Supplementary Materials: New Deferoxamine Glycoconjugates Produced upon Overexpression of Pathway-Specific Regulatory Gene in the Marine Sponge-Derived *Streptomyces albus* PVA94-07

Olga N. Sekurova, Ignacio Pérez-Victoria, Jesús Martín, Kristin F. Degnes, Håvard Sletta, Fernando Reyes and Sergey B. Zotchev

	0 1		
Name	DNA sequence	Target DNA	Construct
C10gt_HX-F	GACGAAGCTTCCGCTGACCGTCGTCGGCTG	gDNA	pC10Nex
C10gt HX_R	CCACTCTACACCAACTCTCTCACCCTACCTCTCC	σDNA	pC10Nex
Clogi_IIX-K	denote moneen and to	gDIVI	pC10JNex
C10_SUB_F	GACGAAGCTTGAGCGTTGGGAATCACGCGTGAG	gDNA	pC10JNex
SOK201_F	CGGCACAGGACGAGCGTAATCATGTCATAGCTGTTTCC	pSOK201	pC10gtKO
SOK201_R	GGTAGGCGTCGCTCACAGGTCGACGGATCTTTTCCGCTGC	pSOK201	pC10gtKO
C10GT_F	GATCCGTCGACCTGTAGCGACGCCTACCAGGACG	gDNA	pC10gtKO
C10GT_R	GCTATGACATGATTACGCTCGTCCTGTGCCGCCAGC	gDNA	pC10gtKO
CL10R_F	GACGAAGCTTGCAGTGGTACGTCGCGCTCC	gDNA	pC10R1
CL10R R	GGACTCTAGAGAACACCGTTCCGCAACCTCTG	øDNA	pC10R1

Table S1. Oligonucleotide primers used in this work.

Position	Position $\delta_{\rm H}$ (multiplicity, J in Hz)			
2	3.04 (m)	49.1		
3	1.73	25.9		
4	1.39 (m)	24.1		
5	1.68 (m)	26.7		
6	3.60 (m)	48.5		
8	-	174.2		
9	2.76 (t, 6.9)	28.5		
10	2.46 (m)	31.1		
11	-	174.2		
13	3.17	40.0		
14	1.53	29.7		
15	1.34 (m)	24.6		
16	1.64 (m)	26.7		
17	3.63 (m)	48.1		
19	-	174.2		
20	2.76 (t, 6.9)	28.5		
21	2.46 (m)	31.1		
22	-	174.2		
24	3.17	40.0		
25	1.53	29.7		
26	1.34 (m)	24.6		
27	1.64 (m)	26.7		
28	3.60 (m)	48.5		
30		172.0		
31	2.10 (s)	20.0		
1/	<i>β</i> -pyr 3.23 (br s)	53.8		
1	α -fur 3.23 (br s)	52.4		
2/	<i>β</i> -pyr -	96.8		
2	α -fur -	103.4		
27	<i>β</i> -pyr (3.65)	71.4		
3	<i>α</i> -fur 4.09 (m)	84.4		
11	β-pyr 3.79 (m)	71.3		
4	<i>α</i> -fur 3.97 (m)	77.9		
F/	β-pyr 3.90 (m)	70.9		
5	<i>α</i> -fur 4.02 (m)	84.5		
<i>c'</i>	β-pyr 4.03 (m), 3.71 (m)	65.3		
0	α-fur 3.78 (m), 3.67 (m)	62.3		

Table S2. ¹H and ¹³C-NMR data of compound 1 (CD₃OD, 500 MHz).

¹³C chemical shifts obtained from the indirect dimension of HSQC and HMBC spectra. ¹H chemical shifts in overlapped regions were determined from HSQC cross peaks.

 β -pyr -

α-fur -

β-pyr (3.65)

 α -fur 4.09 (m)

β-pyr 3.79 (m)

α-fur 3.97 (m)

β-pyr 3.90 (m) *α*-fur 4.02 (m)

β-pyr 4.03 (m), 3.71 (m)

 α -fur 3.78 (m), 3.67 (m)

α-fur 3.23 (br s)

Position

2

3

4

5

6

8 9

10

11

13

14

15 16

17

19 20

21

1'

2′

3′

4'

5'

6'

δн (Multiplicity, J in Hz)	δ	Position	δн (Multiplicity, J in Hz)	δc
3.04 (m)	49.1	22	-	174.2
1.73	25.9	24	3.17	40.0
1.39 (m)	24.1	25	1.53	29.7
1.68 (m)	26.7	26	1.34 (m)	24.6
3.60 (m)	48.5	27	1.64 (m)	26.7
-	174.2	28	3.60 (m)	48.5
2.76 (t, 6.9)	28.5	30	-	172.0
2.46 (m)	31.1	31	2.53 (m)	33.6
-	174.2	32	2.37 (m)	23.9
3.17	40.0	33	5.41 (m)	129.7
1.53	29.7	34	5.43 (m)	131.8
1.34 (m)	24.6	35	2.19 (m)	24.6
1.64 (m)	26.7	36	1.48 (m)	38.0
3.63 (m)	48.1	37	3.47 (m)	73.5
-	174.2	38	1.51 (m), 1.44 (m)	31.2
2.76 (t, 6.9)	28.5	39	0.96 (t, 7.4)	10.5
2.46 (m)	31.1			
β-pyr 3.23 (br s)	53.8			

Table S3. ¹H and ¹³C-NMR data of compound 3 (CD₃OD, 500 MHz)

¹³ C	chemical shi	fts obtained	from the	e indirect o	dimension	of HSQC	and HN	IBC spectra.	¹ H	chemical
shi	fts in overlap	ped regions	were det	ermined f	rom HSQC	cross pea	ks.			

52.4

96.8

103.4

71.4 84.4

71.3

77.9

70.9

84.5

65.3

62.3

Position	δн (multiplicity, J in Hz)	δc
31	2.53 (m)	33.6
32	2.36 (m)	23.9
33	5.42 (m)	129.7
34	5.43 (m)	131.8
35	2.11(m)	28.2
36	1.45 (m)	27.1
37	1.46 (m)	39.8
38	3.74 (m)	68.5
39	1.17 (d. 6.3)	10.5

Table S4. ¹H and ¹³C-NMR chemical shifts of the acyl moiety of compound 4 (CD₃OD, 500 MHz).

¹³C chemical shifts obtained from the indirect dimension of HSQC spectrum. The NMR data for the deferoxamine and fructosyl moieties of compound **4** are identical to those observed for this subunits in compound **3**.

Figure S1. ¹H (upper) and HSQC (lower) NMR spectra 4 (CD₃OD, 500 MHz) of deferoxamine isolated alongside compounds 1–4.

Figure S3. Comparison of the ¹H-NMR spectra of compound 1 (blue) and deferoxamine (red).

Figure S4. COSY (upper) and TOCSY (lower) spectra of compound 1.

Figure S5. HSQC spectrum of compound 1. Hexose signals are highlighted.

Figure S6. HMBC spectrum of compound 1.

Figure S7. ¹H-NMR spectrum of compound 2 (CD₃OD, 500 MHz).

Figure S8. Comparison of the ¹H-NMR spectra of compounds 2 (blue) and 1 (red).

Figure S9. ¹H-NMR spectrum of compound 3 (CD₃OD, 500 MHz).

Figure S10. Comparison of the ¹H-NMR spectra of compounds 3 (blue) and 1 (red).

Figure S11. COSY (upper) and TOCSY (lower) spectra of compound 3.

. 023

0

5

100 900

s 😋 🖮

2

3

-

4

...

- 61

150

F2 [ppm]

Figure S14. 1H-NMR spectrum of compound 4 (CD3OD, 500 MHz).

Figure S15. Comparison of the ¹H-NMR spectra of compounds 4 (blue) and 3 (red).

