Supplementary Materials: Antiprotozoal and Antiglycation Activities of Sesquiterpene Coumarins from *Ferula narthex* Exudate

Adnan Amin, Emmy Tuenter, Paul Cos, Louis Maes, Vassiliki Exarchou, Sandra Apers and Luc Pieters

1. Antiglycation Assay (BSA-Glucose Assay)

The antiglycation assay was performed according to the method developed by Matsuura et al. (2002) [1] with minor modifications. The reaction mixture (300 μ L) contained bovine serum albumin (BSA) (10 mg/mL, 135 μL), D-glucose (500 mM, 135 μL) dissolved in phosphate buffer (50 mM, pH 7.4, containing sodium azide (0.02%, added to prevent bacterial growth) and test compounds (30 μ L), at different final concentrations (1.5-0.023 mM for isolated constituents or 100-1.17 µg/mL for extracts) dissolved in 100 % DMSO. The mixtures were incubated at 60 °C for 48 h. After incubation, the reaction mixture was allowed to cool down at room temperature. Then 100 µL reaction mixture was transferred to a new plastic tube (1.5 mL) and the reaction was stopped by adding 10 μ L of 100% (w/v) trichloroacetic acid (TCA) and to precipitate proteins. The TCA-added mixture was kept at 4 °C for 10 min, followed by centrifugation (14,000 rpm, 4 °C, 4 min). The supernatant containing unreacted D-glucose, test sample and interfering substances was discarded, whereas the precipitate containing AGEs-BSA was redissolved with 0.8 mL alkaline PBS (137 mM NaCl, 8.1 mM Na₂HPO₄, 2.68 mM KCl, 1.47 mM KH₂PO₄, pH 10). The change in fluorescence intensity (excitation 335 nm, emission 385 nm; excitation 370, emission 440) due to formation of AGEs was monitored by spectrofluorometry (Tecan[™] Infinite M200, Giessen, The Netherlands). In order to eliminate interference by autofluorescence of the test compounds, a parallel incubation of test substance with BSA at 60 °C without D-glucose was performed for all samples. Quercetin (0.5-0.0312 mM final concentration) and aminoguanidine (3–0.046 mM final concentration) were used as reference compounds.

2. The AGEs Inhibition was Calculated as

% inhibition = $\{1 - (FBSA + glucose + test substance - FBSA + test substance)/(FBSA + glucose - FBSA)\} \times 100$ (1)

where F is the fluorescence intensity. The concentration required for 50% inhibition (IC₅₀) was calculated using using Sigma plot[®] 13.0.

3. Protein-Glyoxal Interaction (BSA-MGO Assay)

The antiglycation assay using methylgloxyl (MGO) was performed according to the method developed by Peng et al. (2007) [2] with slight modifications. Briefly, methylglyoxal (135 μ L, 5.75 mM) was incubated with BSA (135 μ L, 10 mg/mL) dissolved in phosphate buffer (50 mM, pH 7.4, containing sodium azide (0.02%), added to prevent bacterial growth) and test compounds (30 μ L) at different final concentrations (1.5–0.023 mM) in 100% DMSO. The reaction mixture was incubated at 37 °C for one week. Control solutions only contained methylglyoxal (135 μ L, 5.75 mM) BSA (135 μ L, 1 0 mg/mL) and DMSO (100%) only. The blank samples of similar composition were also prepared simultaneously and kept at 4 °C for one week. The change in fluorescence intensity (excitation 335 nm, emission 385 nm; excitation 370, emission 440) due to formation of AGEs was monitored by spectrofluorometry (Tecan® Infinite M200, Giessen, The Netherlands). Aminoguanidine (3–0.046 mM final concentration) was used as reference compound. The AGEs inhibition was calculated as

% AGEs inhibition =
$$[1 - (S - Sb)/(C - Cb)] \times 100$$
 (2)

where S and C were fluorescence of test samples (in DMSO) and control (test mixtures containing only DMSO) incubated at 37 °C, and where Sb and Cb were fluorescence for samples incubated at 4 °C. The concentration required for 50% inhibition (IC₅₀) was calculated using Sigma plot[®] 13.0.

Scheme S1. Liquid-liquid extraction scheme.

Position	δн (ppm); Multiplicity; J (Hz)	δ c (ppm)
1		
2		163.4
3	6.23; d; J = 9.5	113.6
4	7.87; d; J = 9.5	145.9
5	7.52; d; <i>J</i> = 8.5	130.5
6	6.91; br d; <i>J</i> = 8.5	114.4
7		163.7
8	6.93; br s	102.2
9		157.2
10		114.1
1′	2.07; m	24.3
2'	1.63; 0.92; m	28.0
3'	3.23; dd; <i>J</i> = 10.9; 4.5	79.6
4'		39.9
5'	1.26; m	50.9
6'	2.0; m	39.0
7'	5.53, br s	124.5
8'		133.9
9'	2.20, br s	55.4
10'		37.0
141	4.08; dd; <i>J</i> = 10; 3.4	<0 0
11′	4.24; dd; <i>J</i> = 10; 5.8	68.2
12'	1.69; s	21.8
13'	0.87; s	15.3
14'	0.98; s	28.7
15'	0.93; s	15.9

Table S1. ¹ H- and ¹³ C-NMF	assignments of feselol	(1) recorded in MeOH-d4
---	------------------------	-------------------------

Figure S1. ¹³C-NMR, DEPT-135 and DEPT-90 spectra of feselol (1) recorded in MeOH-*d*₄.

ppm

Figure S2. ¹H-NMR spectrum of feselol (1) recorded in MeOH-*d*₄.

Figure S3. COSY spectrum of feselol (1) recorded in MeOH-d4.

Figure S4. HSQC spectrum of feselol (1) recorded in MeOH-d4.

Table S2. ¹H- and ¹³C-NMR assignments of ligupersin A (2) recorded in MeOH-d4.

Position	δн (ppm); multiplicity; J (Hz)	δc(ppm)
2		163.3
3	6.24; dd; <i>J</i> = 9.5	114.0
4	7.88; d; J = 9.5	145.9
5	7.84; d; <i>J</i> = 8.5	130.7
6	6.95; <i>J</i> = 8.5; 2.5	114.5
7		163.5
8	6.98; d; <i>J</i> = 2.5	102.6
9		159.6
10		114.4
1′	1.67; 2.06; m	38.5
2′	1.65; 1.72; m	27.6
3'	3.20; dd; <i>J</i> = 11.0; 4.3	79.4
4'		39.1
5'	2.33; s	63.7
6'		201.9
7'	5.84; br s	130.1
8'		157.4
9'	2.81; m	56.5
10'		43.6
11/	4.32; dd; <i>J</i> = 10.5, 5.2	
11'	4.40; dd; J = 10.5, 3.0	67.1
12'	2.0; s	22.0
13′	1.16; s	16.0
14'	1.26; s	29.1
15'	1.06; s	16.7

Figure S5. ¹³C-NMR, DEPT-135 and DEPT-90 spectra of ligupersin A (2) recorded in MeOH-d4.

Figure S6. ¹H-NMR spectrum of ligupersin A (2) recorded in MeOH-*d*₄.

Figure S7. COSY spectrum of ligupersin A (2) recorded in MeOH-d4.

Figure S8. HSQC spectrum of ligupersin A (2) recorded in MeOH-d4.

Figure S9. HMBC spectrum of ligupersin A (2) recorded in MeOH-d4.

Position	δн (ppm); multiplicity; J (Hz)	δ c (ppm)
2		163.4
3	6.21; d; <i>J</i> = 8.5 Hz	113.4
4	7.90; d; J = 9.5 Hz	145.8
5	7.51; d; J = 8.5 Hz	130.5
6	6.90; dd; J = 2.5; 8.0 Hz	114.4
7		163.8
8	6.84; d; <i>J</i> = 2.5	102.6
9		157.1
10		114.0
1′	4.64; br d; <i>J</i> = 6.2	66.7
2′	5.50; br t; <i>J</i> =6.2	123.2
3′		139.3
	2.34; m	10.0
4'	2.16; m	48.3
5′	4.51; m	67.3
6'	5.40; br d; <i>J</i> = 8.2	131.9
7′		136.4
8'	5.02; t; <i>J</i> = 7.0	80.0
	2.33; m	
9'	2 24: m	32.8
10′	4.83: overlapped with solvent peak	120.3
11'		135.4
12'	1.60: br s	12.8
13′	1.70: s	18.0
14'	1.68; s	17.4
15′	1.80: br s	26.0
	,	21.0
Ac	2.00; s	172.0

Table S3. 1H- and	¹³ C-NMR assignments of 8 ⁴	-O-acetyl-asacoumarin A	(3) recorded in MeOH-d4.
				/

Figure S10. ¹³C-NMR, DEPT-135 and DEPT-90 spectra of 8'-O-acetyl-asacoumarin A (**3**) recorded in MeOH-*d*₄.

Figure S11. ¹H-NMR spectrum 8'-O-acetyl-asacoumarin A (3) recorded in MeOH-d4.

D		e ()
Position	дн (ppm); multiplicity; J (Hz)	dc (ppm)
2		163.4
3	6.22; d; <i>J</i> = 9.5	113.2
4	7.88; d; J = 9.5	145.8
5	7.50; d; <i>J</i> = 8.5	130.3
6	6.88; dd; <i>J</i> = 8.0, 2.5	114.4
7		163.8
8	6.85; d; J = 2.5	102.2
9		157.1
10		113.9
1′	4.64;d; J = 6.4	66.5
2'	5.50; br t; <i>J</i> = 6.2	123.0
3′		140.1
41	2.34; m	10.0
4	2.14; m	48.3
5'	4.51; dd; J = 15.0, 6.4	67.4
6'	5.3; d; <i>J</i> = 8.2	130.4
7'		139.3
8'	3.89; t; <i>J</i> = 6.7	78.5
9'	2.11; m	34.9
10'	5.05; t; <i>J</i> = 7.0	121.8
11'		133.9
12'	1.60; br s	18.0
13'	1.66; s	26.0
14'	1.8; s	17.3
15′	1.60: br s	11.6

Table S4. ¹H- and ¹³C-NMR assignments of asacoumarin A (4) recorded in MeOH-d4.

Figure S12. ¹³C-NMR, DEPT-135 and DEPT-90 spectra of asacoumarin A (4) recorded in MeOH-d4.

Figure S13. ¹H-NMR spectrum of asacoumarin A (4) recorded in MeOH-d₄.

Figure S14. COSY spectrum of asacoumarin A (4) recorded in MeOH-d4.

Figure S15. HSQC spectrum of asacoumarin A (4) recorded in MeOH-d4.

Figure S16. HMBC spectrum of asacoumarin A (4) recorded in MeOH-d4.

Position	δн (ppm); multiplicity; J (Hz)	δc (ppm)
2		163.8
3	6.22; d; <i>J</i> = 9.5	113.8
4	7.90; d; J = 9.5	145.8
5	7.51; d; <i>J</i> = 8.5	130.3
6	6.91; dd; <i>J</i> = 8.0, 2.5	114.4
7		163.4
8	6.90; d; <i>J</i> = 2.5	102.5
9		157.0
10		113.2
1′	4.65; d; <i>J</i> = 6.0	66.6
2'	5.46; t; $J = 6.0$	120.3
3'		142.8
4'	2.17; m	37.8
5'	1.20; m	30.8
6'	5.16; br t; <i>J</i> = 6.0	125.0
7'		136.5
8'	1.32; m	40.5
9'	1.70; m	27.2
10'	3.21; dd; <i>J</i> = 10.0, 2.0	77.7
11'		73.7
12'	1.10; s	25.0
13'	1.13; s	16.7
14'	1.61; s	25.6
15'	1.77; s	16.2

Table S5. ¹H- and ¹³C-NMR assignments of 10'*R*-karatavacinol (5) recorded in MeOH-d4.

Figure S17. ¹³C-NMR, DEPT-135 and DEPT-90 spectra of 10'*R*-karatavacinol (5) recorded in MeOH-d4.

Figure S18. ¹H-NMR spectrum of 10'*R*-karatavacinol (5) recorded in MeOH-*d*₄.

	Table S6. ¹ H- and ¹³ C-NMR	assignments of 10'R-acet	yl- karatavacinol (6)	recorded in MeOH-d4.
--	---	--------------------------	-----------------------	----------------------

Position	δн (ppm); multiplicity; J (Hz)	δ c (ppm)
2		164.0
3	6.23; d; <i>J</i> = 9.5	113.2
4	7.90; d; <i>J</i> = 9.5	145.9
5	7.51; d; <i>J</i> = 8.5	130.4
6	6.91; dd; <i>J</i> = 8.0, 2.5	114.5
7		163.5
8	6.90; d; <i>J</i> = 2.5	102.5
9		157.1
10		113.9
1'	4.66; d; <i>J</i> = 6.0	66.6
2'	5.50; t; <i>J</i> =6.0	120.5
3'		143.0
4'	2.16–2.05; m	40.4
5'	2.16–2.05; m	27.2
6'	5.16; br t; <i>J</i> = 6.0	125.5
7'		135.7
8'	1.92; m	37.4
9'	1.67; m	29.0
10'	4.75; dd; <i>J</i> = 10.5, 2.0	80.6
11'		72.8
12'	1.12; s	25.7
13'	1.13; s	25.9
14'	1.60; s	16.0
15'	1.77; s	16.7
$OA_{C}(C 10^{\prime})$	20:5	21.1
UAC(C-10)	2.0, 5	172.8

Figure S19. ¹³C-NMR, DEPT-135 and DEPT-90 spectra of 10'*R*-acetyl-karatavacinol (6) recorded in MeOH-*d*₄.

Figure S20. 1H-NMR spectrum of 10'R-acetyl-karatavacinol (6) recorded in MeOH-d4.

References

- 1. Matsuura, N.; Aradate, T.; Sasaki, C.; Kojima, H.; Ohara, M.; Hasegawa, J. Screening system for the Maillard reaction inhibitor from natural product extracts. *J. Health Sci. Surveillance Syst.* **2002**, *48*, 520–526.
- 2. Peng, X.; Zheng, Z.; Cheng, K.W.; Shan, F; Ren, G.X.; Chen, F.; Wang, M. Inhibitory effect of mungbean extract and its constituents vitexin and iso-vitexin on the formation of advanced glycation end products. *Food Chem.* **2007**, *106*, 475–481.