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Abstract: Triazine and PAMAM dendrimers of similar size and number of cationic surface groups
were compared for their ability to promote platelet aggregation. Triazine dendrimers (G3, G5 and G7)
varied in molecular weight from 8 kDa–130 kDa and in surface groups 16–256. PAMAM dendrimers
selected for comparison included G3 (7 kDa, 32 surface groups) and G6 (58 kDa, 256 surface
groups). The treatment of human platelet-rich plasma (PRP) with low generation triazine dendrimers
(0.01–1 µM) did not show any significant effect in human platelet aggregation in vitro; however, the
treatment of PRP with larger generations promotes an effective aggregation. These results are in
agreement with studies performed with PAMAM dendrimers, where large generations promote
aggregation. Triazine dendrimers promote aggregation less aggressively than PAMAM dendrimers,
a factor attributed to differences in cationic charge or the formation of supramolecular assemblies
of dendrimers.
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1. Introduction

Dendrimers are nanosized, hyperbranched polymers with low polydispersity that are amenable
to synthetic manipulation [1–4]. While not yet realized, the potential for dendrimers to act as drug
delivery vehicles has been long appreciated [5–9]. Our efforts, like others, rely on intravenous
administration of such vehicles [10–13]. This strategy promotes interactions of these protein-sized
architectures with endogenous proteins, cells, and aggregates such as lipoproteins. A common design
strategy for the application of these materials relies on dendrimers to promote sustained systematic
distribution by retention in the circulation. Accordingly, dendrimers will experience increased exposure
time with components of the blood stream. Assessment of biocompatibility typically commences with
studies of dendrimer interactions with specific components of the circulatory system. Interactions with
platelets represent a common starting point for such studies. Platelets are abundant in the vasculature
and are sensitive to changes in blood microenvironment [14]. Platelet aggregation is a critical step in
the clotting cascade [15]. Agents that promote or attenuate this behavior are of clinical interest [16–21].
While nanomaterials have demonstrated these abilities, such effects are “off-target” if the goal is drug
delivery [22].
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Historically, PAMAM dendrimers have served as a benchmark for other classes of dendrimers.
Here, we compare PAMAM standards with triazine dendrimers [23]. Earlier structure activity
relationship studies with PAMAM dendrimers revealed that dendrimer size, zeta potential, and
density of the surface amines are responsible for the dendrimer interaction with, and activation of,
platelets [14,22,23]. The mechanism of activation has been attributed to the disturbance of the cellular
membrane integrity [23]. However, the composition of triazine dendrimers is different to PAMAM
dendrimers (Chart 1). The branching point for triazine dendrimers is the rigid, aromatic triazine ring.
In contrast, PAMAM branch from a tertiary amine. Differences in flexibility, hydrophilicity, size, and
basicity are apparent. For the studies described here, the triazine rings are interconnected with a
tetraethyleneglycol group to promote water solubility. For simplicity, the molecules will be indicated
by class and generation, abbreviated “G.”
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Chart 1. Structures of the triazine and PAMAM dendrimers examined.

2. Results and Discussion

2.1. Zeta Potential

Triazine and PAMAM dendrimers are intrinsically different in composition. However, at large
generation both are perceived to exist as globular spheres resembling proteins with biophysical
properties that is attributed to their surface chemistry [24–28]. The zeta-potentials measured for these
molecules at near neutral pH using 10 mM phosphate buffer (and 136 mM NaCl) show that they are
all cationic as expected, but the triazines bear less charge than the corresponding PAMAM, even when
surface group numbers are identical. At 10 mM buffer without added salt, the triazines zeta-potentials
are 32 mV, 22 mV, and 26 mV, respectively for G3, G5, and G7. This difference could be attributed to the
preponderance of interior, tertiary amines of the PAMAM whose pKa are approximately 10 compared
with the triazine sites with pKas of approximately 4.5.

Charge density might seem similar given similar charges and monomer size, but these dendrimers
aggregate in solution. The triazines monomers of the dimensions shown in Table 1 are in equilibrium
with multimeric aggregates measuring hundreds of nanometers. The data presented in Table 1 are
summarized from our earlier studies [23,29,30]. Indeed, this behavior underscores the importance
of these studies on triazines given their intended uses. While similar in branching architecture and
surface chemistry, dendrimers within and across classes of composition can potentially display different
behaviors in complex environments like the vasculature.
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Table 1. Comparison of triazine and PAMAM dendrimers.

Dendrimer Z-Potential
(mV)

Monomer
Size (nm)

Peripheral
Amines

Internal Tertiary
Amines MW (Da)

G3-Triazine 23.1 3.7 16 - 7785
G3-PAMAM 43.3 3.1 32 30 6910
G5-Triazine 16.5 8.0 64 - 33 K
G6-PAMAM 46.2 7.5 256 254 58 K
G7-Triazine 19.8 13.7 256 - 130 K

2.2. Platelet Aggregation

Incubating triazine G3, G5, and G7 dendrimers in plate-rich plasma leads to platelet activation,
which culminates in platelet aggregation. Using four different concentrations (0.01 µM, 0.10 µM,
1 µM, and 10 µM), we find that activation occurs in a dose-dependent and size-dependent manner.
Triazine G5 and G7 dendrimers activate platelets more than triazine G3 dendrimers (Figure 1). Due
to the insufficient quantity of material, the triazine G7 dendrimer was not assayed at the highest
concentration. These results are in agreement with studies performed with PAMAM dendrimers that
show increasing activation with increasing size [23].
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Figure 1. Induction of platelet aggregation by amine terminated triazine dendrimers is size-dependent.
Different concentrations of generations 3, 5, and 7 of triazine dendrimers with amine terminal groups
that were incubated with human platelet reach plasma for 15 min at 37 ˝C. After that, platelet count
was performed using a Z2 cell and particle counter. Platelet count in the test samples was compared to
that in the negative control sample to calculate percent platelet aggregation. Collagen was used as an
assay positive control (PC). Shown is mean ˘ SD (n = 3).

In a comparative test, G3 and G7 triazine dendrimers (1 µM) are seen to be less aggressive
at platelet aggregation compared to their PAMAM counterparts of similar generation possessing
similar physicochemical properties (G3 and G6) (Figure 2). Due to the absence of well characterized
G7 PAMAM dendrimer, we used G6 PAMAM dendrimer in this study. Since platelet aggregation
induction by PAMAM dendrimer increases with their size (23), it is reasonable to expect that platelet
aggregation by G7 PAMAM dendrimer will be even stronger than that observed with G6. Therefore,
the difference between G7 of Triazine and G7 PAMAM dendrimers would be even greater than that
reported in this study.
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Figure 2. Cationic triazine dendrimers are less reactive with human platelets than cationic PAMAM
dendrimers of similar size. G3- and G7-amine-terminated triazine dendrimers and G3- and G6-amine
terminated PAMAM dendrimers at equivalent molar concentrations were incubated with human
platelet reach plasma for 15 min at 37 ˝C. After that, platelet count was performed using a Z2 cell and
particle counter equipped with a 5-µm aperture tube. Platelet count in the test samples was compared
to that in the negative control sample to calculate percent platelet aggregation. Collagen was used as
an assay positive control (data not shown). Shown is mean ˘ SD (n = 3).

3. Materials and Methods

3.1. Reagents

DPBS (Ca2+/Mg2+ free), poly-L-lysine hydrobromide, polymyxin B, 2MeSAMP, and
1,10-phenantroline were from Sigma-Aldrich (St. Louis, MO, USA). G3 and G6 PAMAM dendrimers
with amine surface were from Dendritic Nanotechnologies Inc. (Mount Pleasant, MI, USA). Collagen
was purchased from Helena Laboratories (Beaumont, TX, USA). Triazine dendrimers were synthesized
according to procedures previously reported [31,32].

3.2. Research Donor Blood

Healthy volunteer blood specimens were drawn under NCI-Frederick Protocol OH99-C-N046.
Blood was collected in BD vacutainer tubes containing sodium citrate as an anticoagulant. To avoid
individual variability, specimens from at least three donors were pooled.

3.3. Platelet Aggregation

To study particles effects on platelet aggregation, whole blood was centrifuged 8 min at 200ˆ g in
order to obtain platelet rich plasma (PRP). PRP was treated with nanoparticles, PBS (negative control),
or collagen (positive control) for 15 min at 37 ˝C. After that, single platelet count was conducted
using a Z2 counter and a size analyzer (Beckman Coulter, Brea, CA, USA). Difference in single platelet
count between negative control and test samples was used to calculate percent platelet aggregation.
Additional control included incubation of platelet poor plasma and PBS with particles and analyzing
these samples on the instrument. These controls were used to monitor potential particle aggregation
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in the presence of plasma proteins to avoid false-negative results. Detailed protocol is available [33].
To study potential particle contamination with endotoxin, the test samples were analyzed by turbidity
LAL assay according to the protocol published [34]. Endotoxin was not detected in any test samples at
concentrations used in the platelet aggregation assay.

3.4. Zeta Potential Measurements

The zeta potential measurement of all the generations of dendrimers were conducted with
Zetasizer Nano-ZS (Malvern Instruments, Westborough, MA, USA). Samples were suspended in 1ˆ

PBS pH 7.4 (with and without salt) and placed in disposable folded capillary cells DTS1070 (Malvern
Instruments, Westborough, MA, USA). The electrophoretic mobility of the samples were measured
in an applied electric field. Twelve zeta potential measurements were collected for each run, and the
results were averaged. The Zeta potential value was calculated directly from the Smoluchowski model
using the Malvern software.

4. Conclusions

Consistent with Tomalia’s nanoperiodicity hypothesis [35–37], both triazine and PAMAM
dendrimers activate platelets in a size- and charge-dependent manner in that dendrimers of earlier
generations (G3) exhibit lower potency in activating platelets than their higher generation (G6 and
G7) counterparts. Dendrimers of earlier generation are smaller in hydrodynamic size and have lower
number of surface amines. The data obtained for PAMAM dendrimers in our study is similar to the
earlier reports [22,23]. Of interest, herein we demonstrated that Triazine dendrimers are less potent
than their PAMAM counterparts. The diminished activity displayed by the triazine dendrimers is likely
attributed to the lessor density of surface amines. That is, triazine dendrimers due to the lack of interior
groups protonated near neutral pH. Systemic administration of cationic PAMAM dendrimers results in
consumptive coagulopathy, a thrombogenic disorder halting the use of these particles as drug delivery
vehicles [22]. The data presented in our study highlight less thrombogenic properties of cationic
triazine dendrimers and warrant further investigation of these particles as potential drug carriers.
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