Supplementary Information: Synthesis of Dense and Chiral Dendritic Polyols Using Glyconanosynthon Scaffolds

Tze Chieh Shiao, Rabindra Rej, Mariecka Rose, Giovanni M. Pavan and René Roy

1. Characterizations (1H, 13C and COSY NMR; HRMS and GPC)

1.1. Propargyl 2,3,4,6-tetra-O-propargyl-β-D-glucopyranoside (5)

Figure S1. ¹H-NMR spectrum of Propargyl 2,3,4,6-tetra-O-propargyl-β-D-glucopyranoside (5).

Figure S3. IR spectrum of Propargyl 2,3,4,6-tetra-*O*-propargyl-β-D-glucopyranoside (5).

Figure S4. ¹H-¹H COSY-NMR of 5.

1.2. 2-Azidoethyl 2,3,4,6-tetra-O-propargyl-β-D-glucopyranoside (8)

 $Figure \ S5. \ ^1H-NMR \ spectrum \ of \ 2-azidoethyl \ 2,3,4,6-tetra-{\it O}-propargyl-\beta-D-glucopyranoside \ (8).$

M 2.5 3.0 (mqq) fi 3.5 4.5 5.0 5.0 4.8 4.6 4.4 4.0 3.8 3.0 2.8 2.6 2.4 2.2 4.2 3.6 3.4 f2 (ppm) 3.2

Figure S6. ¹³C-NMR spectrum of 2-azidoethyl 2,3,4,6-tetra-*O*-propargyl-β-D-glucopyranoside (8).

 $Figure \ S7.\ ^1H-^1H \ COSY-NMR \ of \ 2-azidoethyl \ 2,3,4,6-tetra-O-propargyl-\beta-D-glucopyranoside \ (8).$

Figure S8. IR spectrum of 8.

Figure S9. High resolution mass spectrum of 8.

1.3. 2-Azidoethyl 2,3,4,6-tetra-O-trimethylsilylpropargyl- β -D-glucopyranoside (9)

Figure S10. ¹H-NMR spectrum of 9.

Figure S13. ¹H-¹H COSY-NMR of 9.

4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 f2 (ppm)

5.0 4.9 4.8 4.7

4.6 4.5 4.4

-3.5

4.0

-4.5

5.0

f1 (ppm)

MS Zoomed Spectrum

×10 ⁵	Cpd 1: C32 H55 N	3 O6 Si4: +ESI	Scan (0.08-0.23 r	nin, 10 scans) Frag	g=100.0V Ro	y_Chic
2-	707.3487 (M+NH4)+					
1 5						
1.5-						
1-					1:	380 6404
0.5-					(2M+H)+
0-		L		-, •, • ,	_ I ,	
	700 750 80	0 850 900 Cour	950 1000 1050 1 nts vs. Mass-to-Cl	100 1150 1200 1 harge (m/z)	250 1300 13	50 1400
MS Spe	ctrum Peak List					

m/z	Calc m/z	Diff(ppm)	Z	Abund	Formula	Ion
672.3154	672.3135	2.88	1	86	C32 H54 N3 O5 Si4	(M+H)+[-H2O]
690.3209	690.3241	-4.55	1	2500	C32 H56 N3 O6 Si4	(M+H)+
707.3487	707.3506	-2.75		239800	C32 H59 N4 O6 Si4	(M+NH4)+
707.6732				11424		
708.3501	708.3525	-3.35		129254	C32 H59 N4 O6 Si4	(M+NH4)+
709.3476	709.3514	-5.33		65366	C32 H59 N4 O6 Si4	(M+NH4)+
709.7971				7341		
710.344	710.3519	-11.13		21520	C32 H59 N4 O6 Si4	(M+NH4)+
711.341	711.3514	-14.67		6060	C32 H59 N4 O6 Si4	(M+NH4)+
712.3046	712.306	-2.04		192334	C32 H55 N3 Na O6 Si4	(M+Na)+
713.3073	713.3079	-0.86	1	106924	C32 H55 N3 Na O6 Si4	(M+Na)+
714.3069	714.3068	0.06	1	51427	C32 H55 N3 Na O6 Si4	(M+Na)+
715.3112	715.3073	5.38	1	16102	C32 H55 N3 Na O6 Si4	(M+Na)+
728.2773	728.28	-3.62	1	8165	C32 H55 K N3 O6 Si4	(M+K)+
1379.639	1379.6409	-1.34	1	33803	C64 H111 N6 O12 Si8	(2M+H)+
1380.6404	1380.6428	-1.72	1	39768	C64 H111 N6 O12 Si8	(2M+H)+
1381.6403	1381.6427	-1.74	1	31363	C64 H111 N6 O12 Si8	(2M+H)+
1382.6403	1382.6431	-2	1	17332	C64 H111 N6 O12 Si8	(2M+H)+
1383.6406	1383.643	-1.76	1	7801	C64 H111 N6 O12 Si8	(2M+H)+
1401.6216	1401.6228	-0.83	1	606	C64 H110 N6 Na O12 Si8	(2M+Na)+

Figure S14. High resolution mass spectrum	ı of 9 .
---	-----------------

1.4. Dendrimer **10**

Figure S15. ¹H-NMR spectrum of 10.

Figure S16. ¹³C-NMR spectrum of 10.

Figure S17. IR spectrum of 10.

Figure S18. High resolution mass spectrum of (10).

1.5. Dendrimer **11**

Figure S22. High resolution mass spectrum of 11.

1.6. Dendrimer **12**

Figure S23. ¹H-NMR spectrum of **12** obtained by direct allylation.

Figure S24. ¹³C-NMR spectrum of 12.

--- End Of Report ---

Figure S25. High resolution mass spectrum of 12.

Figure S26. ¹H-NMR spectrum of 12 obtained from Click reaction.

Figure S27. IR spectrum of of 12 obtained from Click reaction.

1.7. Dendrimer **13**

Figure S30. IR spectrum of 13.

1.8. Dendrimer **14**

Figure S32. ¹³C-NMR spectrum of 14.

Figure S33. IR spectrum of 14.

MS Zoomed S	pectrum						
x10 2 Cp	d 1: C121 H	137 N15 O3	6: +	ESI Sca	in (0.07-0.16 min, 6 s	cans) Frag=100.0V Ro	y_Chic
1-							
0.8-							
0.6-							
0.4-							
0.2-							
o							
12	00 1300 1	1400 1500	16	500 17	00 1800 1900 20	$\binom{00}{m/z}$ 2100 2200 23	00 2400
MS Spectru	ım Deak List		COL	unts (70)	vs. Mass-to-Charge	(11/2)	
m/z	Calc m/z	Diff(ppm)	Z	Abund	Formula	Ion	
1185.9643	3			476			
1188.9781	1188.9748	2.76		27207	C121 H139 N15 O36	(M+2H)+2	
1189.4779	1189.4764	1.3		41225	C121 H139 N15 O36	(M+2H)+2	
1189.978	3 1189.9779	0.06		29687	C121 H139 N15 O36	(M+2H)+2	
1190.4786	5 1190.4793	-0.58		16087	C121 H139 N15 O36	(M+2H)+2	
1190.9772	2			22905			
1191.4753	3			25741			
1191.9767	7			17644			
1192.4771	L			9323			
1192.9761	L			7607			
1193.4741	L			7350			
1193.9739	9			4644			
1194.4713	3			2603			
2376.9488	3 2376.9615	-5.31	1	1715	C121 H139 N16 O35	(M+NH4)+[-H2O]	
2377.9508	3 2377.9644	-5.74	1	2438	C121 H139 N16 O35	(M+NH4)+[-H2O]	
2378.959	2378.9673	-3.52	1	1761	C121 H139 N16 O35	(M+NH4)+[-H2O]	
2379.9581	2379.9702	-5.06	1	1032	C121 H139 N16 O35	(M+NH4)+[-H2O]	
2393.9505	2393.9689	-7.69	1	289	C121 H141 N16 O36	(M+NH4)+	
2398.9572	2 2398.9243	13.73	1	176	C121 H137 N15 Na O36	(M+Na)+	
2414.9156	5 2414.8982	7.18	1	78	C121 H137 K N15 O36	(M+K)+	
End Of Por	nort						

Figure S34. High resolution mass spectrum of 14.

1.9. Dendrimer 15

Figure S35. ¹H-NMR (D₂O) spectrum of 15.

Figure S36. Maldi-tof of compound 15.

1.10. Dendrimer 16

160 155 150 145 140 135 130 123 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)

Figure S38. ¹³C-NMR of 16.

Figure S39. Maldi-tof of Compound 16.

1.11. Dendrimer **17**

Figure S40. ¹H-NMR (D₂O) spectrum of 17.

Figure S42. Maldi-tof of compound 17.

1.12. Dendrimer **18**

Figure S44. ¹³C-NMR spectrum of 18.

Figure S45. Maldi-tof of compound 18.

Figure S46. ¹H-NMR (D₂O) of **19**.

Figure S47. ¹³C-NMR of 19.

1.14. Dendrimer **20**

Figure S51. GPC of 20.

Figure S52. MALDI-TOF of Compound 20.

Figure S54. ¹³C-NMR spectrum of 21.

Figure S55. GPC of 21.

Figure S56. MALDI-TOF of Compound 21.

2. Computational Methods

Figure S57. Radial distribution function (g(r)) of the END groups as a function of the distance. The most probable distance between surface groups in equilibrated **16** is at *c.a.* 0.5* R_g (i.e., ≈ 5 Å).

	Table S1. Main structural	features of	dendrimer	16 in solution	at the equilibrium
--	---------------------------	-------------	-----------	----------------	--------------------

R _g	END-END avg. Distance ^[a]	SASA	Rsasa ^[b]	V _{SASA^[c]}	V _g [c]	V _{void} [d]	Porosity ^[e]
(Å)	(Å)	(Ų)	(Å)	(Å ³)	(ų)	(Å ³)	
9.8	5	3332	16.3	18124	4017	14107	0.78

^[a] Calculated from the position of the END-END g(r) peak (Figure S57). ^[b] Calculated from SASA, being SASA= $4\pi R_{SASA^2}$. ^[c] Calculated as the volume of the spheres having radius R_g ("full" volume) or R_{SASA} ("total" volume). ^[d] V_{void} = V_{SASA} – V_g. ^[e] Dendrimer's porosity is calculated as the ratio between void volume (V_{void}) over the total one (V_{SASA}).

Figure S58. Equilibration of dendrimer **16** during the MD simulation. (**a**) Root mean square displacement (RMSD: black) and radius of gyration (R_8 : red) data for **16** as a function of simulation time; (**b**) Enthalpy *H* of **16** calculated as the sum of solute-solute and solute-solvent interactions.