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Abstract: Multitarget drug discovery is one of the hottest topics and most active fields in the
search for new molecules against Alzheimer’s disease (AD). Over the last 20 years, many promising
multitarget-directed ligands (MTDLs) have been identified and developed at a pre-clinical level.
However, how to design them in a rational way remains the most fundamental challenge of medicinal
chemists. This is related to the foundational question of achieving an optimized activity towards
multiple targets of interest, while preserving drug-like properties. In this respect, large hybrid
molecules and small fragments are poles apart. In this review article, our aim is to appraise what
we have accomplished in the development of both hybrid- and fragment-like molecules directed to
diverse AD targets (i.e., acetylcholinesterase, NMDA receptors, metal chelation, BACE-1 and GSK-3β).
In addition, we attempt to highlight what are the persistent needs that deserve to be improved and
cared for, with the ultimate goal of moving an MTDL to AD clinical studies.

Keywords: multitarget drug discovery; galantamine; memantine; donepezil; clioquinol; BACE-1
inhibitors; GSK-3β inhibitors

1. Introduction

The recent appreciation of the network medicine concepts has had significant implications for drug
discovery, leading to the new era of multitarget drugs [1,2]. Network medicine is the emerging science
that takes into account the network effects of biological and medical occurrences [3]. From the network
medicine perspective, diseases are the results of the systemic breakdown of physiological networks,
due to the suppression or activation of certain stages and a consequent imbalance of input-output [4].
Thus, the goal of therapy is to restore the perturbed disease networks by simultaneously targeting
key components/checkpoints by drugs. However, diseased networks are difficult to repair through
intervention at a single node (protein target/signaling pathway), because robust and redundant
mechanisms are typical of complex biological network systems. It thus follows that the modulation of
several drug targets through a well-concerted polypharmacological approach is essential to achieve
the desired therapeutic effect [5].

We were contributors to an early debate on the potential of this approach in the field of
neurodegenerative drug discovery and, particularly, in Alzheimer’s disease (AD) [6]. Our conviction
was based on the fact that “drugs hitting a single target may be inadequate for the treatment of diseases
like neurodegenerative syndromes, which involve multiple pathogenic factors” [6]. The discovery
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of memoquin, one of the first AD drug candidates rationally designed using a multitarget approach,
amply confirmed the initial assumption [7].

Over the years, this founding principle, which is applicable to many other currently incurable
diseases sharing a multifactorial pathology, received strong support by the considerations that are
instead peculiar to AD treatment. A critical issue is that elderly AD patients are susceptible to a wide
range of concomitant co-morbidities (e.g., hypertension, vascular diseases or diabetes). This means
that they are subject to major polypharmacy with a greater risk of drug-drug interaction and toxicity.
There is therefore a need for therapeutic tools to be tailored to their specific conditions [8]. A so-called
multitarget-directed ligand (MTDL) is one such tool, as it abolishes the risk of drug-drug interaction.
Furthermore, simplifying the therapeutic regimen with a single multitarget agent could add significant
value for dementia patients and their caregivers who have inherent difficulty with compliance and
therapy adherence [8].

Despite solid rationale and suggestive early-published studies, it was soon evident to medicinal
chemists that the design of multitarget drugs was not an easy task [9]. To this end, pioneers Morphy
and Rankovic delineated two possible broadly different strategies: a random screening approach and
a framework combination approach [10]. In the first case, compound classes that are already known to
be active against one of the targets of interest are screened against the other target in an unbiased
fashion. Conversely, framework combination is a knowledge-based approach, which aims to combine
two molecular frameworks into a new single dual-targeted chemical entity. The authors coined
the terms linking, fusing or merging to differentiate to what extent the two starting frameworks are
integrated [11,12] (Figure 1). At one end of the spectrum, there are conjugated ligands, which contain
distinct frameworks connected by a linker. Ligands designed in this way are more likely to have
high molecular weight (MW) and less likely to have oral drug-like properties. At the other end of the
spectrum, there are ligands in which molecular frameworks overlap or are highly integrated (i.e., fused
or merged). Such compounds are likely to have lower MW and potentially better drug-like properties.
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All this clearly highlights that the rational design of multitarget drugs has to deal with the
crucial issue of achieving an optimized activity towards the targets of interest, while maintaining
drug-like properties. An analysis performed by the same authors already in 2006 revealed that the
reported MTDLs were typically larger and more complex than conventional single-targeted preclinical
ligands [12]. One explanation for this was the popularity of the framework combination approach as
a commonly-followed design strategy. As the selective starting ligands were already drug-like and the
extent of the framework overlap that could be reached was in many cases low, this process resulted in
large property increases that often compromised oral bioavailability [12].
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Against this backdrop, over the years, fragment-based drug discovery (FBDD) strategies have
received increasing consensus as optimal starting points for multitarget drug design [13,14]. In this
respect, in 2001, Hann and co-workers calculated the probability of interaction between proteins and
ligands of diverse molecular complexity. They reached the conclusion that smaller molecules were
better starting points for drug discovery. This is because the lower the complexity of a molecule, the
higher its chance of recognizing biological targets [13]. Several years later, by analysing the Pfizer
corporate screening data, Hopkins discovered a clear inverse correlation between mean MWs and
promiscuity. This was explained as evidence that smaller molecules, having less negative interacting
features, are more likely to establish interactions with multiple targets [9]. In other words, less
complex molecules are more prone to bind to multiple proteins due to the lower probability of
a mismatch between ligand and the proteins of interest. Along the same lines, Morphy’s analysis of
Organon’s SCOPE database revealed a clear correlation between size and selectivity [15], supporting
the hypothesis that the inherent simplicity of small molecules favours non-selective binding events [16].
Moreover, there is ample experimental support for a higher hit rate for fragments in multitarget
screening with respect to the larger compounds typically screened in high throughput screening (HTS).
In this respect, FBDD might also provide more drug-like structures than the large and lipophilic
molecules identified through HTS, thus simplifying physicochemical issues related to the hit- and
lead-optimization process [16].

Following the identification of a base scaffold able to bind to multiple targets, subsequent growing
could provide a ligand with higher affinity at each target, whereas maintaining high ligand efficiency
(LE). While it is highly conceivable to identify multitarget fragment hits, the challenge with the FBDD
will be to improve and balance activity at each target. As for single-target FBDD, structural information
will be critical to drive the optimization process. However, if the targets are too different, it may not
be possible to grow the fragment in a way that simultaneously improves affinity at each target [17].
Nevertheless, the extent to which affinity must be improved may be lower for an MTDL than for
a single-targeted molecule, if strong pharmacodynamic synergy between the targets exists [16].

Regarding practical application of FBDD in multitarget drug discovery, in 2009, an efficient
fragment-screening approach to peroxisome proliferator-activated receptor (PPAR) MTDLs was
reported [17]. Furthermore, a fragment screening campaign directed at two very different enzyme
targets, such as the c-Jun N-terminal kinase 3 (JNK3) and β-glucosidase, has been also successfully
carried out [17]. In aggregate, these findings suggest a potentially wide applicability of FBDD in
multitarget drug discovery.

In some ways, the FBDD approach represents the antithesis of framework combination, in that
they cover different regions of the multitarget chemical space. Certainly, if we consider MW as the
descriptor on one axis of this chemical space, the different position of small fragments (<300 Da) and
large hybrid compounds (>500 Da) is easily apparent.

In pursuit of novel MTDL candidates against AD, we have adopted both framework combination
and FBDD strategies. The two were carried out in parallel obtaining interesting, still preliminary,
results. Indeed, we believe that they are not mutually exclusive, but are rather complementary when
searching for MTDLs, each with its own pros and cons. Accordingly, the rest of this review is divided
into two parts dealing with case studies provided by our research and inspired by the two approaches.

2. Framework Combination Strategies Applied to the Discovery of Hybrid Anti-AD
Lead Candidates

2.1. Development of Memantine-Galantamine Hybrids via a Linking Strategy

As anticipated, the most common strategy to achieve a multitarget profile against AD is to
connect distinct pharmacophores in the same hybrid compound. Theoretically, each pharmacophore
of this new hybrid entity should still bind with its specific site(s) on the target, thus producing
specific pharmacological responses that might synergistically modulate the pathologic cascade
underlying neurodegeneration. Looking at the specific reported examples, most hybrids inhibit
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cholinesterases (ChEs) and concomitantly interact with one further pharmacological target implicated
in AD pathogenesis, such as the H3, M1, NMDA or 5-HT4 receptors. Enzymes like β-secretase-1
(BACE-1), monoamine oxidase (MAO) and the serotonin transporter have been targeted. In addition to
specific protein targets, developed hybrid molecules can also incorporate antioxidant or anti-amyloid
fragments [18]. Several review articles describing the status and advances of this class of MTDLs have
been recently published, to whom the reader is directed for a more comprehensive discussion [19–24].

By following a conjugation approach, in 2012, some of us developed a new series of hybrid
compounds that integrated the pharmacological activities of two drugs marketed for AD, which
are the acetylcholinesterase inhibitor (AChEI) galantamine and the N-methyl-D-aspartate receptor
(NMDAR) antagonist memantine [25] (Figure 2). The design aim was to combine in the same molecule
the neuroprotective effect of NMDAR antagonism with the symptomatic relief provided by cholinergic
neurotransmission through acetylcholinesterase (AChE) inhibition. In fact, drug combination targeting
both the cholinergic and glutamatergic systems is the current standard of care for AD patients [26].
The underpinning rationale for such a combination is that the NMDAR antagonist could contrast
neurodegeneration, while the AChEI could restore memory and cognition by stimulating still alive
neurons. Additionally, it is well documented that the glutamatergic and cholinergic neuronal systems
influence each other and that their joint dysfunction is crucial in AD pathology [27]. On this basis,
galantamine and memantine, working together on the same excitotoxic cascade, could provide
a synergistic neuroprotective effect.
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Therefore, novel dual-target compounds were developed by connecting the two drugs through
variable-length polymethylene spacers and heteroatom linkers [25] (Figure 2).

Despite previous studies having already reported on dual AChE/NMDAR compounds [28,29],
this was the first time that two marketed drugs were rationally combined in a single new chemical entity.

The new hybrid compounds were initially conceived of to simultaneously bind both the catalytic
and peripheral anionic sites (CAS and PAS) of the AChE gorge, following a dual-binding approach,
and to interact with NMDAR. Interestingly, 1 (memagal in Figure 2) carrying a hexamethylene spacer
resulted in one of the most promising compounds of the series. In agreement with molecular modelling
studies, six methylenes constituted the optimal distance to allow 1 to efficiently contact the AChE CAS
and PAS, resulting in a nanomolar AChE inhibitor (IC50 = 1.16 nM) [25].
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As for the NMDA activity, 1 showed micromolar affinity to NMDAR (Ki = 4.6 µM) in the assay
based on the displacement of the [3H] radiolabelled NMDA antagonist MK-801. More importantly, 1
resulted in binding to the NR2B subunit of NMDAR (Ki = 4.6 µM in the [3H]-ifenprodil binding assay),
which is considered the major contributor of glutamate excitotoxicity [30–32].

Outstandingly, 1 also displayed prominent neuroprotective cellular activity, inhibiting NMDA-induced
neurotoxicity in neuroblastoma cells with an IC50 value of 0.28 nM [25]. Considering that the observed
neuroprotective profile of 1 could not be fully ascribed to its micromolar NR2B binding potency, it was
inferred that the galantamine moiety of 1 also contributed to neuroprotection [33]. Based on previous
evidence [34,35], this effect is likely to be associated with the activity of galantamine on nicotinic
receptors, rather than on NMDAR. Indeed, it is quite conceivable that the interplay of NMDA and
nicotinic receptor modulation, mediated by memantine and galantamine, respectively, delivered the
remarkable neuroprotective potency of 1.

Overall, this study describes a rationally-designed molecule with a dual AChE/NR2B profile and
illustrates a successful and interesting strategy for developing conceptually new MTDLs, as possibly
more effective and safer drug treatments over the current drug combinations commonly used in clinical
practice. On this basis, in vivo studies to investigate the multitarget profile of 1 have been undertaken
and will be reported in a separate paper.

2.2. Development of Clioquinol-Donepezil Hybrids via a Fusing Strategy

Although the linking strategy might be effective in multitarget drug discovery, in principle, it
generates high MW compounds, which might suffer of pharmacokinetic liabilities. Accordingly, the
aforementioned fusing and merging strategies, leading to smaller hybrid molecules, are foreseen as
more suitable to prevent such issues.

In light of these considerations, we recently exploited a fusing approach to design a new series of
hybrid compounds that combine the structural features of the ChEI donepezil with the metal chelator
clioquinol (CLQ) [36].

We envisaged to integrate in the same molecule the anti-ChE properties with the neuroprotective
effect provided by metal-driven oxidative stress inhibition, through chelation of redox-active metals.
In fact, elevated concentrations of Cu(II) and Zn(II) have been detected in the neocortex of AD patients
and are especially associated with β-amyloid (Aβ) deposits [37,38]. Binding sites for both metal ions
have been identified on Aβ oligomers, and they are thought to mediate amyloid toxicity [39,40]. In fact,
complexes of Aβ and metal ions were shown to promote Aβ aggregation [41] and protease resistance
and to trigger the production of reactive oxygen species (ROS) [42]. On the basis of these observations,
metal chelating therapy is considered an attractive option to counteract AD progression.

In this context, the 8-hydroxyquinoline (8HQ) derivatives CLQ and PBT2 were investigated for
their neuroprotective effect in several neurodegenerative diseases [43–46]. Importantly, both CLQ
and PBT2 showed promising therapeutic features in AD as metal-protein attenuation compounds
(MPACs), capable of sequestering Cu(II) and Zn(II) from both amyloid plaques and the synaptic cleft,
and operate as Cu(II) ionophores to balance the AD-related Cu(II) dyshomeostasis [47].

Interestingly, several other 8HQ-related compounds also showed neuroprotective activity [48],
and the 8HQ scaffold was successfully exploited in multitarget programs for AD. In this respect,
Rodriguez-Franco and co-workers reported on a series of tacrine-8HQ hybrids as novel MTDLs
with cholinergic, antioxidant and Cu(II)-complexing properties [49]. Youdim et al. developed the
hybrid compound M30, containing the metal chelator 8HQ core and the propargylamine moiety from
FDA-approved anti-Parkinson rasagiline, with anti-MAO-B activity [50].

Motivated by these considerations, some of us developed a novel series of hybrid compounds,
rationally designed by fusing the 5-chloro-8HQ and the 8HQ nuclei with different benzylpiperidine-like
moieties inspired by the AD drug donepezil [36] (Figure 3). We envisaged that by substituting the
indanone core of donepezil with the planar and aromatic 8HQ one, we might have retained the affinity
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for the AChE PAS, as well as widened the spectrum of biological activities, together with a limited
MW increase.Molecules 2016, 21, 466 6 of 12 
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Thus, the new hybrid compounds were initially conceived of to exert a carefully-selected anti-AD
MTDL profile: (i) ChE inhibition; (ii) Cu(II) and Zn(II) chelation; (iii) ROS scavenging; and (iv) Aβ

anti-aggregating activity.
When evaluated in vitro, some of the synthesized compounds displayed a biological profile in

compliance with the underpinning rationale. In particular, the majority of the new hybrids selectively
targeted human butyrylcholinesterase (hBChE) at micromolar concentrations (5.71 ď IC50 ď 47.2)
and effectively inhibited Aβ self-aggregation (% of inhibition at 50 µM ranging from 19% to 65%).
In addition, compounds 5-chloro-7-((4-(2-methoxybenzyl)piperazin-1-yl)methyl)-8-hydroxyquinoline
(2), 7-((4-(2-methoxybenzyl)piperazin-1-yl)methyl)-8-hydroxyquinoline (3) and 7-(((1-benzylpiperidin-
4-yl)amino)methyl)-5-chloro-8-hydroxyquinoline (4) (Figure 3), with well-balanced anti-ChE and
anti-aggregating activities, were also able to chelate Cu(II) and Zn(II) and exert antioxidant activity
in vitro. Importantly, in the case of 3, the multitarget profile was accompanied by positive blood-brain
barrier (BBB) permeation in the parallel artificial membrane permeability assay (PAMPA), low
cytotoxicity in T67 cells and acceptable toxicity in HUVEC primary cells.

Of note, compound 3, fulfilling in a single chemical entity in vitro cholinergic, anti-aggregating,
Cu(II)- and Zn(II)-chelating and antioxidant activities, might be worthy of additional investigation.

3. FBDD Applied to the Discovery of Anti-AD Lead Candidates

Fragment-based strategies have emerged as highly suitable for multitarget drug discovery [14].
Small fragments are particularly favourable starting points, since they might bind to multiple biological
targets due to their inner chemical simplicity and be grown into lead-like molecules by step-wise
addition of functional groups [9].

On these premises, we recently reported on a fragment-based program, which led to
6-amino-4-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-ones as the first class of dual-targeted compounds
able to simultaneously modulate BACE-1 and glycogen synthase kinase-3 (GSK-3β) enzymes [51].
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Particularly, we used a ligand-based approach to merge in a single pharmacophoric unit
a guanidino motif and a cyclic amide group, as structural elements responsible for targeting BACE-1
and GSK-3β, respectively [51] (Figure 4).
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The guanidino moiety, a key functionality of several BACE-1 inhibitors, such as acylguanidines and
aminoimidazoles, may bind to the catalytic aspartic dyad of BACE-1 [52,53]. Whereas, the amino and
carbonyl functionalities of the cyclic amide group may act as H-bond donor and acceptor, respectively,
thus forming H-bond interactions with the backbone of the GSK-3β hinge region. This cyclic amide
function, present in numerous ATP-competitive inhibitors of GSK-3β, that is indirubins, maleimides and
paullones, among others, is a signature for kinase binding, providing a specific H-bond network [54].

Among several others possible identified chemotypes, the 6-amino-4-phenyl triazinone core was
selected as a suitable scaffold by means of molecular modelling studies [51].

On this basis, a preliminary structure-activity relationship (SAR) exploration of the triazinone
core led to the fragment hit 5 (Figure 4) [51]. 5 showed balanced in vitro activities against both BACE-1
and GSK-3β enzymes (IC50 of 18.0 and 14.7 µM against BACE-1 and GSK-3β, respectively) [51].
This activity profile, although in the double-digit micromolar range, was considered particularly
promising for several reasons. First, 5 displayed good LE metrics against both targets, as well as wide
possibilities for further chemical tractability and functionalization. Second, in a network perspective,
when connections exist between different targets, as appears to be the case for BACE-1 and GSK-3β,
inhibitors with only moderate activities are predicted to have superior in vivo efficacy and fewer side
effects than higher-affinity single-targeted compounds [16,50]. Moreover, a mild modulation of BACE-1
and GSK-3β activities has been reported to be sufficient to produce the desired therapeutic effect.

Importantly, 5 showed an interesting cellular profile in terms of neuroprotection,
immunomodulation and neurogenesis [51]. In particular, 5 decreased nitrite production and
neurotoxic activation in inflammation-insulted primary rat glia cells, resulting an interesting
anti-inflammatory/immunomodulatory and neuroprotective agent. In fact, 5 was able to shift microglia
phenotype from M1 to M2, with no changes in microglial phagocytic activity. This lends support to
the innovative concept of targeting microglial cells by modulating their activity, rather than simply
trying to counteract their inflammatory neurotoxicity [55]. The advantage of immunomodulation
is that it reduces neuroinflammation and toxicity, while at the same time strengthening intrinsic
neuroprotective properties of microglia and promoting neuroregeneration. Indeed, 5 was shown
to differentiate neurosphere cultures of primary rat neural stem cells toward a mature neuronal
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phenotype. 5 also permeated the brain in mouse pharmacokinetic assessment, a fundamental property
for central nervous system (CNS)-directed drugs [51].

Motivated by these interesting findings, the triazinone scaffold was further chemically
manipulated providing the 6-(ethylamino)-4-(4-fluorophenyl)-3,4-dihydro-1,3,5-triazin-2(1H)-one 6, as
one of the most promising compounds of the whole series (Figure 4) [56]. Notably, 6, with well-balanced
potencies against the two isolated targeted enzymes (IC50 of 16.0 and 7.1 µM against BACE-1 and
GSK-3β, respectively) displayed even better neuroprotective and neurogenic cellular activities than 5
and no neurotoxicity in cell-based assays. It also showed good brain permeability in a pharmacokinetic
assessment in mice. Indeed, as, emphasized above, combining a well-balanced biological profile with
drug-like pharmacokinetic properties is a critical challenge for multitarget drug discovery that has
been met here [16].

4. Conclusions

All of the evidence we have accumulated so far corroborates the initial conviction that modulating
a multiplicity of interconnected targets with an MTDL is an asset in treating a complex disorder of the
elderly, such as AD. How should we move a concept that has been proposed and actively exploited for
more than 10 years forward? Clearly, the aim is to develop a multitarget drug that could be brought to
AD clinical trials. The case studies discussed above suggest that this is going to be a quite remote goal.
With this background, the following should be among our priorities for the near future.

1. From an academic medicinal chemistry perspective, we need a focused effort to promote a deeper
understanding of the mechanism of multitarget action and the use of a rigorous proof of concept.
Robust pharmacokinetic/pharmacodynamic data should guide the on/off decision to further
develop a hit candidate that truly possesses a multitarget profile, i.e., (i) effectively reaches the
brain; (ii) simultaneously modulates multiple targets and (iii) is more effective and safer than
a single-targeted reference drug.

2. In terms of target selection, we need to move from targets, such as AChE and amyloid, which
have been over searched in favour of other ones with more credential for a disease-modifying
effect [57]. As a recent Nature article bluntly put it, “we are over-reliant on amyloid” and “the time
has come to face our fears and reject the amyloid cascade hypothesis” [58]. Indeed, potentially
more promising targets, such as tau, have remained largely under-explored so far.

3. Even more important is that the combination of targets to be addressed is made by using integrated
network modelling and systems biology strategies. Multitarget approaches based on molecular
network analysis may provide a fine-tuned modulation of the selected pathways instead of their
complete blockade [51]. This appears to be critical for an effective therapeutic outcome.

4. Generally, turning a small molecule hit into a lead is a formidable challenge, as numerous hurdles
beyond activity have to be overcome. This is even truer when dealing with multitarget drug
discovery, given the added complexity of optimizing against multiple targets. Thus, it is vital to
identify a high-quality starting hit for lead optimization, as this is crucial in determining the later
potential for success [17].

5. Separate, although clearly related to this, is to push forward the use of cellular models as early
as possible in the discovery phase. Different from isolated proteins, cell-screening systems
maintain a reasonable experimental efficiency while preserving molecular-pathway interactions.
Undoubtedly, this is indispensable in a network perspective. In particular, derivation of specific
neural cells from patients’ induced pluripotent stem cells has made it possible to create in vitro
models that recapitulate AD disease phenotypes. From a translation perspective, they represent
unique platforms for AD (multitarget) drug discovery [59]. In this respect, treatment with
approved or already validated combinations may provide clues or surrogate endpoints to track in vitro.
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These are four ambitious objectives. Given the global increase of AD population and the frequent
failures of drugs in clinical trials [60], attaining this goal is not only a formidable scientific challenge,
but also an extremely important societal responsibility.
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Aβ β-amyloid
BACE-1 beta-secretasie-1
BBB blood-brain barrier
CAS catalytic anionic site
ChE cholinesterase
CLQ clioquinol
CNS central nervous system
FBDD fragment-based drug discovery
GSK-3β glycogen synthase kinase-3
hBChE human butyrylcholinesterase
HTS high throughput screening
JNK3 c-Jun N-terminal kinase 3
LE ligand efficiency
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MPACs metal-protein attenuation compounds
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NMDAR N-methyl-D-aspartate receptor
PAMPA parallel artificial membrane permeability assay
PAS peripheral anionic site
PPAR peroxisome proliferator-activated receptor
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