (−)-sobrerol (13), are less effective inhibitors of cellular proliferation. 
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To investigate whether the presence of an ester function in the chemical structure alters the 

cytotoxicity, we compared (−)-8-hydroxycarvotanacetone (3) with (−)-acetoxycarvotanacetone (8),  

and (S)-(−)-perillyl alcohol (14) with both (−)-perillyl acetate (17), and (S)-perillyl benzoate (18).  

(−)-8-hydroxycarvotanacetone (3) (GI = 61.59%–94.01%) presented more potent cytotoxic activity 

than its acetate derivative, (−)-8-acetoxycarvotanacetone (8) (GI = 1.62%–30.47%), suggesting that  

the replacement of a hydroxyl group by an acetate causes a marked decrease in the cytotoxicity. 

Additionally, compound 14 was more cytotoxic (GI = 90.92%–95.82%) than 17 (GI = 3.06%–16.41%) 

and 18 (GI = 2.86%–5.02%), probably due to its lower lipophilicity. (S)-Perillyl benzoate (18), the 

most lipophilic compound, was found to be the least potent inhibitor of cellular proliferation for all of 

the cell lines evaluated. 

To evaluate the influence of chirality on cytotoxicity, we compared the pairs of enantiomers  

(−)-carvone (1) and (+)-carvone (2), and (−)-8-hydroxycarvotanacetone (3) and (+)-8-hydroxy- 

carvotanacetone (4). (+)-Carvone (2) (GI = 34.39%–48.07%) was more cytotoxic than its enantiomer 

(−)-carvone (1) (GI = 2.28%–12.28%) in all the cancer lines tested. Similarly, (−)-8-hydroxy- 

carvotanacetone (3) exhibited better cytotoxic effect than its enantiomeric form (+)-8-hydroxy- 

carvotanacetone (4), with respective GI values of 61.59%–94.01% and 3.12%–13.36%. The findings 

suggest an association between the cytotoxicity of the monoterpenes tested and their stereochemistry. 

3. Experimental Section 

3.1. Chemical Analogues 

The compounds (R)-pulegone oxide [49], (−)-carvone epoxide [50], (−)-cis-carveol [51],  

(+)-carveol epoxide [52], (+)-limonene 1,2-epoxide [53], (−)-perillyl acetate [54], (−)-perillaldehyde [55], 

(−)-perillaldehyde 8,9-epoxide [56], (−)-trans-isopulegone [57], (+)- and (−)-8-hydroxy- 

carvotanacetone [58], (−)-8-acetoxycarvotanacetone [59], (S)-perillyl benzoate [59], and (−)-sobrerol [60] 

were prepared in our laboratory according to the literature and analyzed by infrared, 1H- and 13C-NMR. 

(+)-Pulegone, (−)- and (+)-carvone, and (S)-(−)-perillyl alcohol were purchased from Sigma-Aldrich 

Co. (St. Louis, MO, USA). The chemical structures of the evaluated compounds are shown in Figure 1. 

3.2. Cell Lines 

The cytotoxicity of the 18 compounds was tested against OVCAR-8 (ovarian adenocarcinoma),  

HCT-116 (colon carcinoma), SF-295 (glioblastoma), and HL-60 (leukemia) human cancer cell lines, 

all obtained from the National Cancer Institute, Bethesda, MD, USA. Cells were grown in RPMI-1640 

medium supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 µg/mL streptomycin, and 

100 U/mL penicillin, and incubated at 37 °C in a 5% CO2 atmosphere. 

3.3. Cytotoxicity Assay 

Tumor cell growth was determined by the ability of living cells to reduce the yellow dye 3-(4,5-

dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT; Sigma Chemical Co., St. Louis, 

MO, USA) to a purple formazan product, as described by Mossman [61]. For all experiments, cells 

were seeded in 96-well plates (0.1 × 106 cells/mL in 100 μL medium). After 24 h, the 18 compounds 
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(25 μg/mL), were dissolved in 0.7% dimethyl sulfoxide (DMSO), and were added to each well (three 

independent experiments, performed in triplicate). Then, the cells were incubated for 72 h at 37 °C in  

a 5% CO2 atmosphere. The experiment was performed as three independent experiments, using DMSO 

at 1%, and doxorubicin at 100 μg/mL as negative and positive controls, respectively. Doxorubicin, 

purity >98%; Sigma Chemical Co.). 

At the end of incubation, the plates were centrifuged, and the medium was replaced by fresh 

medium (150 μL) containing 0.5 mg/mL MTT. Three hours later, the formazan product was dissolved 

in 150 μL DMSO, and absorbance was measured using a multiplate reader (DTX 880 Multimode 

Detector, Beckman Coulter Inc., Packard, ON, Canada). The treatment effects were expressed as the 

percentage of control absorbance of reduced dye at 595 nm. All absorbance values were converted into 

a cell growth inhibition percentage (GI%) by the following formula: 

[GI% = 100 − [(T/C) × 100%] (1)

where C is the absorbance for the negative control, and T is the absorbance in the presence of the 

tested compound. 

The compounds that caused greater degree of cell growth inhibition and which have not been 

described in the literature for cytotoxic activity against tumor cell lines were evaluated for their median 

inhibitory concentration able to induce 50% of maximal effect (IC50). The same protocol for the same 

cells was used to determine the IC50, varying only the concentration of the compound tested from 0 to 

25 μg/mL, to verify the most potent compound. In addition, the IC50 was determined against HL-60 

only for the most cytotoxic compound 16. Compounds with an IC50 value lower than 4 μg/mL were 

considered promising for the search for new anticancer agents [62]. 

3.4. Hemolytic Assay 

The test was performed in 96-well plates using a 2% mouse erythrocyte suspension in 0.85% NaCl 

containing 10 mm CaCl2, following the method as described by Jimenez and collaborators [63]. 

Various concentrations of compound 16 (0–500 µg/mL) were added to the suspension of red blood cells 

obtained from mice according to methodology adapted from Kang and collaborators [64], Pita and 

collaborators [65], and Bezerra and collaborators [66]. The tubes with the compound 16 erythrocyte 

mixtures were incubated on a mixer for 60 min and then centrifuged at 3000 rpm for 5 min. Mixtures 

were incubated on a mixer for 60 min and then centrifuged at 3000 rpm for 5 min. After incubation at 

room temperature for 30 min and centrifugation, the supernatant was removed and the liberated 

hemoglobin was measured spectrophotometrically as the absorbance at 540 nm. 

3.5. Cell viability—Trypan Blue Dye Exclusion Test 

The cell viability was determined by the trypan blue dye exclusion test. HL-60 cells were seeded  

(0.3 × 106 cells/mL) in absence or presence of different concentrations of compound 16 (0.32, 0.64, 

and 1.28 µg/mL). After the incubation period of 24 h, 90 µL were removed from the cell suspension 

and added to 10 µL of trypan blue. Viable and non-viable cells were differentiated and counted in  

a Neubauer chamber [67]. 
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3.6. Morphological Analyses Using a Fluorescence Microscope 

HL-60 cells were pelleted and re-suspended in 20 µL of PBS. Then, 1 µL of aqueous acridine 

orange/ethidium bromide solution (AO/EB, 100 µg/mL) was added, and the cells were observed under  

a fluorescence microscope. Three hundred cells were counted per sample and classified as viable, 

apoptotic or necrotic [68]. 

3.7. Morphological Analysis with Hematoxylin-Eosin Staining 

For morphological cell analysis, we used hematoxylin-eosin and examined using light microscopy. 

HL-60 cells were seeded (0.3 × 106 cells/mL) in the absence or presence of different concentrations  

of compound 16 (0.32, 0.64 and 1.28 µg/mL). After an incubation period of 24 h, 50 µL of cell 

suspension were transferred to cytospin slides, fixed with metanol for 60 s, and stained with 

hematoxylin-eosin [43]. 

3.8. Statistical Analysis 

Data are presented as mean ± SEM (or SD) or IC50 values, and their 95% confidence intervals  

(CI 95%) were obtained by nonlinear regression. Differences among the experimental groups were 

compared by one-way variance analysis (ANOVA), followed by Newman-Keuls test (p < 0.05).  

All analyses were carried out using the Graphpad program (Intuitive Software for Science, San Diego,  

CA, USA). 

4. Conclusions 

Based on the data of this study, we can conclude that among the 18 derivative compounds of 

perillyl alcohol tested, compound 16 was the p-menthane derivative with the highest cytotoxic activity 

against the cancer cells lines tested. The process induced apoptotic and necrotic cell death. In addition 

the analysis of structure-activity relationships demonstrated that the greater anti-proliferative activity 

of 16 was determined by chemical aspects, such as presence of functional groups and their positions on  

p-menthane skeleton, suggesting that using appropriate structural modifications in these compounds,  

it may be possible to develop new cytotoxic agents. Therefore, compound 16 is a potential anticancer 

drug, yet requiring further tests to determine its in vivo antitumor activity. 
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