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Abstract: The synthesis and the evaluation as organocatalysts of new chiral guanidines derived
from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using
di-t-butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized
through the reaction of 2-chlorobezimidazole and a chiral amine in moderate-to-good yields. Among
all of them, those derived from (R)-1-phenylethan-1-amine (1) and (S)-1-(2-naphthyl)ethan-1-amine
(3) turned out to be the most efficient for such asymmetric transformation, rendering good-to-high
yields and moderate-to-good enantioselectivities for the amination products.

Keywords: organocatalysis; electrophilic amination; guanidines; asymmetric catalysis; dicarbonyl
compounds

1. Introduction

The synthesis of chiral molecules bearing a nitrogen-containing quaternary stereocenter adjacent
to a carboxylic acid derivative in a direct and catalytic manner is still considered a challenging
transformation [1–3]. Among the different strategies developed to accomplish this, the electrophilic
amination of 1,3-dicarbonyl compounds [4–7] has emerged as an attractive methodology. Since
the pioneering work developed by the Jørgensen group, who published a metal- [8] and an
organocatalyzed [9] amination of β-keto esters and β-keto nitriles with azodicarboxylates, the work
done in this field has grown considerably [10–15]. In the last years, the work developed in the field
of organocatalysis for this transformation has been quite prolific [16–20], especially thanks to the
irruption of the hydrogen-bond organocatalysis, which has resulted in the publication of several works
employing this strategy [21–29].

In the last decade, our research group has been involved in the synthesis and application of
benzimidazole-derivatives as bifunctional organocatalysts able to activate different 1,3-dicarbonyl
compounds through hydrogen-bond interactions in different asymmetric organocatalyzed
transformations [30–34]. Thus, although such benzimidazoles have recently demonstrated to be
efficient catalysts for the electrophilic amination of dicarbonyl compounds [35], we decided to further
extend the investigations in this difficult transformation by synthesizing new and readily available
guanidines derived from benzimidazoles and evaluating their catalytic performance (Figure 1).
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Figure 1. Benzimidazoles-based guanidine organocatalyst in the asymmetric electrophilic aminations 
of dicarbonyl compounds. 

2. Results and Discussion 

Firstly, a series of new different guanidine organocatalysts were synthesized following a 
straightforward methodology developed in our research group [30–35]. Thus, 2-chlorobenzimidazole 
was reacted with the corresponding chiral amine in the presence of Et3N (3 equiv.) at 200 °C (pressure 
tube) for 24 h (Figure 2). Under these conditions, the corresponding products (1–10) were obtained 
in moderate-to-good yields. As expected, lower yields were achieved when bulky aliphatic amines 
were employed (5–7). For the synthesis of benzimidazole 10, the corresponding 2-
chloromehtylbenzimidazole was used instead. 
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Once the guanidine derivatives were synthesized, their performance as organocatalysts in the 
asymmetric electrophilic amination of 1,3-dicarbonyl compounds was evaluated. In the search for 
optimal conditions and catalyst, and based on our previous experience in this transformation [35], 
the reaction between ethyl 2-oxocyclopenthanecarboxylate and di-t-butylazodicarboxylate in toluene 

Figure 1. Benzimidazoles-based guanidine organocatalyst in the asymmetric electrophilic aminations
of dicarbonyl compounds.

2. Results and Discussion

Firstly, a series of new different guanidine organocatalysts were synthesized following a
straightforward methodology developed in our research group [30–35]. Thus, 2-chlorobenzimidazole
was reacted with the corresponding chiral amine in the presence of Et3N (3 equiv.) at 200 ◦C
(pressure tube) for 24 h (Figure 2). Under these conditions, the corresponding products (1–10)
were obtained in moderate-to-good yields. As expected, lower yields were achieved when bulky
aliphatic amines were employed (5–7). For the synthesis of benzimidazole 10, the corresponding
2-chloromehtylbenzimidazole was used instead.
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Once the guanidine derivatives were synthesized, their performance as organocatalysts in the
asymmetric electrophilic amination of 1,3-dicarbonyl compounds was evaluated. In the search for
optimal conditions and catalyst, and based on our previous experience in this transformation [35],
the reaction between ethyl 2-oxocyclopenthanecarboxylate and di-t-butylazodicarboxylate in toluene
at 25 ◦C was chosen as a model reaction using 10 mol % of guanidine-derivative loading (Table 1).
Thus, catalysts bearing an aromatic ring in the amine moiety (1–4) produced amination product 13a in
high conversions and good-to-high enantioselectivities (Table 1, entries 1–4), whereas those bearing an
aliphatic moiety (5–7) gave rise to 13a in low or moderate conversions and ee’s (Table 1, entries 5–7).
The influence of the hydrogens in the guanidine moiety was evaluated with catalyst 8 lacking one
of them and bearing a tertiary amine part. As can be observed, although the results were quite
good, the presence of an additional hydrogen—which could play an important role in the substrate
activation—seems to be crucial in order to achieve high conversions and enantioselectivities (Table 1,
entry 8). By the contrary, the introduction of an extra activation point by using an aminoalcohol moiety
as in catalyst 9 turned out to be detrimental for the reaction results (Table 1, entry 9). Catalyst 10 lacks
conjugation between nitrogens in the guanidine moiety, and gave rise to both low conversion and
enantioselection for compound 13a.

Table 1. Organocatalyst screening. a
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According to the catalyst screening results, we decided to further optimize the reaction conditions
with guanidine 1, since it performed the best in terms of both conversion and enantioselectivity for
compound 13a. In this regard, the influence of the solvent, temperature, and catalyst loading was
assessed (Table 2). As can be observed, although good conversions were reached, none of the solvents
tested produced an amelioration in the enantioselectivity (Table 2, entries 1–4). Then, once toluene was
selected as the optimal solvent, lowering the reaction temperature was the next parameter assayed.
Thus, it was found that while ee barely changed at 0 ◦C, the conversion dropped down to 87% (Table 2,
entry 5). Finally, a decrease in the catalyst loading (5 mol %) was evaluated not only with catalyst 1
but also with 3, which also gave satisfactory results in the amination reaction. However, a slight drop
in the enantioselectivity of the process was observed (Table 2, entries 6 and 7).
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The influence of the substituent in the diazocompounds was also tested. In this regard, diethyl-
and dibenzylazodicarboxylate were screened, but both of them gave rise to the corresponding
amination products in lower yields and ee’s (see Supporting Information for details).

After having screened several parameters, the optimal reaction conditions chosen were the use
of benzimidazole 1 (10 mol %) as catalyst, toluene as solvent, and 25 ◦C as temperature. In addition,
since catalyst 3 performed similarly to 1, it was also selected for testing the substrate scope of the
reaction (Figure 3). Thus, cyclic five-membered 1,3-dicarbonyl compounds were firstly evaluated.
As mentioned, good results were achieved for 13a. However, when substrates 11b and 11c were
tested, the corresponding products 13b and 13c were only isolated in moderate-to-good yields
and enantioselectivities [36]. Unfortunately, six-membered dicarbonyl compounds turned out to
be unreactive under these conditions [36]. Next, indanone-derived β-keto esters were assayed. As can
be observed in Figure 2, increasing the steric bulk at the alkyl substituent of the ester moiety resulted
in lower enantioselectivities and yields, obtaining the best enantioselection for methyl ester derivative
13f (60% ee). As somehow expected, the more-reactive 2-acetyl-1-indanone gave rise to the amination
product 13j in moderate enantioselectivity, although in unexpectedly slightly lower yield than its
keto ester analogue. Next, tetralone derivatives were taken into account. Contrary to the behavior
observed with their non-benzocondensed analogues, very high enantioselectivities were achieved
along with good yields. Again, 13k, bearing a methyl ester moiety, was superior in terms of ee in
front of 13l (85% and 80% ee, respectively with catalyst 1). Lower yields and enantioselectivities were
obtained for product 13m when the more reactive diketone was employed, being the drop even more
accused in this case. Finally, open-chained 1.3-keto esters—which normally fail with most of the
published catalysts [35]—were assayed. To our surprise, the use of ethyl benzoyl acetate gave rise to
the corresponding amination product in good ee’s, although with poor yields. Despite this, encouraged
by the good enantioselectivities reached for 13n we decided to test another acyclic ketoester: methyl
3-oxo-2-methylbutanoate. Disappointingly, the reaction failed completely with both catalysts. It is
important to mention that with the aim of obtaining better results a decrease in reaction temperature
was assayed in the majority of the cases where compounds 13 were achieved with moderate ee’s and
good yields. However, with the exception of compound 13j, where the ee increased significantly, no
substantial enhancement of optical purity was observed and, in addition, a drop in the yield was
observed in most cases.
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In order to gain a deeper knowledge about the reaction mechanism, nonlinear effect experiments
were conducted to determine whether one or more catalyst molecules are involved in the catalytic
cycle [37]. According to the observed results, it was determined that such a nonlinear effect
did not occur in the studied reaction, pointing towards the involvement of a single catalyst
molecule operating in the catalytic cycle (see Supporting Information for details about the
experiments). Thus, a hypothetical model for the catalytic cycle is depicted in Figure 4, which
is based on previous computational and experimental studies carried out in our research group
employing benzimidazole-derived catalysts in asymmetric conjugate additions. Thus, guanidine
benzimidazole-derived (R)-1 could act as a bifunctional organocatalyst, acting initially as a base.
Then, the 1,3-dicarbonyl compound enolate formed could be coordinated with the organocatalyst
through hydrogen bonding, as depicted in intermediate A. A possible π–π stacking interaction would
explain the good results observed in the benzocondensed β-keto esters, and could not be ruled out.
Afterwards, the protonated guanidine group can activate the azodicarboxylate and hence facilitate
the enantioselective attack of the enolate (intermediate B), releasing the corresponding amination
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product and regenerating (R)-1. It is important to remark that (R)-configured amination product was
obtained when (R)-1 is employed. This assumption was taken by comparison of experimental evidence
(chiral HPLC charts and optical rotation) with those previously reported in the literature for the same
products. As expected, when (S)-3 was the catalyst employed, the opposite absolute configuration was
observed in the amination product.
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3. Materials and Methods

All reagents were purchased from commercial sources and used without further purification.
Substrates that were not commercially available were synthesized according to known literature
procedures [19,22,35]. IRs were recorded on a JASCO FT-IR 4100 LE (Pike Miracle ATR) (Jasco
Analítica Spain, Madrid, Spain), and only the structurally most relevant peaks are listed. NMR spectra
were performed on a Bruker AC-300 or Bruker Avance-400 400 (Bruker Corporation, Billerica, MA,
USA) using CDCl3 as solvent and tetramethylsilane (TMS) as internal standard unless otherwise stated.
Low-resolution electron impact (EI) mass spectra were obtained at 70 eV on Agilent GC/MS-5973N
apparatus equipped with a HP-5MS column (Agilent technologies, 30 m × 0.25 mm). Optical rotations
were measured on a JASCO P-1030 Polarimeter (Jasco Analítica Spain, Madrid, Spain) with a 5 cm cell
(c given in g/100 mL). Enantioselectivities were determined by HPLC analysis (Agilent 1100 Series
HPLC) equipped with a G1315B diode array detector and a Quat Pump G1311A (Agilent Technologies,
Santa Clara, CA, USA) equipped with the corresponding Daicel chiral column, and the retention
time of the major enantiomer is highlighted in bold. Analytical thin layer chromatography (TLC)
was performed on Merck silica gel plates and the spots visualized with UV light at 254 nm (Merck
Millipore, Billerica, MA, USA). Flash chromatography employed Merck silica gel 60 (0.040–0.063 mm)
(Merck Millipore).

3.1. General Procedure for the Synthesis of Benzimidazole-Based Organocatalysts 1–10

In a sealed pressure tube, a mixture of 2-chloro-1H-benzo[d]imidazole (0.5 mmol), the corresponding
chiral amine 1 (2.5 equiv.), and Et3N (3 equiv.) was heated at 195–200 ◦C during 24 h. The reaction
mixture was then allowed to reach room temperature. After the addition of H2O (5 mL), the mixture
was extracted with CH2Cl2 (3 × 5 mL). The combined organic phases were dried over MgSO4 and
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evaporated under reduced pressure to give the corresponding crude products, which were purified
by flash chromatography (Hexane/EtOAc/MeOH). For the synthesis of benzimidazole 10, the same
procedure was followed using 2-chloromethylbenzimidazole (0.5 mmol). The data shown below
correspond to the pure compounds:

(R)-N-(1-Phenylethyl)-1H-benzo[d]imidazol-2-amine (1): White powder; [α]D
26 = +78.0 (c = 0.75, CHCl3);

IR (ATR) νmax: 3412, 3059, 1565, 1463, 1271, 1133, 1012 cm−1; 1H-NMR (300 MHz, CDCl3) δH = 1.45 (d,
J = 6.8 Hz, 3H), 5.00 (q, J = 6.8 Hz, 1H), 6.14 (s, 1H), 7.05 (dd, J = 5.8, 3.2 Hz, 2H), 7.14–7.30 (m, 7H)
ppm; 13C-NMR (75 MHz, CDCl3) δC = 24.0, 52.9, 112.3, 120.6, 125.7, 127.3, 128.7, 144.0, 155.1 ppm; MS
(EI) m/z 237 (M+, 53%), 138 (100), 105 (65), 77 (17).

(R)-N-(1-(2-Methoxyphenyl)ethyl)-1H-benzo[d]imidazol-2-amine (2): White powder; [α]D
28 = +67.6 (c = 1.01,

CHCl3); IR (ATR) νmax: 3395, 3054, 2963, 1576, 1463, 1258, 1131 cm−1; 1H-NMR (300 MHz, CDCl3)
δH = 1.44 (d, J = 6.7 Hz, 3H), 3.35 (s, 3H), 5.34 (m, 1H), 6.02–6.42 (s, 1H), 6.63 (d, J = 8.2 Hz, 1H), 6.81 (t,
J = 7.4 Hz, 1H), 6.96 (m, 2H), 7.14 (m, 3H), 7.25 (m, 1H), 11.05–9.14 (br s, 1H) ppm; 13C-NMR (75 MHz,
CDCl3): δC = 22.3, 49.0, 54.8, 110.7, 112.1, 120.2, 120.8, 126.5,128.3, 131.6, 155.2, 156.5 ppm; MS (EI) m/z
267 (M+, 25%), 236 (57), 135 (100), 105 (25), 77 (13).

(S)-N-(1-(Naphthalen-2-yl)ethyl)-1H-benzo[d]imidazol-2-amine (3): Yellowish powder; [α]D
25 = −105.5

(c = 1.00, CHCl3); IR (ATR) νmax: 3392, 3053, 1600, 1571, 1462, 1268, 1130 cm−1; 1H-NMR (300 MHz,
CDCl3) δH = 1.51 (d, J = 6.7 Hz, 3H), 4.95 (d, J = 6.6 Hz, 1H), 6.03 (s, 1H), 6.96 (dd, J = 5.7, 3.2 Hz, 2H),
7.16 (dd, J = 5.7, 3.0 Hz, 2H), 7.34–7.47 (m, 3H), 7.60–7.79 (m, 4H), ppm; 13C-NMR (75 MHz, CDCl3) δC

= 24.0 53.3, 112.3, 120.6, 124.0, 124.1, 125.9, 126.3, 127.6, 127.8, 128.8, 132.8, 133.3, 141.1, 154.6, ppm.

(R)-N-(1-(Naphthalen-1-yl)ethyl)-1H-benzo[d]imidazol-2-amine (4): Yellowish powder; [α]D
23 = −95.5

(c = 0.99, CHCl3); IR (ATR) νmax: 3405, 3050, 1572, 1462, 1268 cm−1;1H-NMR (300 MHz, CDCl3)
δH = 1.42 (d, J = 6.7 Hz, 3H), 5.56 (q, J = 6.3 Hz, 1H), 6.09 (s, 1H), 6.86–6.93 (m, 2H), 7.03 (s, 2H),
7.15–7.31 (m, 3H), 7.41 (d, J = 7.0 Hz, 1H), 7.66 (m, 1H), 7.85 (d, J = 8.5 Hz, 1H) ppm. 13C-NMR (75 MHz,
CDCl3) δC = 22.6, 49.1, 120.3, 122.0, 122.8, 125.4, 125.6, 126.1, 128.0, 128.8, 130.6, 133.9, 139.0, 154.7 ppm.

(R)-N-(2,3-Dihydro-1H-inden-1-yl)-1H-benzo[d]imidazol-2-amine (5): Light brown powder; [α]D
26 = +18.2

(c = 0.75, CHCl3); IR (ATR) νmax: 3043, 2936, 1578, 1461, 1270, 1054 cm−1; 1H-NMR (300 MHz, CDCl3)
δH = 1.83–1.98 (m, 1H), 2.59–2.72 (m, 1H), 2.78–2.91 (m, 1H), 2.92–3.04 (m, 1H), 5.07–5.31 (br s, 1H),
5.39 (t, J = 7.1 Hz, 3H), 7.02–7.09 (m, 2H), 7.12–7.20 (m, 1H), 7.22–7.26 (m, 2H), 7.26–7.37 (m, 3H) ppm;
13C-NMR (75 MHz, CDCl3) δC = 30.0, 34.3, 58.5, 112.1, 120.9, 123.9, 124.9, 126.7, 128.1, 142.8, 143.1,
154.3 ppm; MS (EI) m/z 249 (M+, 27%), 133 (100), 115 (44), 91 (10).

(R)-N-(1-Cyclohexylethyl)-1H-benzo[d]imidazol-2-amine (6): White powder; [α]D
26 = +2.7 (c = 0.98, CHCl3);

IR (ATR) νmax: 3390, 2924, 2851, 1630, 1577, 1463, 1262, 1156 cm−1; 1H-NMR (300 MHz, CDCl3)
δH = 0.77–1.09 (m, 5H), 1.12 (d, J = 6.6 Hz, 3H), 1.29–1.40 (m, 1H), 1.50–1.66 (m, 5H), 3.81 (m, 1H), 5.38
(s, 1H), 7.01 (dd, J = 5.8, 3.2 Hz, 2H), 7.25 (dd, J = 6.1, 2.9 Hz, 2H) ppm; 13C-NMR (75 MHz, CDCl3)
δC = 18.3, 26.1, 26.3, 28.7, 29.0, 43.3, 53.6, 111.9, 120.4, 129.8, 137.8, 155.8 ppm; MS (EI) m/z 243 (M+,
24%), 200 (8), 160 (59), 133 (100), 105 (9).

(R)-N-(3,3-Dimethylbutan-2-yl)-1H-benzo[d]imidazol-2-amine (7): White powder; [α]D
28 = −69.6 (c = 0.97,

CHCl3); IR (ATR) νmax: 3054, 2931, 1628, 1572, 1461, 1239, 1027 cm−1; 1H-NMR (300 MHz, CDCl3)
δH = 0.79 (s, 9H) 1.08 (t, J = 11.8 Hz, 3H),3.80 (s, 1H), 5.31 (s, 1H), 7.01 (dt, J = 10.2, 5.1 Hz, 2H), 7.25 (td,
J = 6.1, 2.6 Hz, 2H) ppm; 13C-NMR (75 MHz, CDCl3) δC = 16.7 26.1, 34.4, 57.4, 111.9, 120.4, 156.4 ppm;
MS (EI) m/z 217 (M+, 22%), 223 (100), 133 (17), 105 (4).

(S)-N-Methyl-N-(1-phenylethyl)-1H-benzo[d]imidazol-2-amine (8): White powder; [α]D
27 = −177.6 (c = 1.00,

CHCl3); IR (ATR) νmax: 2975, 1559, 1506, 1418, 1264, 1030, 905 cm−1; 1H-NMR (300 MHz, CDCl3)
δH = 1.51 (d, J = 6.9 Hz, 3H), 2.79 (s, 3H), 5.64 (q, J = 7.0 Hz, 1H), 7.11 (m, 9H) ppm; 13C-NMR (75 MHz,
CDCl3) δC = 16.2, 30.6, 55.7, 112.2, 120.4, 126.9, 127.4, 128.6, 140.7, 156.3 ppm; MS (EI) m/z 251 (M+,
86%), 236 (48), 147 (100), 118 (44), 105 (85), 91 (11), 77 (23).
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(R)-2-[(1H-Benzo[d]imidazol-2-yl)amino]-2-phenylethanol (9): White powder; [α]D
29 = −83.0 (c = 0.71,

MeOH); 1H-NMR (300 MHz, CD3COD) δH = 3.80 (dd, J = 11.3, 6.9 Hz, 1H), 3.88 (dd, J = 11.3, 4.8 Hz,
1H), 4.08 (q, 1H), 6.90–6.97 (m, 2H), 7.13–7.25 (m, 3H), 7.27–7.37 (m, 4H), 7.41–7.47 (m, 2H) ppm;
13C-NMR (75 MHz, CD3COD) δC = 24.0, 52.8, 112.2, 120.5, 125.6, 127.3, 128.7, 143.9, 155.0.

(R)-N-((1H-Benzo[d]imidazol-2-yl)methyl)-1-phenylethanamine (10): White powder; [α]D
28 = −22.6

(c = 1.00, CHCl3); IR (ATR) νmax: 3052, 1424, 1264 cm−1; 1H-NMR (300 MHz, CDCl3) δH = 1.37
(d, J = 6.6 Hz, 3H) 3.80 (q, 1H), 3.90 (2H), 5.35–6.00 (s, 1H), 7.17–7.23 (m, 3H), 7.24–7.29 (m, 3H),
7.31–7.36 (m, 1H), 7.49–7.57 (m, 2H) ppm; 13C-NMR (75 MHz, CDCl3): δC = 23.9,45.3, 58.1, 76.6, 77.1,
77.5, 114.9, 122.4, 126.6, 127.3, 128.6, 138.3, 144.2, 153.9.

3.2. General Procedure for the Asymmetric Amination of 1,3-Dicarbonyl Compounds

In an open-air tube at room temperature (25 ◦C) the corresponding 1,3-dicarbonyl compound
(0.1 mmol) was added to a solution of organocatalyst (0.01 mmol, 10 mol %) in toluene (1 mL).
After 5 min, di-tert-butylazodicarboxilate (0.11 mmol, 1.1 equiv.) was added in one portion and the
reaction was then allowed to react for 15 h. After this time, water (5 mL) and ethyl acetate were added,
and then the aqueous layer was re-extracted twice (2 × 10 mL). The combined organic phases were
dried (MgSO4) and evaporated under reduced pressure. Finally, the reaction crude was purified by
column chromatography on silica gel or preparative TLC using hexane/ethyl acetate mixtures as
eluent. The analytical data shown below correspond to those enantioenriched products (≥20% ee)
as representative compounds. All the compounds are described in the literature. Therefore, only
1H-NMR, MS (EI) and enantiomeric excess determination conditions are listed.

(R)-Di-tert-butyl 1-[1-(ethoxycarbonyl)-2-oxocyclopentyl]hydrazine-1,2-dicarboxylate (13a) [35]: Colorless
oil; [α]D

28 = −6.10 (c = 0.49, CHCl3, 91% ee); 1H-NMR (300 MHz, CDCl3) δH = 1.28 (t, J = 7.1 Hz,
3H), 1.59–1.36 (m, 18H), 2.98–1.75 (m, 6H), 4.24 (m, 2H), 6.53 (br s, 1H) ppm; chiral HPLC analysis:
Chiralcel IA column, Hexane/EtOH 96:04, flow rate = 0.7 mL/min, λ = 210 nm, retention times: 9.9
and 11.0 min.

(R)-Di-tert-butyl 1-(3-acetyl-2-oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (13b) [35]: Colorless oil;
[α]D

28 = +2.64 (c = 1.0, CHCl3, 50% ee); 1H-NMR (300 MHz, CDCl3) δH = 1.47 (d, J = 1.9 Hz, 18H), 1.62
(s, 3H), 2.28–2.44 (m, 2H), 4.38 (d, J = 6.6 Hz, 2H), 6.79 (br s, 1H) ppm; chiral HPLC analysis: Chiralcel
IA column, Hexane/EtOH 98:02, flow rate = 1 mL/min, λ = 210 nm, retention times: 21.0 and 24.2 min.

(R)-Di-tert-butyl 1-(1-acetyl-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (13c) [35]: Colorless oil; [α]D
28 =

+16.99 (c = 1.1, CHCl3, 43% ee); 1H-NMR (300 MHz, CDCl3) δH = 1.45 (d, J = 7.2 Hz, 18H), 1.56–2.09 (m,
3H), 2.51–2.18 (m, 5H), 2.84–2.51 (m, 1H), 6.48 (br s, 1H) ppm; chiral HPLC analysis: Chiralcel AD-H
column, Hexane/EtOH 98:02, flow rate = 1 mL/min, λ = 210 nm, retention times: 12.2 and 17.3 min.

(R)-Di-tert-butyl 1-[2-(methoxycarbonyl)-1-oxo-2,3-dihydro-1H-inden-2-yl]hydrazine-1,2-dicarboxylate
(13f) [24]: Slightly yellow oil; [α]D

28 = −57.19 (c = 1.0, CHCl3, 60% ee); 1H-NMR (300 MHz, CDCl3)
δH = 0.78–1.89 (m, 18H), 3.45–4.39 (m, 5H), 6.34–6.84 (m, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.49 (d, J = 7.2 Hz,
1H), 7.63 (t, J = 7.2 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H) ppm; chiral HPLC analysis: Chiralcel IA column,
Hexane/iPrOH 90:10, flow rate = 1 mL/min, λ = 240 nm, retention times: 16.1 and 22.1 min.

(R)-Di-tert-butyl 1-[2-(ethoxycarbonyl)-1-oxo-2,3-dihydro-1H-inden-2-yl]hydrazine-1,2-dicarboxylate
(13g) [35]: Colorless sticky oil; [α]D

28 = −42.40 (c = 1.4, CHCl3, 55% ee); 1H-NMR (300 MHz, CDCl3)
δH = 1.14–1.55 (m, 21H), 3.82 (d, J = 16.6 Hz, 1H), 3.96–4.32 (m, 3H), 6.31–6.83 (bs, 1H), 7.36 (t, J = 7.3 Hz,
1H), 7.49 (d, J = 6.9 Hz, 1H), 7.62 (t, J = 7.2 Hz, 1H), 7.76 (d, J = 9.4 Hz, 1H) ppm; chiral HPLC analysis:
Chiralcel IA column, Hexane/iPrOH 90:10, flow rate = 1 mL/min, λ = 240 nm, retention times: 12.5
and 14.4 min.

(R)-Di-tert-butyl 1-(2-(isopropoxycarbonyl)-1-oxo-2,3-dihydro-1H-inden-2-yl)hydrazine-1,2-dicarboxylate
(13h) [29]: Colorless oil; [α]D

28 = −6.46, (c = 1.4, CHCl3 29% ee); 1H-NMR (300 MHz, CDCl3)
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δH = 1.12–1.52 (m, 24H), 3.71 (dd, J = 69.4, 16.6 Hz, 1H), 4.16 (m, 1H), 5.03 (dt, J = 12.4, 6.1 Hz,
1H), 6.32–6.83 (m, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.61 (t, J = 7.2 Hz, 1H), 7.74 (d,
J = 14.7 Hz, 1H) ppm; chiral HPLC analysis: Chiralcel AD-H column, Hexane/EtOH 96:04, flow rate =
1 mL/min, λ = 254 nm, retention times: 11.2 and 28.5 min.

(R)-Di-tert-butyl 1-(2-(tert-butoxycarbonyl)-1-oxo-2,3-dihydro-1H-inden-2-yl)hydrazine-1,2-dicarboxylate
(13i) [29]: Colorless oil; [α]D

28 = −3.20, (c = 1.0, CHCl3, 21% ee); 1H-NMR (300 MHz, CDCl3)
δH = 1.55–1.21 (m, 27H), 3.22 (d, J = 17.2 Hz, 1H), 3.65 (d, J = 17.2 Hz, 1H), 6.62 (br s, 1H), 7.36
(d, J = 7.4 Hz, 1H), 7.48 (d, J = 7.7 Hz, 1H), 7.59–7.69 (m, 1H), 7.79 (d, J = 7.2 Hz, 1H); chiral HPLC
analysis: Chiralcel AD-H column, Hexane/EtOH 96:04, flow rate = 1 mL/min, λ = 254 nm, retention
times: 10.4 and 18.4 min.

Di-tert-butyl 1-(2-acetyl-1-oxo-2,3-dihydro-1H-inden-2-yl)hydrazine-1,2-dicarboxylate (13j) [35]: Slightly
yellow oil; [α]D

28 = +41.70, (c = 1.0, CHCl3, 57% ee); 1H-NMR (300 MHz, CDCl3) δH = 1.38 (br m, 18H),
2.35 (m, J = 39.1 Hz, 3H), 3.58 (m, 1H), 4.15 (m, 1H), 6.82 (br s, 1H), 7.34 (d, J = 6.7 Hz, 1H), 7.49 (d,
J = 7.0 Hz, 1H), 7.63 (m, 2H) ppm; chiral HPLC analysis: Chiralcel IA column, Hexane/iPrOH 90:10,
flow rate = 1 mL/min, λ = 240 nm, retention times: 19.3 and 24.3 min.

(S)-Di-tert-butyl 1-[2-(methoxycarbonyl)-1-oxo-2,3-dihydro-1H-tetralone-2-yl]hydrazine-1,2-dicarboxylate
(13k) [24]: Slightly yellow oil; [α]D

28 = +6.07 (c = 1.2, CHCl3, 87% ee); 1H-NMR (300 MHz, CDCl3)
δH = 1.20–1.26 (m, 8H), 1.47 (s, 11H), 2.53–3.09 (m, 4H), 3.82 (s, 3H), 6.22 (br s, 1H), 7.36 (d, J = 6.0 Hz,
1H), 7.45 (d, J = 6.9 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 7.3 Hz, 1H) ppm; chiral HPLC analysis:
Chiralcel OD-H column, Hexane/iPrOH 95:05, flow rate = 1 mL/min, λ = 240 nm, retention times:
15.8 and 17.7 min.

(R)-Di-tert-butyl 1-[2-(ethoxycarbonyl)-1-oxo-2,3-dihydro-1H-tetralone-2-yl]hydrazine-1,2-dicarboxylate
(13l) [35]: Slightly yellow sticky oil; [α]D

28 = −11.53 (c = 1.2, CHCl3, 80% ee); 1H-NMR (300 MHz,
CDCl3) δH = 1.26–1.47 (br m, 21H), 2.67 (dd, J = 16.3, 6.5 Hz, 1H), 2.95 (d, J = 17.4 Hz, 2H), 3.44 (br s,
1H), 4.23–4.35 (m, 2H), 6.21 (m, 1H), 7.26 (d, J = 8.1 Hz, 2H), 7.45 (t, J = 7.2 Hz, 1H), 7.89 (d, J = 7.6 Hz,
1H) ppm; chiral HPLC analysis: Chiralcel AD-H column, Hexane/iPrOH 85:15, flow rate = 1 mL/min,
λ = 240 nm, retention times: 8.6 and 11.4 min.

(R)-Di-tert-butyl 1-(2-acetyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)hydrazine-1,2-dicarboxylate (13m) [35]:
Dark brown oil; [α]D

28 = −8.23, (c = 1.1, CHCl3, 27% ee); 1H-NMR (300 MHz, CDCl3) δH = 1.52–1.43
(m, 18H), 2.41 (m, 3H), 2.70 (br s, 2H), 3.13–2.85 (m, 2H), 6.21 (s, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.30 (d,
J = 3.7 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.97 (d, J = 7.7 Hz, 1H) ppm; chiral HPLC analysis: Chiralcel IA
column, Hexane/iPrOH 90:10, flow rate = 1 mL/min, λ = 240 nm, retention times: 19.5 and 22.6 min.

Di-tert-butyl 1-(1-ethoxy-2-methyl-1,3-dioxo-3-phenylpropan-2-yl)hydrazine-1,2dicarboxylate (13n) [38]: Not
isolated; 1H-NMR (300 MHz, CDCl3) δH = 1.71–1.19 (m, 24H), 4.33 (dd, J = 7.0, 3.1 Hz, 2H), 6.51–5.92
(br s, 1H), 7.56–7.43 (m, 3H), 8.53 (m, 2H) ppm; chiral HPLC analysis: Chiralcel AD-H column,
Hexane/iPrOH 90:10, flow rate = 1 mL/min, λ = 210 nm, retention times: = 8.5 and 17.9 min.

4. Conclusions

In summary, in this work we have described the synthesis and application of new chiral guanidines
derived from benzimidazoles as organocatalysts for the asymmetric electrophilic α-amination of
1,3-dicarbonyl compounds employing di-t-butylazodicarboxylate as aminating agent. In general,
the new catalysts are synthesized in good yields in a straightforward one-step reaction. In addition,
the amination products were obtained in good yields and enantioselectivities varying from moderate
to high when 10 mol % of catalysts 1 and 3 were employed. Although a more comprehensive study
about the reaction mechanism is necessary, a bifunctional role of the catalyst is postulated.

Supplementary Materials: General remarks and NMR copies of representative catalysts as well as 1H-NMR and
HPLC charts of amination compounds are provided.
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