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Abstract: Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and
sugars are highly reactive due to their electrophilic nature, and are able to easily react with the
nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl
species and their reaction products have been reported to be elevated in various chronic diseases,
including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering
agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high
performance liquid chromatography, western blot, and mass spectrometry have been utilized.
In particular, recent advances using a novel high resolution mass spectrometry approach allows
screening of complex mixtures such as natural products for their sequestering ability of reactive
carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new
techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased
in vivo utilization and targeted delivery of bioactives.
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1. Introduction

Reactive oxygen species (ROS) are continuously generated through normal cell metabolism in
the body [1], and are necessary for biological homeostasis [2]. However, an imbalance between
oxidant production and antioxidant defense can lead to an accumulation of excess ROS which damage
vulnerable targets such as unsaturated fatty acids in membranes, thiol groups in proteins and nucleic
acids in DNA [3]. Thus, oxidative stress can be associated with the development and progression of
various chronic diseases. In particular, elevated cytotoxic reactive carbonyl species, which are produced
by the oxidation of polyunsaturated fatty acids and sugars [4], plays a crucial role in the progression
of metabolic disorders such as diabetes [5] and cardiovascular diseases [6] and neurodegenerative
diseases [7]. Carbonyl species are highly reactive due to their electrophilic nature, and easily react
with the nucleophilic amino acids such as Lys, His and Cys, leading to the formation of protein
adducts [8,9]. The formation of these protein adducts has been reported to cause irreversible cellular
dysfunction [10,11].

The use of natural products that can effectively sequester reactive carbonyl species [12,13] may
offer a novel strategy blocking the pathological conditions and progression of various chronic diseases.
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In addition, new techniques such as nanoparticles and nanocarriers that can increase the bioavailability
and bioefficacy of natural products in vivo may open up a field for preventing oxidative stress associated
chronic diseases using natural products.

However, substantial knowledge gaps still exist including: (1) what effective sequestering agents
are and their mechanisms in vivo; (2) reactive carbonyl species etiology leading to cellular dysfunction
in vivo; and (3) whether genetic variation affects the biological efficacy of different sequestering agents
for reactive carbonyl species.

2. Oxidative Stress and Reactive Carbonyl Species

Reactive carbonyl species can be classified into three groups: (1) α,β-unsaturated aldehydes
such as 4-hydroxy-trans-2-nonenal (HNE) and acrolein; (2) keto-aldehydes such as methylglyoxal and
(3) dialdehydes such as glyoxal and malondialdehyde as shown in Figure 1 [14].
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di-aldehydes (C).

Proteins represent the most studied target of reactive carbonyl species and the corresponding
reaction products are named advanced glycation end products (AGEs) when the attacking RCS is
derived from sugar, and called advanced lipoxidation end products (ALEs) when it derives from
lipids. AGEs and ALEs share similar structural and biological properties. For example, both consist of
non-enzymatic, covalently modified proteins and oxidative stress is often (but not always) involved in
the mechanism of their formation. Moreover some AGEs and ALEs have the same structure, since
they arise from common precursors, as in the case of carboxymethyllysine (CML) which is generated
by glyoxal that is formed by both lipid and sugar oxidative degradation pathways [14].

HNE represents one of the most abundant and toxic reactive carbonyl species, which is generated
via β-cleavage of hydroperoxide derived fromω-6 polyunsaturated fatty acids such as linoleic acid
and arachidonic acid [4]. HNE can give covalent adducts with the protein nucleophilic side chains,
namely, the cysteine thiol group, the lysine ε-amino group, and the histidine imidazole ring [15].
AGEs are generated by the covalent reaction of reactive carbonyl species derived from sugar oxidation
such as glyoxal, methylglyoxal and 3-deoxyglucosone with the nucleophilic protein sites, as well
as by the condensation of the carbonyl group of reducing sugars with the primary amino group of
the lysine side chain or of the protein N-terminus [16]. Covalent modifications of AGEs and ALEs
can induce a functional disorganization of proteins since covalent modification causes the protein to
undergo a conformational change, undergo catalytic site distortion or impairment of the function of
the protein itself. AGEs and ALEs can further modify proteins by inducing signal transduction leading
to cellular damage [16]. The interaction of AGEs and possibly ALEs with receptors for advanced
glycation end products (RAGE) leads to NFκB activation which is known to cause the production of
inflammatory cytokines including IL-1, IL-6 and TNF-α. RAGE has even been proposed as a master
switch to turn on the proinflammatory response into a cellular dysfunction [17]. RAGE activation also
induces the production of excessive mitochondrial ROS thereby leading to mitochondrial superoxide
accumulation [18]. In that sense, it is reasonable to consider that blocking ROS production is an
appropriate strategy in order to reduce mitochondrial superoxide accumulation in diabetic patients [18].
It is interesting to note that an elevation of keto-aldehydes such as methylglyoxal in type II diabetic
patients, and its reduction by the diabetic drug, metformin, has been observed [19]. In addition,
methylglyoxal has been reported to play a critical role in diabetic complication, nephropathy [20].
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The association of AGEs/ALEs with chronic diseases and the mechanism of interaction between
AGEs and RAGE have been identified partially. However, effective AGEs/ALEs sequestering agent
which can block the AGEs-RAGE interaction, and its ability to inhibit inflammatory responses and
related pathologic progression of chronic diseases in vivo, is not yet known.

3. Implication of Reactive Carbonyl Species on Metabolic Disorders

Evidence is mounting that oxidative stress and protein carbonylation damage induced by reactive
carbonyl species are involved in metabolic disorders such as dyslipidemia, insulin resistance, vascular
and renal diseases [10,21–23]. Table 1 presents targets of different reactive carbonyl species to
prevent metabolic disorders in cells, animal models and humans. Various cell lines such as muscle
cells [24], pancreatic β-cells [25] and human mesangial cells [26] have been studied to determine
various drug actions to block reactive carbonyl species, AGEs, RAGE and protein carbonyls, thereby
preventing metabolic disorders. In addition, various animal models utilized to determine the effect of
blocking reactive carbonyl species, AGEs and RAGEs on metabolic disorders and their complications.
Zucker rats [27] and ApoE null mice [28] have been employed to evaluate the reactive carbonyl species
sequestering actions of carnosine and its derivatives, respectively. In addition, streptozotocin induced
diabetic rats [29], CCl4-injected [30] or high fructose-fed [31] Wistar rats, and methylglyoxal injected
Dahl salt-sensitive rats [32] were used to target reactive carbonyl species, AGEs, RAGE and/or protein
carbonyls in diabetic complications. Furthermore, in humans, type II diabetic patients were studied
for their elevated methyl glyoxal levels [19] as well as RAGE expression [33]. Nonetheless, reactive
carbonyl species and their adducts are closely associated with the progression of metabolic disorders
and such complications and can be alleviated by reactive carbonyl species sequestering agents.

Table 1. Studies targeting reactive carbonyl species to prevent metabolic disorders.

Metabolic Disorders Targeting RCS Tested Agent Model Ref.

Cell Studies

Insulin resistance HNE, Protein
carbonyls D3T, NAC, AGD, SAM Gastrocnemius muscle,

muscle cells (L-6) [24]

Insulin resistance AGEs, Protein
carbonyls AGD, Pyridoxamine Pancreatic β-cells

(HIT-T15) [25]

Diabetic nephropathy RAGE Glucagon-like peptide 1 Human mesangial cells [26]

Animal Studies

Dyslipidemia HNE, AGEs Carnosine Zucker Fa/Fa rats [27]

Atherosclerosis Renal disease HNE, ALEs D-carnosine octylester ApoE null mice (HFD) [28]

Diabetic atherosclerosis RCS, AGEs, ALEs,
RAGE LR-90 Streptozotocin induced

diabetic rats [29]

Liver damage AGEs, RAGE, protein
carbonyls Glycyrrhizi High fructose-fed Wistar

rats [31]

Liver/renal toxicity RAGE, Protein
carbonyls Peach CCl4 injected Wistar rats [30]

Diabetic nephropathy RAGE Candesartan MG injected Dahl
salt-sensitive rats [32]

Human Studies

Diabetes and complication RAGE Simvastatin Type 2 diabetic patients [33]

Diabetes MG Metformin Type 2 diabetic patients [19]

RCS, reactive carbonyl species; HNE, 4-hydroxy-trans-2-nonenal; D3T, 3H-1,2-dithiole-3-thione;
NAC, N-acetyl-cysteine; AGD, aminoguanidine; SAM, S-adenosylmethionine; AGEs: advanced glycation end
products; RAGE, receptor for advanced glycation end products; ALEs, advanced lipoxidation end products;
HFD, high fat diet; MG, methyl glyoxal.

4. Implication of Reactive Carbonyl Species on Neurodegenerative Diseases

The carbonylation of histidine and lysine residues of apolipoprotein B (apoB-100) in low-density
lipoproteins (LDL) has been reported to be implicated in the formation of foam cells [34].
Interestingly, modified LDL by HNE has also been found to cause a significant elevation of β-amyloid
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fibrillogenesis [7], suggesting an involvement of reactive carbonyl species in neurodegenerative
diseases such as Alzheimer’s disease. Table 2 lists several in vitro and in vivo studies targeting reactive
carbonyl species for preventing neurodegenerative diseases.

Table 2. Studies targeting reactive carbonyl species to prevent neurodegenerative diseases.

Neurodegenerative Diseases Targeting RCS Tested Agent Model Ref.

Cell Studies

Neuronal damage MDA, AGE-RAGE,
Protein carbonyls EGCG AGE treated SH-SY5Y cells [35]

Neuronal damage MDA, Protein
carbonyls Notoginsenoside H2O2 treated PC12 cells [36]

Animal Studies

Brain inflammation AGEs, RAGE,
Protein carbonyls Ursolic acid D-galactose injected

Kunming mice [37]

Neuronal damage MDA, Protein
carbonyls Melatonin 56F-irradiated C57BL mice [38]

Alzheimer’s disease AGEs, Protein
carbonyls Troxerutin High cholesterol fed

C57BL/6 mice [39]

Alzheimer’s disease HNE Antisense
oligonucleotide SAMP8 mice [40]

Alzheimer’s disease HNE, Protein
carbonyls Curcumin Streptozotocin-injected

Wistar rats [41]

Alzheimer’s disease HNE, Protein
carbonyls

Ferulic acid ethyl
ester

AAPH or Fe2+/H2O2
injected Mongolian gerbils

[42]

Human Studies

Cognitive dysfunction HNE, Protein
carbonyls

2-Mercaptoethane
sulfonate

doxorubicin-received
patients [43]

RCS, reactive carbonyl species; AGEs: advanced glycation end products; RAGE, receptor for advanced glycation
end products; EGCG, epigallocatechin gallate; AAPH, 2,21-Azobis(2-amidinopropane) dihydrochloride;
HNE, 4-hydroxy-trans-2-nonenal.

Reactive carbonyls species and protein carbonyls have been reported to induce neuronal damage,
and bioactives such as epigallocatechin gallate [35] as well as notoginsenoside [36] alleviated such
damage in neuronal cell lines. In addition, various studies utilizing animal models also presented
consistent results. Animal studies utilizing D-galactose-injected C57BL/6 mice [37], 56F-irradiated
C57BL mice [38], high cholesterol-fed C58BL/6 mice [39], SAMP8 mice [40], streptozocin-injected
Wistar rats [41], 2,21-Azobis(2-amidinopropane) dihydrochloride (AAPH) or Fe2+/H2O2-injected
Monglian gerbils [42] indicated involvement of reactive carbonyl species and protein carbonyls
on neuronal damage and Alzheimer’s disease. These studies indicated that such diseases were
ameliorated by blocking oxidative damaged caused by reactive carbonyl species. In cancer patients,
mercaptoethane sulfonate has been reported to be used for reducing oxidative stress induced by
doxorubin treatment [43].

Unfortunately, an effective preventive strategy for chronic diseases such as metabolic disorders
and neuronal diseases is currently lacking. However, identification of natural products that are able
to directly or indirectly detoxify the reactive carbonyl species may offer new therapeutic agents to
combat such diseases. The hypothetical sequestering mechanism of natural products for cytotoxic
reactive carbonyl species is presented in Figure 2.
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end products.

5. Analytical Techniques for Identifying Reactive Carbonyl Species Sequestering Agents

In order to determine the sequestering actions of natural products on reactive carbonyl species,
a reliable and accurate method that can identify these actions of bioactives in complex mixture is
required. Several approaches have been reported for identifying such compounds as shown in Table 3.

Table 3. Analytical techniques identifying reactive carbonyl species sequestering agents.

Analytical Techniques Advantages Disadvantages Ref

Spectrophotometry Simple Fast No specificity
No application for complex mixture [44]

HPLC Limited specificity No application for complex mixture
Produce by-product [45]

NMR spectroscopy Molecule identification
No qunatitation

Expensive
Require large quantity of sample

[46]

Western blot Semiqunatitative Time consuming [47]

LC-MS Quantitative Complex
mixture analysis

Molecule identification require further
analysis [48]

HPLC, high performance liquid chromatography; NMR spectroscopy, nuclear magnetic resonance spectroscopy;
LC-MS, high resolution mass spectrometry.

A spectrophotometric assay has been widely used to analyze chromophore containing reactive
carbonyl species such as α,β-unsaturated aldehydes directly or through a derivatization process for
unconjugated reactive carbonyl species such as malondialdehyde, glyoxal, and methylglyoxal [44].
The reactive carbonyl species quenching activity can be determined by the disappearance of aldehyde
in the presence of a compound of interest. An integration of HPLC with UV analysis was also utilized
to increase specificity [45]. However, these types of approaches cannot be applied to mixed compounds
containing natural products. In addition, by-products can be produced in the process of sample
preparation resulting in the loss of accuracy.

Determination of the formation of AGEs/ALEs by incubating reactive carbonyl species with a
target protein in the presence of a potential quencher has also been used to identify sequestering agents
against reactive carbonyl species. The formation of AGEs/ALEs can be determined by increased
molecular weight using NMR spectroscopy [46] or Western blot [47]. However, these types of assay
can be time consuming, expensive and cannot be quantitative.
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A new approach using high resolution mass spectrometry was reported to test the ability of natural
compounds inhibiting protein carbonylation induced by reactive carbonyl species [48]. It consists of
incubating ubiquitin with 4-hydroxy-trans-2-nonenal (HNE), in the presence and absence of natural
products. After incubation, the reaction can be stopped and analyzed for reaction metabolites using
high-resolution mass spectrometry. This approach has been validated by measuring the effect of
well-known reactive carbonyl species sequestering agents, such as aminoguanidine, pyridoxamine,
hydralazine and carnosine. A highly reproducible mass spectrometric method was also found suitable
for testing reactive carbonyl species sequestering ability of complex mixtures such as plant extracts,
thus furnishing a methodological approach for identifying novel natural compounds that are effective
as reactive carbonyl species sequestering agents. It should be noted that an approach permiting
evaluation of overall quenching activity of complex mixtures open limits identification of responsible
component(s) for the quenching activity. Characterization of sequestering agent in natural products
require further analysis coupled with informatics approach.

6. Reactive Carbonyl Species Sequestering Actions of Natural Products

Convincing evidence is accumulating that a higher consumption of fruits and vegetable reduces
all-cause mortality and cardiovascular mortality [49], whereas no beneficial [50,51] and even harmful
effects [52,53] of multivitamins or antioxidant supplements against chronic diseases has been
observed. Considering several natural products have been reported for their reactive carbonyl species
sequestering action, natural products that can effectively sequester reactive carbonyl species can be a
potential preventive strategy against such chronic diseases.

6.1. Histidine-containing Dipeptides

In vitro studies have shown that histidine dipeptides such as carnosine (β-alanyl-L-histidine) and
anserine (β-alanyl-L-methylhistidine) effectively detoxifies HNE by forming unreactive adducts [54].
Notably, histidine, which is one of the most reactive nucleophilic residues in protein, is a primary
reaction site of HNE adduction [55]. Histidine-dipeptides such as carnosine supplementation has
been reported to significantly reduce the development of dyslipidemia, hypertension and renal
injury by reducing the extent of protein carbonylation and glycation in Zucker obese rats [27].
In addition, histidine-dipeptides have proven to be beneficial in various animal models characterized
for systemic oxidative and/or glycative stress [27,56–60]. There is also compelling evidence that
histidine-dipeptides mediate their health-promoting effects by decreasing the levels of AGEs/ALEs
thereby blocking damage of AGEs/ALEs-RAGE in these animal models.

Gene-nutrient interactions may result in different bioefficacy of supplements according to the
genetic background of individuals. Such interactions have been reported in vitamin C-glutathione
S-transferase [61] and vitamin E-haptoglobin [62]. The association of low serum carnosin concentration
with diabetic nephropathy has also been reported. It was found that carnosinase encoding gene,
CNDP1, linked with the late onset of complications for people with diabetes [56,63]. More specifically
individuals who have the 5-6, 5-7, 6-6, and 6-7 alleles of the CNDP1 gene had elevated serum
carnosinase activity. Diabetic patients with the 5-5 allele, which accounted for about 1/3 population
in this study, were found to be less susceptible to renal complication [56,63]. It is reasonable that
the higher expression of carnosinase increases carnosine degradation leading to a lesser degree of
renal protection by carnosine. Although such a hypothesis should be verified further in human
studies, nutrient-gene interaction is an area needs to be explored for the understanding of bioefficacy
of natural products.

6.2. Plant Products

More recently, black rice with giant embryos rich in GABA, anthocyanin, γ-oryzanols, α-toco-
pherol and α-tocotrienols has been reported to suppress hyperlipidemic and hyperinsulinemic
responses in ob/ob mice [64]. Although one should be cautious when extrapolating results from
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animal studies to humans, identification of such activity in natural products can provide more targeted
preventive strategy against chronic diseases. In addition, the effects of green coffee bean extract and
procyanidins from Vitis vinifera on protein carbonylation have been demonstrated using the newly
developed mass spectrometry approach [48]. These two extracts are reported to have an effective
inhibition of HNE induced ubiquitin carbonylation in a dose-dependent manner in vitro.

Screening of natural products for reactive carbonyl species quencher is the first step to identify
potential candidates for a targeted strategy preventing oxidative stress associated chronic diseases.
However, several further steps need to be made including understanding of gene-nutrient interactions,
and increasing the limited bioavailability and bioefficacy of natural products.

7. Nanotechnologies for Bioavailability and Bioefficacy of Natural Products

The major hindrance of oral intake of natural products, including phytochemicals, is their
limited bioavailability due to their poor solubility, instability, and negligible intestinal absorption.
Considering mega-doses is not a solution to address the limited bioavailability of such natural products,
so development of effective delivery systems improving bioavailability and bioefficacy is a key issue
for nutraceutical research. In fact, applications of nanotechnology to improve bioavailability and
bioactivity of diet-derived phytochemicals have been reported recently [65–67]. Biocompatible and
biodegradable nanoparticles such as nanoemulsions, nanoliposomes, and nano-carriers are reported to
resolve the limited bioavailability of phytochemicals, as summarized in Figure 3 [65].
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It has been reported that nanoliposomes enhanced the stability of epigallocatechin gallate
(EGCG) [68], and increased its antioxidant activity [69]. Nanomicelles were applied to overcome
the low bioavailability of quercetin, which is a plant-derived hydrophobic flavonol [70,71]. In addition
encapsulation of quercetin is reported to maintain free quercetin levels in blood and target tissues by
delaying its metabolism [72]. Oral bioavailability [73] and its bioefficacy [74] of hydrophobic curcumin
has also been reported to be dramatically improved by application of nanotechnology.

In addition, advances in technology for nanomaterials [75,76] may also provide great potentials
for improving bioavailability and bioefficacy of natural products. The recent discovery of graphene
has spurred on various research approaches for targeted delivery of active compounds. Graphene is a
single atom thick layer of sp2-hybridized carbon atoms arranged in a honeycomb two dimensional
(2D) crystal lattice [77]. Owing to its unique atomic structure, graphene has flexible physical and
chemical properties, large surface area and biocompatibility, fast mobility and outstanding electrical
conductivity [78]. These properties make graphene an ideal material for a variety of applications
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including quantum mechanics and engineering of biomaterials such as new generation biosensors [79],
probes for biological imaging [80] and nanocarriers for drug delivery [81]. Among various
nano-materials explored for the last two decades for drug delivery, graphene, graphene oxide (GO) and
grapheme quantum dots (Figure 4) have emerged as new competitive nanocarriers for drug delivery
and possibly natural products delivery.Molecules 2016, 21, 280 8 of 12 
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In order to achieve the successful design of nanocarriers for natural products, various issues
such as optimizing loading capacity, improving biocompatibility, eliminating toxicity, and controlling
release needed to be resolved.

8. Summary

Even though the marked increase of life expectancy in recent years can be considered one of our
society’s greatest achievements, unhealthy eating and lifestyle habits can cause a concomitant dramatic
rise of chronic and neurodegenerative diseases. In an effort to reduce the prevalence of oxidative
stress associated such chronic diseases, various strategies including consuming multivitamins and
antioxidant supplementation have been utilized. Unfortunately, supplementation with high doses
of single compounds such as vitamin E failed to show any beneficial effect against chronic diseases
and even had harmful effects such as an increased risk of mortality. Unlike well-known antioxidants
such as vitamin E, bioactives in natural products that can effectively sequester cytotoxic reactive
carbonyl species can provide more targeted action against oxidative stress associated pathologic
conditions. Thanks to the recent development of new techniques utilizing high resolution mass
spectrometry, reactive carbonyl species sequestering actions of natural products have begun to be
identified. In addition, nanotechnologies including nanoparticles and nanocarriers are being explored
in order to overcome the limitation of bioavailability and bioefficacy of natural products in humans.
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