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The use of enzymes as industrial biocatalysts is currently a solution for many problems of modern
organic chemistry, which tries to carry out the most complex reactions under the rules of green
chemistry [1]. In this context, enzyme immobilization is a critical point for the implementation of
many processes [2]. This technique has been developed to obtain a heterogeneous biocatalyst, and
thereby to produce reusable enzymes. From this necessity, immobilization has evolved to solve some
other limitations of enzymes, like stability, activity, selectivity or resistance to inhibitors [3], and even
to improve enzyme purity [4].

However, only properly designed immobilization strategies, based on the understanding of the
protein immobilization mechanisms, may be able to optimize these results: immobilization support,
active groups in the support, immobilization protocol and enzyme-support reaction end point need
to be carefully selected [2–4]. From this viewpoint, immobilization of enzymes, far from being an
old-fashioned methodology to just reuse these expensive biocatalysts, has become a powerful tool to
greatly improve the enzyme properties [2–4].

This interest justifies the interest raised by the Special Issues in “Enzyme immobilization”
published in Molecules. To the 23 papers collected in the previous issue, this new issue gathers
20 new contributions, resuming some of the most significant advances in the field of immobilization
of enzymes.

The reviews included in these Special Issues comprise very diverse topics. The possibilities of
improving enzyme properties via immobilization, focusing on oxidoreductases, have been explained in
a review paper [5] with a high impact in citations number. Other reviews have discussed the advantage
of diverse materials for enzyme immobilization, like inorganic supports [6] or agarose beads [7].
Immobilization of enzymes in magnetic nanoparticles [8] has been also reviewed, showing how
nanotechnology may open new opportunities to the immobilization of enzymes. In another review,
the fusion of the enzymes of interest to polyhydroxyalkanoate with covalently attached synthase
enzyme has been discussed as a method to achieve site-directed protein immobilization [9]. In a
similar context, another review has focused on recent advances in enzyme engineering towards in situ
self-assembly (bioengineering of bacteria to abundantly form enzymatically active inclusion bodies
such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules) [10]. Reviews also
include the design of enzymatic biosensors for drug screening and pharmaceutical kinetic studies [11]
and the immobilization of some glycoside hydrolases [12].

Some papers involve specific enzymes. For example, laccase has been immobilized in tailor-made
siliceous ordered mesoporous materials [13], inulinase has been non-covalently immobilized on
carbon nanotubes [14], organic/magnetic nanocarriers bearing hyperbranched poly(amido acids)
were used to immobilize γ-glutamyltranspeptidase [15], wool activated by cyanuric chloride
has been used to immobilize α-amylase [16], laccase has been immobilized on a pan/adsorbent
composite nanofibrous membrane [17], a thermophilic esterase has been immobilized on an epoxy
activated support [18], horseradish peroxidase has been attached to graphene oxide/Fe3O4 using
1-ethyl-3-(3-dimethyaminopropyl)carbodiimide as a cross-linking agent [19]. Comparison of differently
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immobilized enzymes has been the subject of some papers. For example, the performance of α-amylase
from Anoxybacillus sp. SK3-4 immobilized on Relizyme or Immobead supports has been compared [20].
A neutral protease from Bacillus subtilis was immobilized on diverse support. Glyoxyl-agarose gave
the best results and it proved to be a very useful biocatalyst to produce capecitabine [21]. Cellulase
was immobilized via the CLEA technology using magnetic nanoparticles to facilitate its handling
and used to hydrolyze lignocellulose [22]. Dehalogenase ST2570 has been site-specifically covalently
immobilized utilizing a formylglycine-generating enzyme [23].

Lipase immobilization has been the focus of many contributions. Lipase from Candida rugosa
has been immobilized in methacrylate-substituted polyphosphazene beads [24], lipase B from
Candida Antarctica has been immobilized in hydrophobic core-shell supports [25], poly(ethylene
glycol) decorated polystyrene nanoparticles modified by the adsorption of Congo red [26],
styrene-divinylbenzene beads [27,28] or a collection of different hydrophobic supports [29] have been
evaluated to immobilize different lipases. Prevention of enzyme desorption of lipases immobilized
on hydrophobic supports have been subject of different papers. For example, glutaraldehyde-acyl
heterofunctional mesoporous silica gel support has been used to immobilize the lipase from Burkholderia
cepacia [30] or lipases from Thermomyces lanuginosus and Pseudomonas fluorescens [31], the immobilization
proceeded first via lipase interfacial activation versus the acyl layer followed by the covalent attachment
via glutaraldehyde. Heterofunctional octyl-amino agarose beads have been used to immobilize diverse
lipases also aiming to prevent enzyme desorption while maintaining the advantages of the use of
hydrophobic supports to immobilize lipases [32]. Finally, the coating of immobilized lipases with PEI
have also been assayed to avoid enzyme desorption via physical crosslinking [33]. Later, the authors
showed how unfolded enzyme/PEI composites were formed during thermal inactivations. This made
the process of their desorption from the support more complicated when the authors intended to reuse
a clean octyl-agarose support for a new immobilization [34]. Lipase B from C. antarctica has been also
immobilized on bisepoxide-activated aminoalkyl resins showing the effect of the spacer arm on the
performance of the final immobilized enzyme [35]. Co-immobilized lipase from Candida rugosa and
magnetic nanoparticles using metal coordinated hydrogel nanofibers is also presented; the relative
activity of the composite is 8-fold higher than the free enzyme under certain conditions [36].

In some instances, the emphasis of the papers has been focused on the improved application of
the immobilized enzymes for a specific process. Special interest has been shown to the use of several
immobilized enzymes to catalyze a cascade reaction. The authors have used individually immobilized
enzymes to prevent the problems derived from the use of coimmobilized enzymes [37]. Thus,
β-galactosidase from Bacillus circulans, L-arabinose (D-galactose) isomerase from Enterococcus faecium
and d-xylose (D-glucose) isomerase from Streptomyces rubiginosus were immobilized individually onto
Eupergit supports and employed to transform lactose into ketohexose [38].

In another paper, combi-CLEAs of β-glycosidases produced from the commercial preparation
AR2000 (a mixture of diverse enzymes) was used to increase the amount of terpenes, linalool, nerol
and geraniol in wine, and that way to improve its organoleptic properties [39].

Lipase from Rhizopus oryzae was covalently immobilized on sepiolite and employed in the
production of a biofuel similar to biodiesel [40]. The degradation of 2,4-dichlorophenol was performed
using horseradish peroxidase covalently immobilized via glutaraldehyde chemistry [41]. The
multimeric structure of a nucleoside 2′-deoxyribosyltransferase was stabilized via immobilization
onto different and chemical crosslinking, and the biocatalyst thus prepared utilized in the synthesis of
nucleoside 2′-deoxyadenosine from 2′-deoxyuridine and adenine [42]. The thermophilic esterase from
Archaeoglobus fulgidus was adsorbed on hydrophobic Sepabeads EC-OD and the immobilized enzyme
was further incubated in the presence of glutaraldehyde and successfully employed in the synthesis of
poly(ε-caprolactone) [43]. Lecitase was immobilized on styrene-divinylbenzene beads and utilized
under ultrasound stirring as catalyst in the synthesis of flavor esters [27]. Changes in enzyme specify
upon immobilization are discussed in several papers [28,29,31,32,44].
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In a very elegant approach, coimmobilization of lysozyme with a target enzyme (in the example a
β-galactosidase) was shown to prevent enzyme degradation by bacterial attack [45]. In this example,
enzyme coimmobilization is compulsory, even with the problems that this may generate [37].

The development of techniques to visualize the immobilized enzymes may provide interesting
information to understand these processes and may open new opportunities to improve the control
and understanding of the enzyme immobilization following different protocols. In this sense, confocal
microscopy was used to identify the distribution of enzymes trapped in alginate [46]. In another paper,
immobilized enzymes were used to develop implantable glutamate sensors [47].

Finally, a commentary paper was dedicated to a protein engineering approach as an alternative to
immobilization, using a recombinant silk protein into which metal active sites can be incorporated to
produce solid-state metalloprotein materials [48].

I hope that the collection of papers gathered in these two issues provides a vision of the current
and future trends in the development of enzyme immobilization and biocatalysis. These special issues
aim to point to the great potential of enzyme immobilization to solve some enzyme limitations and
encourage future research in this area, and hopefully this second issue will not be the last one on
this matter.
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