Supplementary Material

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by grape harvesting and processing conditions
Bin Tian ${ }^{1, *}$, Roland Harrison ${ }^{1}$, James Morton ${ }^{1}$, Marlene Jaspers ${ }^{1}$, Simon Hodge ${ }^{1}$, Claire Grose ${ }^{2}$ and Mike Trought ${ }^{2}$

Table S1. Compositional analysis of juices and wines from different treatments across the three blocks ($n=3$).

Block	Process	Pressure (Mpa)	Juice Yield (\%)	Concentration of Each Component in Juice (mg/L)				Extraction of Each Component in Juice (mg/kg of Grapes) ${ }^{1}$				Concentration of Each Component in Wine (mg/L)			
				Proteins*	Phenolics*	TLPs ${ }^{+}$	Chitinases ${ }^{+}$	Proteins	Phenolics	TLPs	Chitinases	Proteins*	Phenolics*	TLPs ${ }^{\text {+ }}$	Chitinases ${ }^{+}$
2011DP	H-WB	0-0.4	13.5	148.3 ± 38.4	248.8 ± 34.7	113.3 ± 3.4	83.2 ± 1.6	20.0 ± 5.2	33.6 ± 4.7	15.3 ± 0.5	11.2 ± 0.2	n/a	n/a	n/a	n/a
		0-0.8	42.2	159.1 ± 32.7	195.0 ± 36.1	118.3 ± 2.2	92.5 ± 0.6	67.1 ± 13.8	82.3 ± 15.2	49.9 ± 0.9	39.0 ± 0.2	n/a	n/a	n/a	n/a
		0-1.6	55.7	141.0 ± 33.1	195.5 ± 25.9	108.5 ± 1.4	89.7 ± 0.8	78.6 ± 18.4	108.9 ± 14.4	60.4 ± 0.8	50.0 ± 0.4	n/a	n/a	n/a	n/a
	H-DC-3	0-0.4	50.0	224.4 ± 37.4	268.3 ± 35.1	119.0 ± 1.3	107.0 ± 0.4	112.2 ± 18.7	134.2 ± 17.5	59.5 ± 0.7	53.5 ± 0.2	n/a	n/a	n/a	n/a
		0-0.8	60.0	192.5 ± 13.9	242.2 ± 13.6	114.6 ± 2.3	105.1 ± 2.4	115.5 ± 8.4	145.3 ± 8.1	68.8 ± 1.4	63.1 ± 1.5	n/a	n/a	n/a	n/a
		0-1.6	62.7	175.3 ± 30.4	211.2 ± 27.1	112.0 ± 0.8	102.2 ± 1.6	109.9 ± 19.1	132.4 ± 17.0	70.2 ± 0.5	64.1 ± 1.0	n/a	n/a	n/a	n/a
	M-DC-3	0-0.4	50.4	153.8 ± 38.6	217.8 ± 39.3	98.1 ± 5.3	83.1 ± 4.9	77.5 ± 19.5	109.8 ± 19.8	49.4 ± 2.7	41.9 ± 2.5	n/a	n/a	n/a	n/a
		0-0.8	63.9	121.9 ± 7.2	196.3 ± 11.2	102.2 ± 2.2	87.6 ± 1.7	77.9 ± 4.6	125.4 ± 7.1	65.3 ± 1.4	56.0 ± 1.1	n/a	n/a	n/a	n/a
		0-1.6	71.5	118.8 ± 15.7	180.1 ± 15.2	98.5 ± 0.8	85.4 ± 0.8	85.0 ± 11.3	128.8 ± 10.9	70.4 ± 0.6	61.1 ± 0.6	n/a	n/a	n/a	n/a
2012DP	H-WB	0-0.4	15.7	170.7 ± 18.7	228.0 ± 1.7	138.8 ± 4.6	94.1 ± 4.1	26.8 ± 2.9	35.8 ± 0.3	21.8 ± 0.7	14.8 ± 0.6	87.5 ± 5.9	203.0 ± 5.9	92.2 ± 3.8	43.5 ± 1.4
		0.4-0.8	26.6	205.5 ± 6.4	224.6 ± 3.8	160.2 ± 3.1	116.2 ± 0.4	54.7 ± 1.7	59.8 ± 1.0	42.6 ± 0.8	30.9 ± 0.1	120.2 ± 20.1	202.7 ± 1.7	104.8 ± 3.2	62.7 ± 3.4
		0-0.8	42.3	181.0 ± 11.2	222.4 ± 0.8	152.0 ± 2.0	110.0 ± 0.5	76.6 ± 4.7	94.1 ± 0.4	64.3 ± 0.9	46.5 ± 0.2	107.3 ± 7.4	201.9 ± 4.3	99.4 ± 5.2	59.2 ± 3.4
		0.8-1.6	19.6	144.3 ± 6.6	250.8 ± 8.7	123.6 ± 1.1	97.9 ± 0.8	28.3 ± 1.3	49.1 ± 1.7	24.2 ± 0.2	19.2 ± 0.2	90.4 ± 11.1	213.8 ± 3.4	72.8 ± 3.7	45.3 ± 3.4
		0-1.6	61.9	181.1 ± 5.6	232.1 ± 3.5	140.8 ± 3.2	105.6 ± 1.5	112.1 ± 3.5	143.7 ± 2.1	87.1 ± 2.0	65.4 ± 0.9	116.6 ± 12.3	209.1 ± 0.8	92.9 ± 3.9	54.7 ± 2.1
	H-DC-3	0-0.4	49.0	182.5 ± 13.8	275.8 ± 1.7	136.9 ± 4.0	100.2 ± 2.4	89.4 ± 6.8	135.1 ± 0.8	67.1 ± 1.9	49.1 ± 1.2	103.7 ± 2.8	236.9 ± 3.2	81.4 ± 4.4	44.5 ± 3.2
		0.4-0.8	12.3	201.2 ± 20.4	259.1 ± 0.8	148.6 ± 3.3	115.6 ± 1.7	24.7 ± 2.5	31.9 ± 0.1	18.3 ± 0.4	14.2 ± 0.2	114.1 ± 10.2	219.4 ± 1.3	97.9 ± 8.2	58.2 ± 3.9
		0-0.8	61.3	162.4 ± 19.9	272.7 ± 1.0	138.0 ± 3.5	102.4 ± 2.7	99.6 ± 12.2	167.2 ± 0.6	84.6 ± 2.1	62.8 ± 1.6	90.9 ± 11.5	230.2 ± 3.9	83.3 ± 5.6	46.3 ± 4.9
		0.8-1.6	8.6	157.3 ± 12.1	300.2 ± 2.4	116.3 ± 4.3	94.9 ± 0.7	13.5 ± 1.0	25.8 ± 0.2	10.0 ± 0.4	8.2 ± 0.1	66.9 ± 8.7	240.2 ± 2.9	63.2 ± 10.8	30.0 ± 7.4
		0-1.6	69.9	182.4 ± 11.7	274.6 ± 0.5	134.7 ± 4.1	100.8 ± 2.5	127.5 ± 8.2	192.0 ± 0.3	94.2 ± 2.9	70.5 ± 1.7	95.9 ± 11.2	211.9 ± 7.9	83.0 ± 5.6	48.0 ± 3.7
	M-DC-3	0-0.4	55.3	158.1 ± 9.0	267.7 ± 1.3	137.0 ± 4.3	103.4 ± 1.6	87.5 ± 5.0	148.0 ± 0.7	75.8 ± 2.4	57.2 ± 0.9	102.4 ± 6.0	223.0 ± 11.4	88.7 ± 2.0	45.6 ± 5.3
		0.4-0.8	12.9	112.7 ± 42.0	263.3 ± 7.3	124.0 ± 2.9	104.3 ± 0.7	14.5 ± 5.4	34.0 ± 0.9	16.0 ± 0.4	13.4 ± 0.1	75.6 ± 10.4	221.9 ± 0.5	70.5 ± 2.4	34.5 ± 1.8
		0-0.8	68.2	158.3 ± 12.7	269.1 ± 2.2	133.3 ± 5.1	102.9 ± 0.8	108.0 ± 8.7	183.5 ± 1.5	90.9 ± 3.5	70.2 ± 0.6	95.8 ± 10.6	229.6 ± 2.9	85.8 ± 5.0	43.6 ± 3.6
		0.8-1.6	4.8	32.8 ± 4.1	299.9 ± 7.1	108.2 ± 2.1	98.3 ± 0.7	1.6 ± 0.2	14.4 ± 0.3	5.2 ± 0.1	4.7 ± 0.0	60.2 ± 15.2	269.4 ± 4.6	53.0 ± 8.5	24.1 ± 5.5
		0-1.6	73.0	164.8 ± 10.4	272.1 ± 1.7	132.4 ± 4.3	102.3 ± 0.6	120.3 ± 7.6	198.7 ± 1.3	96.6 ± 3.1	74.7 ± 0.5	84.7 ± 9.7	220.8 ± 6.6	75.6 ± 5.4	37.5 ± 1.1
2012BM	H-WB	0-0.4	16.7	51.5 ± 8.8	175.2 ± 9.0	55.3 ± 1.4	28.7 ± 2.4	8.6 ± 1.5	29.3 ± 1.5	9.2 ± 0.2	4.8 ± 0.4	n/a	n/a	n/a	n/a
		0-0.8	43.3	78.7 ± 3.6	179.5 ± 8.1	73.1 ± 1.2	42.0 ± 0.1	34.1 ± 1.6	77.7 ± 3.5	31.6 ± 0.5	18.2 ± 0.1	n/a	n/a	n/a	n/a
		0-1.6	62.0	71.8 ± 2.7	161.6 ± 25.1	59.4 ± 7.1	36.8 ± 3.7	44.5 ± 1.7	100.2 ± 15.5	36.8 ± 4.4	22.8 ± 2.3	n/a	n/a	n/a	n/a
	H-DC-3	0-0.4	48.0	79.8 ± 11.9	229.8 ± 20.1	72.6 ± 6.8	44.0 ± 3.4	38.3 ± 5.7	110.3 ± 9.7	34.8 ± 3.2	21.1 ± 1.6	n/a	n/a	n/a	n/a
		0-0.8	61.0	91.5 ± 42.0	241.6 ± 8.2	76.1 ± 5.2	48.0 ± 3.0	55.8 ± 25.6	147.4 ± 5.0	46.4 ± 3.2	29.3 ± 1.9	n/a	n/a	n/a	n/a
		0-1.6	68.7	71.0 ± 16.0	200.7 ± 11.4	61.5 ± 5.9	39.1 ± 4.2	48.8 ± 11.0	137.9 ± 7.8	42.2 ± 4.0	26.9 ± 2.9	n/a	n/a	n/a	n/a
	M-DC-3	0-0.4	56.3	84.5 ± 10.9	244.6 ± 13.2	67.5 ± 3.9	44.9 ± 2.1	47.6 ± 6.1	137.7 ± 7.4	38.0 ± 2.2	25.3 ± 1.2	n/a	n/a	n/a	n/a
		0-0.8	70.7	56.4 ± 11.6	229.8 ± 8.1	60.8 ± 2.2	39.8 ± 0.7	39.9 ± 8.2	162.4 ± 5.8	43.0 ± 1.5	28.2 ± 0.5	n/a	n/a	n/a	n/a
		0-1.6	71.2	63.7 ± 7.9	242.2 ± 7.4	60.9 ± 1.1	40.6 ± 0.8	45.3 ± 5.6	172.4 ± 5.3	43.4 ± 0.8	28.9 ± 0.6	n / a	n/a	n/a	n/a

[^0] wines.

[^0]: determined by Folin-Ciocalteau method, which is expressed as gallic acid equivalent; ${ }^{+}$TLPs and chitinases were determined by RP-HPLC, which is expressed as thaumatin equivalent. $n /$ a, juices were not bottle fermented to get

