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Abstract: Magnetic resonance imaging (MRI) is one of the most important imaging technologies
used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery
of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific
microenvironments. Commonly used reporter genes for MRI usually include genes encoding the
enzyme (e.g., tyrosinase and β-galactosidase), the receptor on the cells (e.g., transferrin receptor),
and endogenous reporter genes (e.g., ferritin reporter gene). However, low sensitivity limits the
application of MRI and reporter gene-based multimodal imaging strategies are common including
optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and
accelerate the development of new therapies.
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1. Introduction

Molecular imaging includes several imaging modalities such as positron emission tomography
(PET), single photon emission computed tomography (SPECT), computed tomography (CT), optical
imaging (OI), ultrasound, and magnetic resonance imaging (MRI) [1,2]. MRI offers high spatial
resolution and it can simultaneously obtain anatomic and physiological information [3]. The use of MRI
probes has significantly improved the signal-to-noise ratio of MRI, and novel reporter gene imaging
would further increase its sensitivity and specificity. MRI reporter gene imaging can longitudinally
monitor the processes (e.g., cell delivery, gene expression, et al.) in living organisms by visualizing the
levels of exogenous or endogenous gene expression, specific signal transduction pathways, nuclear
receptor activities, or protein–protein interactions [4,5]. Using this noninvasive imaging technology,
the total number of animals is greatly reduced, and the results are more reliable because each animal is
its own control [6].

Reporter gene imaging is an indirect method to detect gene expression [5,7]. The expression
products include transporters, receptors, enzymes, metalloproteins, etc., which can specifically combine
with molecular probes containing imaging biomarkers. Based on the location and quantification of
the probes, information on the reporter genes can be provided indirectly to achieve a much higher
diagnostic accuracy. Generally, the reporter genes are active and inducible only in living cells. They
are expressed after a specific molecular event such as the addition of the activating substrate [6,8].

MRI reporter genes can be categorized into three classes based on the types of encoded genes:
(1) reporter genes encoding an enzyme (e.g., tyrosinase and β-galactosidase); (2) reporter genes
encoding the receptor on the cells (e.g., transferrin receptor (TfR)); and (3) endogenous reporter genes
(e.g., ferritin reporter gene). The most commonly used MRI reporter genes include ferritin, TfR,
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tyrosinase (TYR) and β-galactosidase (Table 1). Ferritin can specifically bind with iron, and thus can
be used as MR contrast agent on T2 weighted images (T2WI) [9–11]; TfR is highly expressed on the
membrane of the target cells that were transferred with TfR reporter gene. Such highly expressed
TfR would bring an increased iron uptake in the cells which could result in decreased T2 relaxation
time [4,12,13]. LacZ reporter gene expresses β-galactosidase in cells, which cleaves off the galactose
group of the substrate and exposes a free coordination site of the gadolinium ion. This reaction leads
to increased water proton access to the metal ion, resulting in enhanced inner sphere relaxation and
increased MR contrast on T1 weighted images (T1WI) [14]. The TYR reporter gene can be introduced
into cells through gene transfer and then expresses tyrosinase in cells which could catalyze the
oxidation of tyrosine and dopa and synthesize melanin, which can chelate metal ions (Fe3+) to provide
T1 contrast for MRI [15] (Figure 1).

Table 1. Commonly used MRI reporter genes.

Gene/Protein Contrast Mechanism Observed Change Test System Ref.

Ferritin
Sequesters iron from labile
intracellular iron pool and acts
as an intracellular SPIO analog

T2 changes from 45 to 20 ms
with 30 µg Ferritin expressed
per mg of total protein (14 T)

Cell culture; viral-mediated
transfection in mouse brain [16]

Transferrin
receptor (TfR)

Transferrin-conjugated SPIO
particles are internalized by
ectopically expressed TfR on
transfected cells

50% change in T2-weighted
MRI signal (3 mg iron injected
per mouse, 7.1 T)

Mice implanted with
TfR-expressing gliosarcoma cells [17]

Tyrosinase (TYR) TYR produces melanin to
chelate metal ions (Fe3+)

37% increase in T1-weighted
MRI signal (1.5 T)

Transfected mouse fibroblasts
and HEK cells [18]

β-galactosidase
Expressed β-gal cleaves a
caged synthetic
Gd3+ compounds

60% T1-weighted signal
increase (3.2 nmol per frog
embryo, 12 T)

Xenopuslaevisembryos
transfected withLacZ [19]

Lysine
rich-protein (LRP)

Chemical exchange saturation
transfer (CEST)

134% signal increase (6 days
after 5 ˆ 104 cells transplanted
into the striatum of
NOD-SCID male mice, 11.7 T)

Mice implanted with LRP and
EGFP expressing xenografts
respectively in
opposite hemispheres

[20]
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Figure 1. Commonly used MRI reporter genes. Ferritin can specifically bind with iron to provide T2 
contrast for MRI; The highly expressed TfR in the cells would lead to increased iron uptake to decrease 
T2 relaxation time; LacZ reporter gene expresses β-galactosidase in cells, which increases MR contrast 
on T1 weighted images; TYR reporter encodes tyrosinase to synthesize melanin and provide T1 
contrast for MRI [21]. 

  

Figure 1. Commonly used MRI reporter genes. Ferritin can specifically bind with iron to provide T2

contrast for MRI; The highly expressed TfR in the cells would lead to increased iron uptake to decrease
T2 relaxation time; LacZ reporter gene expresses β-galactosidase in cells, which increases MR contrast
on T1 weighted images; TYR reporter encodes tyrosinase to synthesize melanin and provide T1 contrast
for MRI [21].
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2. Commonly Used MRI Reporter Genes

2.1. Ferritin

Ferritin is a ubiquitous intracellular protein that stores iron by specifically binding with iron.
Ferritin plays an important role in iron metabolism existing in species ranging from microbes to
human beings. In humans, ferritin is mainly distributed in the nucleus of the liver, spleen and brain.
The three-dimensional structures of ferritin deduced from different organisms (including human
H-chain, horse spleen, rat liver and bacterioferritin of E. coli, etc.) indicate that the ferritin-like proteins
have high homology [22–26].

The ferritin gene can be used as a MRI reporter gene to increase the sensitivity of MRI [16]. Ferritin
is a heteropolymer assembled from of 24 light and heavy subunits and encapsulated with an iron oxide
core (Figure 2A). The ratio of the light and heavy subunits varies among different tissues. The ferritin
capsule is a symmetrical spherical void with a diameter around 13 nm (Figure 2B). Both the light
and heavy ferritin chain have a similar structure of the 5 A-helix, but they have completely different
functions. The heavy chain (FTH1) binds to iron oxide, and it is the major regulator of ferritin activity
due to its ferroxidase activity [27–31]. The ferroxidase is responsible for converting labile Fe2+ iron to
the stabile, insoluble and non-toxic Fe3+ form by chelation and neutralization action. By contrast, the
light chain has no detectable ferroxidase activity, it just increases the activity of FTH1 and plays an
important role in keeping the stability of ferritin. The iron core composed of thousands of ferric oxide
ions is located in the center of the protein capsule with a diameter of 7~8 nm.

Iron oxide is a common agent to decrease signal on T2-weighted images (T2WI) [27]. The R2

(R2 = 1/T2) is directly proportional to iron concentration [22]. The ability of iron-sequester makes
ferritin a promising MRI reporter. Its function and storage of labile iron result in high superparamagnetism,
which can significantly affect MR relaxation times [32,33]. Thus, cells transfected with a ferritin
reporter gene can overexpress ferritin, resulting in the capture of extracellular/endogenous iron to
form crystalline iron that is superparamagnetic—this produces detectable contrast on MRI.

Unlike nanoparticle-based techniques (e.g., superparamagnetic iron oxide particles (SPIOs)),
ferritin reporter genes would not be diluted with cell division, making them a perfect way to track
target cells by MRI. The stable MRI signal is contributed to the continuous production of FTH1 in the
daughter cells [34–36]. The iron is stored in ferritin as the ferric (Fe3+) form, which does not take part
in the Fenton reaction, which makes it non-toxic to the organism. Ferritin also can protect the host cells
from oxygen and its radical products [32]. Ziv K et al. followed chronically overexpressed FTH1 in
hepatocytes for 2 years to investigate the long-term effect of over-expressed ferritin on the mice and
their MR signal. They found that mice with an elevated level of h-ferritin have increased R2 values
on MRI vs. the control group. Meanwhile, there was no obvious toxicity in livers or other organs in
ferritin overexpressing mice. These studies suggested that the ferritin reporter gene is safe and suitable
for MR imaging [37]. Unlike other MRI reporter genes such as TfR, TYR, or β-galactosidase, ferritin
does not require ectogenic probes. This provides more opportunity to improve the contrast on MRI
compared to injected probes which have to overcome the biological barriers. Meanwhile, for injected
probes, the clearance of the probes from the blood and nonspecific tissues also causes great obstacles.

Ferritin can also be used to monitor tumor growth and improve diagnostic efficiency and accelerate
the development of gene therapies [38]. In addition, there are other applications of the ferritin reporter
gene such as non-invasive visualization of neuroblast migration, monitoring event-related promoter
activity, and tracking cellular therapeutics, etc. [6,39]. For example, Baekelandt et al. reported that
ferritin overexpression in the rodent brain resulted in significantly enhanced contrast-to-background
on T2*-weighted MRI [32]. Recently, a new chimeric ferritin molecule engineered with fusing the L
and H subunit showed excellent MRI contrast enhancement because of a higher iron loading than
the wild-type ferritin [6]. Furthermore, ferritin has been widely used to image neuroblast migration
and it can be developed as a switchable approach to imaging glioma cells [40]. Hoe Suk Kim et al.
transplanted human ferritin heavy chain human mesenchymal stem cells (hMSCs) in the mouse
brain. The transduction of FTH led to a significant increase in R2* values [39] (Figure 2C,D). However,
the effects of intracellular chelation of iron are decreased with ferritin concentration decrease during
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cell division. The reduced iron concentration usually results in a poor MR imaging ability as the MRI
image quality depends on iron loading index [23,27].Molecules 2016, 21, 580 4 of 16 
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R2* values measured from in vivo MR images at hMSCs-transplanted sites. Adapted with permission 
from [39]. 
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Figure 2. Ferritin reporter gene was used to image human mesenchymal stem cells (hMSCs) by
Hoe Suk Kim et al. (A) The structure of ferritin; (B) TEM of ferritin nanocages; (C) In vivo MRI R2*
maps of mouse brain transplanted with hMSCs and ferritin reporter gene expressing hMSCs; (D) Bar
chart showing the average R2* values measured from in vivo MR images at hMSCs-transplanted sites.
Asterisks (**) indicate that the p value showed a statistically significant difference (p ď 0.01). Adapted
with permission from [39].

2.2. TfR

The TfR reporter gene is another commonly-used reporter gene in MRI imaging. It encodes
the cell-surface transferrin receptor once transfected into the target cells. TfR is a homodimer
transmembrane glycoprotein with an overall molecular weight of 170–200 kDa. The transferrin
receptors widely exist in almost all mammalian cells and they can bind with the transferrin
protein [12,41]. The iron in blood exists in the form of transferrin. When the TfR binds with two
iron-loaded transferrin molecules to form the TfR-Tf-Fe complex, it will be rapidly internalized through
endocytosis. In the intracellular acidic endosomes, iron releases from the TfR-Tf-Fe complex [42–44].
Generally, the TfR is regulated by two major factors including cellular iron status and cell growth.

The high expression of TfR increases iron uptake, which will decrease T2 relaxation time [45,46].
Recently, Patrick PS et al. demonstrated the potential of Timd2 gene for MR imaging with large increases
in R2 [47]. In another study, Pereira et al. also evaluated the effectiveness of TfR-1 as an MRI reporter
gene in mesenchymal stem cells (MSCs), and it was found little differences between cells overexpressing
TfR1 transgene and cells incubated with ferric citrate in the short term. However, TfR1 gene-expressing
MSCs, but not control cells, showed excellent contrast on MRI in the long term [48,49]. Furthermore,
TfR can also be modified to increased T1 contrast for MR imaging. For example, Korkusuz et al. used
novel transferrin-coated gadolinium nanoparticles as MRI contrast agents for brain imaging [50].
Although the TfR reporter gene provides MRI contrast, there is concern that overexpression of the
TfR gene and iron accumulation could induce cell toxicity [51]. Thus, the application of TfR needs
further evaluation.

2.3. TYR

TYR is an intracellular enzyme with catecholase activity. It plays a key role in the melanin
production pathway and can also be used as a MRI reporter gene. TYR is the primary enzyme
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responsible for tyrosine-based melanin production. It catalyzes two fundamental reactions during
melanin synthesis. First, tyrosinase produces dopamine by catalyzing the hydroxylation reaction
of tyrosine. It can also spontaneously cyclize, oxidoreduce, and polymerize to produce melanin.
Generally, tyrsinase alone is sufficient in non-melanogenic cells to catalyze the melanin production [52].
However, the enhanced enzyme activity in cells transfected with the tyroinase gene could lead to a
significant increase in signal intensity for monitoring the transfected cells by MRI [18,21].

Melanin widely exists in human hair, skin and other organs. It has a high iron-chelating capacity
to paramagnetic ions such as Fe3+, Mg2+ and Ca2+. This results in enhanced MR signals of cells
expressing the tryosinase reporter gene [53,54]. The high iron-chelating capacity realized is due to the
channels within the melanin granules. This gives melanin the ability to transport metal ions [52,55].
Interestingly, there is no significant evidence of breakdown of melanin, meaning that melanin is
a powerful paramagnetic cationic chelator. Based on those unique characters, Weissleder [18] and
Enochs [55] et al. developed TYR as a MR imaging reporter gene. They demonstrated that the enough
concentration of metallomelanin is the reason for the reduced T1 relaxivity [53]. Therefore, TYR is
widely used as a MRI reporter gene as it has good binding capability of melanin with ions. The ions
bound to melanin could create a substantial increase in T1 signals. This produces good MRI contrast.
Qin et al. also successfully demonstrated that the tyrosinase can be applied as a MRI reporter gene
both in vitro and in vivo [52].

Producing too much melanin would certainly be harmful to cell function, and the tyrosinase
reporter gene must be regulated by specific promoters. Alfke et al. designed and evaluated a contrast
agent that could be effectively regulated by the expression of tyrosinase reporter gene under control of
the tetracycline response element. This made it possible to identify the tyrosinase gene expression in
genetically identical cell clones [53]. Tyrosinase’s sensitivity is dependent on several factors including
the total number and the tyrosinase (melanin) expression level of target cells, the depth of tyrosinase
expressing tissue, tissue composition between the TYR-expressing cells and the detector, etc. [54].

Using TYR as a reporter gene offers many advantages. First, the TYR reporter gene can also be
used as a powerful tool in photoacoustic imaging and PET imaging. For example, Qin et al. evaluated
the TYR gene for PAI, MRI and PET imaging [52]. With photoacoustic imaging, there is no need
to add additional contrast agents. However, the photoacoustic microscopy technology suffers from
limited imaging depth. MRI is much more appropriate for imaging deeper tissues using TYE reporter
gene [54]. TYR expression is inducible, which is very useful in minimizing TYR toxicity. This feature
also makes it superior to the expression of constituent reporter genes. In order to reduce the risk of
nonspecific side effects brought by overexpression of TYR, the expression of TYR must be limited.
This feature will be crucial for future TYR in vivo imaging. TYR also can cause several defects even its
expression was under control. The most important one is that melanin, the product of TYR, would
exist in the cells for a considerable long time even when the TYR reporter gene is turned off [53,54].

In addition to the long persistence time of melanin, the TYR has other pitfalls as well. One is
that melanin and melanin precursors can catalyze and bind iron resulting in the production of highly
reactive oxygen species that can cause toxic effects [21]. TYR expression can be visualized by MRI
implying that TYR can be used a MRI reporter gene. Technically, MRI reporter genes should have an
especially low molecular weight, but the TYR reporter gene is currently larger than expected. Thirdly,
the TYR currently used has a relatively low expression, which limits its utility in MR imaging.

2.4. β-Galactosidase

The β-galactosidase is an indirect imaging reporter gene which is encoded by bacterial LacZ gene.
The β-galactosidase catalyzes the substrate X-gal into a Prussian Blue-like product making it detectable
with light microscopy [21,53]. β-galactosidase has many advantages, and it is one of the most widely
used reporter genes for detection of cell survival and proliferation. For example, β-galactosidase
has a large panel of chromogenic and fluorogenic substrates making it a proper candidate for optical
imaging [56,57]. However, β-galactosidase is barely expressed in most mammalian tissues and
cells [19].

The MR imaging of β-galactosidase usually requires extra contrast agents. One of the most
commonly used contrast agent is EgadMe (short for (1-(2-(b-galactopyranosyloxy)propyl)-4,7,10-
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tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane)gadolinium(III)). EgadMe is a paramagnetic Gd3+

chelate. The EgadMe chelator has a high binding affinity for gadolinium, which occupies eight
of the nine coordination sites on gadolinium. Normally, the EgadMe is ‘inactive’ and it barely
has any influence on T1 signal without β-galactosidase, because the water channel is blocked by
galactopyranose. However, once the β-galactosidase is expressed in vivo, it can catalyze EgadMe to a
free coordination site on the gadolinium ion. This causes an irreversible transition of the probe from
a water-inaccessible formulation to an ‘active’ state. When the gadolinium ion is transitioned to a
water-accessible state, it will generate a strong T1 contrast on MR images [19].

There are also some limitations in using EgadMe as an MRI contrast agent. For example, the
cleavage rate of EgadMe by β-galactosidase is relative low and EgadMe can be rapidly cleared through
renal excretion after injection. Furthermore, the probes would be diluted with cell division leading
to a reduction in MR contrast. To overcome this problem, Arena et al. designed an MRI probe
named Gd-DOTAtyr-gal, which can be used to specifically monitor the β-galactosidase expression in
melanoma cells. This novel contrast agent can undergo aggregation and further enhanced T1 relaxation
following reaction with native tyrosinase resulting in a selective higher signal enhancement [58].

Taking advantage of the specificity of the enzymatic activity in the tissues, Chang et al. designed
and synthesized a β-galactopyranose-containing gadolinium(III) complex [Gd(DOTA-FPG)(H2O)] as a
smart contrast agent for MRI. It was found that the T1 change percentage of [Gd(DOTA-FPG)(H2O)]
decreased dramatically with β-galactosidase, and the fold change is much higher than that of
Egad- [Gd(DOTA-FPG)(H2O)]. This provides a higher-intensity enhancement on MRI images of
β-galactosidase gene expression cells than that of non-expression cells [59]. The [Gd(DOTA-FPG)(H2O)]
is a promising candidate contrast agent for lacZ reporter gene MR imaging [58]. Recently, Yu et al.
reported a novel dual 1H/19F MRI reporter molecule for in vivo detection of β-galactosidase. The 19F
nuclear magnetic resonance (NMR) signal was sensitive to β-galactosidase and the liberated aglycone.
As a result, the novel molecule can detect both the substrate and the product, and enhance the
confidence of enzyme detection (Figure 3) [60].
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2.5. Lysine Rich-Protein (LRP)

It has been reported that poly-L-lysine has a uniquely high chemical exchange rate, and as a
new class of contrast agent, it can be exploited in the chemical exchange saturation transfer (CEST)
mechanism to enable detection of dilute solutes [61–64]. CEST agents are new MRI contrast agents
to image a variety of physiological parameters such as pH [65], metabolites, and various diseases
(tumor [66,67], and ischemic stroke [68]). The mechanism of CEST is that the exchangeable protons
have a chemical shift distinct from water and these protons are selectively saturated. The saturation is
transferred to the bulk water via chemical exchange. Briefly, following selective radio frequency (RF)
irradiation, mobile solute protons are saturated and exchange with the surrounding water molecules
to decrease bulk water signal. This RF irradiation allows CEST imaging to be switchable and with the
ability of changing the image contrast “on” and “off” via an RF pre-saturation pulse agents.

In recent years, researchers have developed many CEST MRI reporter genes [20,69]. For example,
a novel artificial gene, lysine-rich protein (LRP) with a high percent of lysine residues was designed to
image the transgene overexpression of the glioma cells in vivo. Frequency-selective radiofrequency
pulses then label the amide protons and reduce exchange with water protons. This decreases MRI
signal intensity [20] (Figure 4). Although CEST is a new detection method and offers ways to image
embedded exchange and relaxation mechanisms in tissue, the energy deposition in tissue (specific
absorption rate: SAR) and the millimolar sensitivity of the technique still limit its clinical use. Generally,
a reporter gene encodes to a longer protein. This will give a higher CEST signal via a commercially
available full-length synthetic gene. The reporter targets with reduced charge and increases the
exchange rate to allow increased detection sensitivity. In addition, frequency-specific reporter genes
may be designed to include imino, amine and guanidine protons. This suggests that multiple labeling
is possible. It is reasonable to expect that CEST will soon become a standard clinical protocol [20].
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3. Multimodality Imaging Reporter Genes

The common imaging modalities include MRI, optical imaging (OI) and nuclear imaging. Each
has unique strengths and weaknesses (Table 2). MRI offers deep tissue imaging with high spatial
resolution and it can simultaneously record anatomic and physiological information [70]. However,
MR imaging has low sensitivity and limited utility in molecular imaging. By contrast, optical imaging
is a more sensitive tool for molecular imaging. Optical imaging uses nonionizing radiation in the
visible and near-infrared wavelengths (400–1500 nm). Its disadvantages include the relatively low
spatial resolution and limited depth penetration [71]. Nuclear imaging also has high sensitivity, but it
suffers from several disadvantages such as radiation damage, limited exposure time, and relatively
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poor spatial resolution [72]. The combination of several molecular imaging strategies can harness
the strengths of each modality and offer synergistic preponderance over any modality alone with
complementary information about molecular and cellular processes [4,73–76].

Table 2. Commonly used in vivo small-animal imaging modalities.

Molecular Imaging Methods Resolution Depth Sensitivity Cost Potential Clinical Uses

OI 1–5 mm up to < 5 cm 10´9–10´12 mol/L low cost very low
MRI 10–100 µm no limit 10´3–10´5 mol/L high cost yes
PET 1–2 mm no limit 10´10–10´12 mol/L high cost yes

SPECT 0.3–1 mm no limit 10´10–10´12 mol/L high cost yes

An ideal reporter gene for multimodality imaging should offer fast, quantitative, reversible,
and intense gene expression-dependent signal contrast [77]. Multimodality reporter genes can be
constructed by confusing two or more reporter genes. For example, reporter gene constructed
by confusing luciferase and thymidine kinase allows imaging with bioluminescence and PET,
respectively. The fusion reporter genes are joined together with short linkers and controlled with a
single promoter [78,79]. Fusion reporter gene imaging offers the complementary advantages of both
modalities and eliminates the disadvantages of single imaging modalities. Furthermore, multimodality
imaging provides a more flexible method and allows selection of the appropriate imaging technologies
to solve the biomedical problem (Table 3).

Table 3. Reporter genes used for multimodality imaging.

Single/Fusion
Reporter Gene Gene/Protein Contrast Mechanism Imaging

Method Ref.

Single
reporter gene

Oatp1
(1) Transfer MRI contrast agents
(2) Mediate uptake of Gd3+ or 111In based hepatotrophic
contrast agents

MRI (T1WI)
SPECT [79,80]

LacZ
(1) Express β-gal to cleave Gd3+ compounds
(2) Visualize lacZ gene expression with activated
fluorescent contrast agents

MRI (T1WI)
NIR [4,5,56]

TYR
(1) Broad optical absorption for photoacoustic effect
(2) Chelate metal ions (Fe3+) providing contrast for MRI
(3) Melanin-avid PET probes, 18F-P3BZA

PAI
MRI (T2WI)

PET
[52,81–83]

Multimodality
reporter gene

Single reporter gene
and contrast agent Sodium iodide symporter (NIS) gene and iron oxide PET

MRI [84]

Fusion reporter gene Ferritin gene fused with green fluorescent protein gene MRI
NIR [74]

3.1. Single Reporter Genes for Multimodality Imaging

Some single reporter gene can be imaged using several modalities simultaneously. This kind of
reporter gene has many advantages over fusion reporter genes. In the first place, there is no need
to worry about the change in reporter gene properties due to the reporter gene confusion, because
activity attenuation may occur in fusion multimodality genes. Secondly, the construction of a single
reporter gene is much more convenient than fusion reporter genes [56,84].

3.1.1. The Organic Anion Transporting Polypeptides (Oatp) 1

Oatp1 is a member of the SLCO superfamily and it transports a variety of imageable small
molecules across the plasma membrane (Figure 5A). Oatp1 is known as Slc21a1 or Slco1a1. The oatp1
is mainly expressed in the kidney and liver. It can serve as a reporter gene and produce a rapid,
intense, reversible signal enhancement in T1-weighted MR imaging by transferring MRI contrast
agent (e.g., gadolinium ethoxybenzyl-DTPA (Gd-EOB-DTPA)) [79,80]. The oatp1-based reporters have
been used for tracking implanted stem cells and monitoring expression of gene therapy vectors with
maximum signal enhancement. Interestingly, the Gd3+-based contrast agent can be imaged with both
SPECT and MRI by exchanging Gd3+ for 111In [79] (Figure 5B–D).
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The Oatp1 gene has several advantages in molecular imaging. Firstly, Oatp1 can use Gd3+ as a
MRI contrast agent, which is a positive contrast agent on MRI and offers an easily detected signal in
T1-weighted images. Secondly, the contrast agent is small. Thirdly, the Oatp1 shows restricted tissue
expression, and the background uptake in most tissues is expected to be low. The observed relationship
between R1 and induction of Oatp1 expression indicates that the kinetics of contrast agent uptake
could give quantitative estimates of gene expression levels. Fourthly, unlike SPIO-based reporter
genes, the signal intensity of Oatp1 reporter genes will not be diluted with cell division or exocytosis.
The Gd3+-based contrast agents have been widely used in clinical imaging, and Oatp1 gene imaging
strategy would be easier to translate into clinical applications.

3.1.2. LacZ

LacZ is a commonly used reporter gene for MR imaging. High quality MRI images can be obtained
by using proper MRI contrast agents like EgadMe. Besides EgadMe for lacZ reporter gene MR imaging,
other contrast agents can also be used for different imaging modalities. The β-galactosidase can serve
as an activating contrast agent to visualize the changes in lacZ gene expression over time [4]. Recently,
near-infrared fluorescent β-galactosidase-responsive probes have been developed to visualize lacZ
gene expression. This can be activated upon cleavage by β-galactosidase [5]. For example, DDAOG,
a β-galactosidase substrate whose cleavage product has detectable far-red fluorescence properties, is a
promising contrast agent in deep tissue imaging with optics. Importantly, DDAOG and its cleavage
product can be detected simultaneously, and the prominent fluorescence enhancement can be observed
in 9L-lacZ tumor region via DDAOG contrast agents [56].

3.1.3. TYR

TYR is not only a MRI reporter gene, but also can be detected by photoacoustic imaging (PAI)
and PET imaging [52]. PAI is also called optoacoustic or thermoacoustic imaging. It is based on
the photoacoustic (PA) effect. The target tissues can generate acoustic waves after the absorption of
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electromagnetic energy. Optical and radio-frequency waves can promote target tissues to generate
acoustic waves [81]. When the target tissues have absorbed the incident light and converted it to
heat, it will result in local thermoelastic expansion. The expansion will be further propagated as an
ultrasonic wave [82]. Vs. other optical imaging techniques, photoacoustic imaging offers higher spatial
resolution and higher contrast. This allows deep tissue imaging [86]. Photoacoustic tomography is
sensitive to melanin which is product of the TYR gene. Melanin is commonly existed in the skin, and it
is one of the primary absorbers. Melanin also has a broad absorption spectrum in the visible range
and strong tissue penetrating properties. This provides strong absorption contrast for PAI. When
introducing the TYR gene into non-melanin expressing tissues, melanin production will be induced.
Thus, the TYR gene can be used as a reporter gene to yield melanin contrast for PAI [82].

Generally, melanin can strongly bind with many small molecules containing aromatic structures
both in vitro and in vivo to produce signals on PET images. For example, the introduction of
melanin-avid probes such as 18F-Fluoro-2-deoxy-D-glucose (18F-FDG) and 123I-N-(2-diethylaminoethyl
4-iodobenzamide) benzamide (123I-BZA) can perform TYR-based PET imaging. Therefore, The TYR
gene can be effectively used as a PET reporter gene by detecting melanin [83]. Those PET reporter
probes have many favorable features like high radiochemical yield, high tumor uptake, and simple
labeling procedures. Recently, Qin et al. evaluated a TYR reporter gene as a stand-alone imaging
reporter gene for PAI/MRI/PET imaging. They transfected MCF-7 cells with plasmids encoding TYR
and imaged the tyrosinase expressing MCF-7 cells using melanin-targeted N-(2-(diethylamino)ethyl)-
18F-5-fluoropicolinamide as a PET reporter probe. The results showed that the TYR-expressing MCF-7
cells had much better signal on PAI/MRI/PET images [52,83] (Figure 6).

There are many advantages to using TYR single reporter gene to provide multimodality images.
First, the structure of TYR is very simple. Second, the expression rate of TYR is at a high level. Third,
the TYR expression is controllable. Last but not the least, there are little side effects when using TYR
reporter gene, because melanin is already a very common substance that widely exists in human cells
and tissues [52].
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Figure 6. TYR reporter gene is transfected into cells, and the expressed tyrosinase catalyzes
the oxidation of tyrosine and Dopa to melanin, which can serve as a multi-functional target for
photoacoustic, MRI, and PET imaging [52].

3.1.4. Combination of Single Reporter Gene and Contrast Agents for Multimodality Imaging

This strategy combined a single reporter gene and one contrast agent for multimodality imaging.
This is much convenient than fusion reporter genes, because the problems of fusion protein expression
and activity change are not a concern any more. Furthermore, it allows visualization of cellular and
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subcellular processes in individual cell and tissue by two modalities. However, target cells cannot
be tracked longitudinally by this strategy vs. single gene and fusion gene multimodality imaging
systems, because the concentration of the contrast agents will be diluted rapidly with cell death and
phagocytosis [4,74,87].

The imaging systems combining reporter gene with contrast agents for multimodality imaging
have been widely used for monitoring cell engraftment and survival. For example, in cardiac cell
transplantation therapy, Higuchi et al. retrovirally transduced the sodium iodide symporter (NIS) gene
into human endothelial progenitor cells (HEPCs) that is derived from CD34+ mononuclear cells of
umbilical cord blood. The labeled HEPCs can be visualized by both MRI and PET. The HEPCs remain
active after transduction, and the reporter protein is stably expressed in target cells, which indicated
that it was a viable way to track target cells [84]. Because of the dilution of MRI contrast agents, MRI
can only offer cell localization information soon after transplantation. However, the signal intensity
of NIS reporter gene did not decrease with time. This confirms that it is a good complement to MRI.
Thus, effective visualization of survival of transplanted cells by this bimodality imaging system would
efficiently evaluate the cell transplantation and therapeutic effects.

3.2. Fusion Reporter Gene Used for Multimodality Imaging

Many reporter genes can be imaged by several different imaging modalities with advantages
over fusion reporter genes such as relatively stable properties, convenient acquisition, and easier
construction. But single reporter genes for multimodality molecular imaging just accounts only a small
percentage of the multimodality imaging field. They still suffer from various limitations including low
sensitivity, spatial resolution and limited depth penetration. Vs. single reporter genes for multimodality
imaging, fusion multimodality reporter genes can be constructed by confusing two or several reporter
to enable highly sensitive detection and overcome many shortcomings of each modality alone [88,89].
This plays an important role in monitoring disease progression and therapy [90]. However, the fusion
reporter gene should be consistent with each individual reporter protein. Meanwhile, the fusion
protein should be stable and not disintegrate [90]. In addition, the signal intensity of the fusion reporter
genes may be attenuated from one or more of the components vs. single reporter genes [91].

Both fluorescent and bioluminescent proteins have been widely used as reporter genes for
molecular imaging. Optical imaging is a sensitive imaging method, but its application is limited in
peripheral organs like skin because of low light penetration. Lots of MRI reporter genes have been
proved to be useful in clinical research. The combination of optical reporter gene and MRI reporter gene
can provide noninvasive images with high sensitivity, spatial resolution and deep penetration depth
for biological processes. The MRI and optical imaging of target cells/tissues at molecular/cellular
levels can be performed simultaneously using the bimodality reporter gene imaging system. This
fusion reporter gene offers a more effective way to image the exact localization, extent, and metabolic
activity of the target molecular in deep tissues [74].

Kim et al. constructed a fusion reporter gene by combining a human ferritin [myc-tagged human
ferritin heavy chain (myc-hFTH)] gene and green fluorescent protein (GFP) gene. The transgene
construct was stably transfected into MCF-7 cells which were transplanted into mice or rats. The results
showed that myc-hFTH tumors had significantly higher fluorescence signal and lower signal intensities
in T2-weighted MRI than mock-transfected controls [74]. Taking advantage of ferritin reporter genes,
there is no need to inject MRI contrast agents to subjects. Unpleasant side effects including toxicity,
allergic reactions, etc. can be significantly reduced. Furthermore, long-term imaging can be performed
with ferritin MRI reporter gene. Similarly, Choi et al. noninvasively imaged and quantified the
metastatic melanoma cells in the lymph nodes with the same fusion reporter gene in B16F10 murine
melanoma models [38]. Recently, Ono et al. also successfully developed dual-reporter ferritin-DsRed
under a β-actin promoter and monitored gene expression by MRI and optical imaging in a brain tumor
model [27].
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4. Conclusions and Perspectives

Molecular imaging provides a novel noninvasive method to real-time monitor cellular function
and molecular processes in living organisms. In both preclinical and clinical studies, MRI excels
at imaging tissue deep, high resolution and excellent soft tissue contrast, but suffers from modest
sensitivity. To achieve molecular imaging of disease biomarkers, MRI probes with high specificity
and high sensitivity are required. Reporter gene based on MRI has led to important discoveries
regarding cell migration, retention and survival. At the same time, structural and functional MRI can
be used for therapy monitoring of long-term gene expression from living organisms. Currently the
field of molecular MRI is undergoing rapid development. Lentiviral vector mediated therapeutic and
MRI reporter gene delivery to target organs/tissues/cells has great potential for the future treatment.
Importantly, MRI is a widespread clinical imaging modality, and structural MRI scans are already part
of cancer diagnosis and progression monitoring. The development of MRI reporter genes would play
an important role in translational medicine.

Each molecular imaging modality has its intrinsic advantages and limitations. The utilization
of multimodality molecular imaging has promising prospects for basic research and clinical
applications. Thus, coupling MRI reporters with bioluminescent, fluorescent, and/or PET reporters
will be commonplace. It is very important to establish proper evaluation methods with the aid of
multimodality molecular imaging in preclinical studies and bench to bedside translation. Furthermore,
the development of new MRI reporters can increase the signal intensity for more reliable imaging
analysis. Combined with multimodality imaging capabilities, the reporter would provide more
detailed and accurate pathological information about the biological processes at molecular levels.
On the other side, the technical advances in MRI devices would be helpful for the translation of
advanced MRI reporter gene into the clinic.
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