Supplementary Materials: Molecular Modeling Studies of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors Through Receptor-Based 3D-QSAR and Molecular Dynamics Simulations

Haiyan Qian, Jiongjiong Chen, Youlu Pan and Jianzhong Chen

No	Standature	Sub	IC. (nM)	
INU.	Structure	X	NR ²	IC50 (IIIVI)
1		3-F, 4-Me	Me Me	0.1
2		2-Cl	Me Me	2.9
3		4-Cl	Me Me	1.1
4	X NR ²	4-OCF ₃		1.1
5		2-Cl	-NMe	17
6		2-NO2	H H	2.0
7		4-CF ₃		3.6
8		2-Ph		4.7
		L	X	
9	Ο	SCH ₂	2,6-di-Cl	7.2
10		OCH ₂	2,6-di-Cl	79
11		S	2-Cl	218
12	Me		2-Cl	282
13		SO2	2-Cl 2-Cl	361 4670
		562	core	1070
15	CI CI CI	4	35	
16				22
17				106
18		\bigwedge	N	319

Table S1	Structures	and IC 50 X	values of	inhibitors	used for	3D-OSAR	modeling
Table 01.	Judiaciaico	and 1 C 30	and of the second	minutorio	uscu ioi	JD - QJI II	mouting

^a Compound 40 was used in non-protonated form.

Figure S1. Bar graph shows the experimental inhibitory activities for training and test set compounds. The number of compound(s) in each interval is indicated above the column.

Figure S2. (a) The surface of the binding site and the conformational comparison of compound 1 from the docking result (blue) and co-crystallized ligand (yellow) in the 11 β -HSD1 binding pocket. (b) Alignment results for the 40 examined compounds based on the docking conformations. (c) The detailed binding mode of compound 1 in 11 β -HSD1.

Figure S3. The detailed binding modes of complexes 11β -HSD1-5 (a) and 11β -HSD1-39 (b).

Table S2. Experimental and predicted pIC₅₀ values and residuals of molecules in both training set and test set.

	pIC ₅₀						pIC ₅₀				
No.	E	CoMFA		CoM	CoMSIA		г	CoMFA		CoMSIA	
	Exp. —	Pred.	Res.	Pred.	Res.		Exp.	Pred.	Res.	Pred.	Res.
	The training set of compounds			26	6.24	6.65	-0.41	6.48	-0.24		
1	10.00	9.77	0.23	9.68	0.32	27	7.47	7.57	-0.10	7.56	-0.09
2	8.54	8.74	-0.2	8.68	-0.14	29	5.53	5.15	0.38	6.10	-0.57
3	8.96	8.98	-0.02	8.93	0.03	30	7.77	7.64	0.13	8.05	-0.28
4	8.96	9.11	-0.15	9.33	-0.37	31	5.06	5.08	-0.02	5.25	-0.19
5	7.77	7.69	0.08	8.01	-0.24	33	7.92	7.97	-0.05	8.27	-0.35
7	8.44	8.22	0.22	8.53	-0.09	35	6.44	6.29	0.15	6.66	-0.22
8	8.33	8.33	0.00	8.53	-0.20	36	5.11	4.99	0.12	4.97	0.14
9	8.14	7.89	0.25	7.90	0.24	37	6.71	6.69	0.02	6.72	-0.01
10	7.10	7.18	-0.08	7.60	-0.50	38	4.85	4.74	0.11	5.06	-0.21
12	6.55	6.36	0.19	6.60	-0.05	39	4.32	4.66	-0.34	3.74	0.58
13	6.42	6.62	-0.20	6.98	-0.56			The test se	et of compou	inds	
14	5.33	5.68	-0.35	4.89	0.44	6	8.70	8.88	-0.18	8.70	0.00
15	7.46	7.47	-0.01	7.43	0.03	11	6.66	6.26	0.40	6.46	0.20
16	7.66	7.65	0.01	7.15	0.51	18	6.50	6.49	0.01	6.65	-0.15
17	6.97	7.18	-0.21	7.03	-0.06	19	5.67	5.38	0.29	6.38	-0.71
20	6.66	6.86	-0.20	6.98	-0.32	24	5.63	5.59	0.04	5.76	-0.13
21	7.68	7.77	-0.09	7.47	0.21	28	7.44	7.81	-0.37	6.96	0.48
22	7.96	8.06	-0.10	7.82	0.14	32	8.55	8.51	0.04	8.07	0.48
23	8.60	8.53	0.07	7.75	0.85	34	7.64	7.05	0.59	7.08	0.56
25	7.96	7.78	0.18	7.71	0.25	40	4.79	5.21	-0.42	4.93	-0.14

Figure S4. (a) Plots of predicted versus experimental pIC⁵⁰ values of training (blue) and test (red) set of the CoMFA model. (b) Plots of predicted versus experimental pIC⁵⁰ values of training (blue) and test (red) set of the CoMSIA model.

Comp No.		Gas Pl	nase		Comm	Solvent Phase (Aqueous)			
	НОМО	LUMO	HLG	Dipole	Comp	НОМО	LUMO	HLG	Dipole
	(eV)	(eV)	(eV)	(D)	10.	(eV)	(eV)	(eV)	(D)
1	-0.224	-0.043	0.181	3.858	1	-0.231	-0.048	0.183	5.342
32	-0.213	-0.054	0.159	6.091	32	-0.217	-0.055	0.162	8.625
14	-0.237	-0.079	0.158	3.394	14	-0.237	-0.077	0.160	4.422
39	-0.217	-0.042	0.175	3.494	39	-0.216	-0.039	0.177	3.711

Table S3. Calculated quantum chemical descriptors for the active compounds (1 and 32) and low active compounds (14 and 39).

System	Donor	Acceptor	Occupancy (%) ^b	Distance (Å) ^c	Angle (°) ^d
110 LICD1 1	Ser170 HG	ligand O23	99.41	2.71 (0.12)	20.48 (10.79)
пр-п501-1	Tyr183 HH	ligand O23	99.43	2.88 (0.21)	21.51 (11.57)
11β-HSD1- 11	Ser170 HG	ligand O23	99.38	2.69 (0.12)	25.17 (11.12)
11β-HSD1- 14	Ser170 HG	ligand O23	99.78	2.69 (0.12)	22.81 (10.30)

Table S4. Hydrogen bonds analyses from MD simulations a.

^a The listed donor and acceptor pairs satisfy the criteria (H-bond length less than 5 Å and H-bond angle in the range of 120-180°) for the H-bond over 30.0% of the time during the 50 ns of simulation. ^b Occupancy is in unit of percentage of H-bond formed during the investigated time period. ^c The average distance with standard error (SE = standard deviation/N^{1/2}) in parentheses between H-bond acceptor atom and H-bond donor atom in the investigated time period. ^d The average angle with standard error (SE = standard deviation/N^{1/2}) in parentheses for H-bond in the investigated time period.

Figure S5. (**a**) H-bonds and hydrophobic interactions between 11β-HSD1 and compound **11** generated by LIGPLOT program. (**b**) H-bond interaction of **11** in the binding site with time evolution. L1 represents the distances between the amide carbonyl oxygen and the side chain hydroxyl of Ser170. (**c**) Mass-center distances associated with hydrophobic interactions between 11β-HSD1 and **11** at the binding site over 50 ns of MD trajectories. The curves of D1 is shifted downward by 2.0 Å, D3 is shifted upward by 2.0 Å, respectively.

Figure S6. Comparison of per-residue energy decomposition for key residues for the three enzymeinhibitors complexes: (**a**) the sum of vdW and nonpolar solvation energy, $\Delta E_{vdW} + \Delta G_{nonpol}$, and (**b**) the sum of electrostatic and polar solvation energy, $\Delta E_{ele} + \Delta G_{ele(PB)}$.