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Abstract: Cardiovascular diseases are a leading cause of death in developed and developing countries
and decrease the quality of life, which has enormous social and economic consequences for the
population. Recent studies on essential oils have attracted attention and encouraged continued
research of this group of natural products because of their effects on the cardiovascular system.
The pharmacological data indicate a therapeutic potential for essential oils for use in the treatment of
cardiovascular diseases. Therefore, this review reports the current studies of essential oils chemical
constituents with cardiovascular activity, including a description of their mechanisms of action.
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1. Introduction

Non-communicable diseases (NCD) are the leading causes of death worldwide and are responsible
for approximately 68% of all global deaths in 2012. The main causes for NCD are cardiovascular
diseases (CVD), which account for 46.2% of NCD-related deaths. CVD are responsible for 17.3 million
deaths per year, a number that is expected to grow to more than 23.6 million by 2030 [1]. Although
a wide range of pharmacological agents are available for the treatment of CVD, the control and
prevention of these diseases continues to be a challenge. The cost of treatment continues to increase,
which makes CVD even more expensive and impactful to the budget of public health systems around
the world [2]. Therefore, new tools for the treatment of CVD are necessary for a cost that is reasonable
for health systems. Among the sources of drug candidates available for the treatment of CVD, natural
products have been reported to have a potential role in the therapeutic effects of such diseases [3].
The evaluation of the chemical constituents of plants has enriched the pharmacological arsenal used in
the treatment of diseases, and it has helped to understand their pathological mechanisms [4].

It is well established that oxidative stress influences the pathogenesis of heart diseases, such as
hypertension, atrial fibrillation, and atherosclerosis, and studies have demonstrated the implication
of this stress in these diseases [5]. There is substantial epidemiological and experimental evidence
that antioxidants in the diet can be preventive for heart disease [5]. The failure of antioxidants found
in foods, such as vitamins C and E, to prevent these disorders has led to the exploration of the
ROS-suppressive effects of drugs used in the treatment of cardiovascular disease [6,7]. Moreover,
many natural products have antioxidant and various other pharmacological properties [8]. Some
of their actions on oxidative stress are associated with pharmacological effects [9–12]. Natural
products with antioxidant and/or vasorelaxant effects have been shown to positively affect many
cardiovascular conditions [13,14] once the redox status or the vascular function has worsened and is
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implicated in the pathogenesis of the CVD [15,16]. Several studies have shown that the antioxidant
properties of natural products have potential uses in the prevention and treatment of some heart
diseases [5,17,18]. One of the natural products that have piqued the current interest of researchers are
essential oils [19]. This group of natural products consists of aromatic and lipophilic substances that
are found in many medicinal plants. At present, over 3000 essential oils are known, of which 300 are
commercially important, especially in the pharmaceutical, food, sanitary, cosmetic, and perfume
industries [20]. Recent reviews have shown the therapeutic potential of this group in multiple
areas, including: analgesics [21,22], anticonvulsants [23], anti-inflammatories [24–26], anticancer
agents [27–29], anxiolytics [30], and antiulcer agents [31]. Essential oils and their constituents have
also been shown to be promising substances in the development of therapeutic agents applied to
cardiovascular diseases. These findings not only support the traditional use of aromatic plants and
their essential oils but also highlight new cardiovascular functions of these natural products that
were previously unknown [32]. Therefore, the purpose of this review was to conduct a systematic
investigation of essential oil studies in experimental models related to cardiovascular activity.

The search was conducted in the scientific database PubMed, focusing on works published during
the last five years (January 2011 to December 2015). The data were selected using the following terms:
“essential oils”, “monoterpene”, and “cardiovascular”.

2. Results and Discussion

2.1. Thymoquinone

Thymoquinone is the main monoterpene of the volatile oil obtained from the seeds of
Nigella sativa L. (Ranunculaceae). It exhibits several pharmacological activities, such as acting as
an anti-inflammatory [26], antitumor agent [29] and as an analgesic [21]. Antioxidant and vascular
relaxant effects of thymoquinone (TQ) have been documented in different experimental models of
cardiovascular diseases. Aydin et al. [33] observed that treatment with TQ was associated with the
reduction in the oxidative stress systemically measured after abdominal aorta ischemia or reperfusion
injury in rats. This reduction in oxidative stress was associated with less severe lesions in the
hearts of rats that received TQ intraperitoneally. The antioxidant mechanism of TQ involves reactive
oxygen species (ROS), redox-related enzymes, and cytokine profiles. Nemmar et al. [34] observed
that TQ improved the superoxide dismutase activity and reduced the interleucin-6 content in mice,
which prevented cardiovascular side effects induced by a pollutant. TQ induced a dose-dependent
reduction in plasmatic lactate dehydrogenase (LDH), thiobarbituric acid reactive substances (TBARS),
and glutathione reductase (GR), whereas SOD activity in the plasma and the myocardial reduced
or oxidized glutathione ratio (GSH/GSSG) were increased in rats with an isoproterenol-induced
myocardial infarction that were then treated with TQ. These actions protect the heart from the injury
resulting from isoproterenol [35]. Oxidative stress is also implicated in vascular dysfunction by
blunting both nitric oxide (NO)- and endothelium-derived hyperpolarizing factor (EDHF)-mediated
relaxation in the arteries of ageing animals. TQ could reverse the age-related down-regulation of the
endothelial NO synthase (eNOS) and increased the vascular formation of ROS in the mesenteric artery.
In addition to the effects on oxidative stress, TQ also affects components of the renin-angiotensin
aldosterone system (RAS) and increases the expression of the small and intermediate conductance
Ca2+-activated K+ channel (SKCa and IKCa, respectively), resulting in the incremental NO- and
EDFH-induced mesenteric relaxation. These actions determined the improvement of endothelial
function in ageing animals after 14 days of TQ treatment [36]. In addition, Ghayur et al. [37] observed
that the relaxant effect of TQ in the aortas of rats should also involve the blockade of voltage-operated
Ca2+ channels (VOCC). Taken together, these studies indicate that TQ has broad actions on the
cardiovascular system, including the redox system, ion channels, the RAS system, endothelial-related
relaxant agents, and cytokines. These actions result in antioxidant and vascular relaxant effects which
work to protect the cardiovascular system.
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2.2. Cinnamaldehyde

This aromatic aldehyde is an active constituent isolated from the stem bark of cinnamon trees such
as Cinnamomum cassia Presl. and others plants [38]. El-Bassossy et al. [39] showed that cinnamaldehyde
normalized the vascular contractility and prevented the development of hypertension in insulin
deficient or resistant animals, also prevented the hyper-responsiveness to vasoconstrictor agents
(Phenylephrine or KCl) and the hypo-responsiveness to vasodilatory agents (Ach) in the aortic rings.
In insulin-deficient animals, cinnamaldehyde prevented the inhibition of NO release, while in insulin
resistant rats, cinnamaldehyde prevented the elevated influx of Ca2+. Through an antioxidant action
and the preservation of the NO levels, cinnamaldehyde protected the endothelium relaxation in the
aortic rings of hyperglycemic mice. This antioxidant mechanism involved the up-regulation of the
endogenous antioxidant enzyme NF-E2-related factor 2 (Nrf2) [40], which is known to regulate the
generation of ROS [41]. Additionally, Raffai et al. [42] demonstrated that cinnamaldehyde also induced
vascular relaxation in porcine coronary arteries through an endothelium-independent mechanism by
inhibiting Ca2+ sensitivity and Ca2+ influx. When carried in micelles, cinnamaldehyde was also able to
induce endothelium-dependent vascular relaxation by NO- and H2O2-dependent means. This was
also demonstrated by Xue et al. [43], who showed that this relaxant effect of cinnamaldehyde was
likely mediated by changes in calcium influx or in its release from intracellular stores. Additionally,
Alvarez-Collazo et al. [44] studied the mechanism of action of this compound and showed that CA
promoted relaxation in vascular smooth muscle cells (VSMC) and ventricular cardiac myocytes (VCM),
at least in part by inhibition of the L-Type Ca2+ channel. Additionally, these studies do not exclude
subtype 1 of the Transient Receptor Potential Ankyrin (TRPA1).

Song et al. [14] evaluated the cardioprotective properties of cinnamaldehyde against the ischemic
injury precipitated by isoproterenol. The pre-treatment for 14 days with cinnamaldehyde resulted
in decreased cardiac injury (hypertrophy and histological changes), decreased pro-inflammatory
cytokines (TNF-α and IL-6), increased serum NO and SOD levels on the heart, and reduced ST
segments generated by myocardial ischemia. Together, these results show that cinnamaldehyde has
cardioprotective effects that can be attributed to antioxidant and anti-inflammatory proprieties.

2.3. Cinnamic Acid

This compound is an aromatic carboxylic acid with carbonic structure C6–C3 appearing naturally
in the plant kingdom. In addition, cinnamic acids are formed in the biosynthetic pathway leading
to various natural product classes, such as phenylpropanoids, flavonoids, coumarins, lignans,
anthocyanins, and tannins [45]. In vitro analysis of vasorelaxant proprieties of cinnamic acid (CA)
was conducted by Kang et al. [46] who used the thoracic aortas of rats. They showed that CA
promoted vasorelaxation in a dose- and endothelium-dependent manner, once both NO inhibition
by L-NAME and endothelium removing reduced its relaxant effect. The increases of e-NOS and
pe-NOS after CA incubation on the cell cultures of human endothelium strongly reinforced this
hypothesis. Additionally, the participation of Protein Kinase G (PKG) as a mediator was demonstrated
due to the increase of cGMP observed after the incubation of cells with CA. Together, these results
demonstrate that CA promotes vasorelaxant effects by changing the endothelium-NO release
mechanism. Lastly, the mediation of intracellular Ca2+ release by PKG could be involved with
those observations. Song et al. [14] studied the effects of CA on myocardial injury (MI), using an
in vivo model. CA treatment deceased the biochemical (CK-MB and LDH) and inflammatory markers
of MI (TNF-α and IL-6) and increased the NO levels, which resulted in the reduction of cardiac
histological abnormalities induced by isoproterenol. These benefits were related, at least in part, to the
improvement of NO synthesis and the antioxidant effect of this compound.
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2.4. Cinnamyl Alcohol

Cinnamyl alcohol is a phenylproppanoid that occurs in numerous natural products in free
state or as an ester in plants, such as cinnamon leaf, narcissus, and gardenia. This compound
can also be obtained by the hydrogenation of cinnamic aldehyde. The vasodilatory propriety of
cinnamyl alcohol (CAL) was evaluated by Kang et al. [47]. They used aortic rings, the cell cultures
of human aortic smooth muscle cells and human umbilical vein endothelial cells. The results on the
aortic rings showed an endothelium-dependent vasodilation. This effect was reduced by L-NAME,
glibenclamide and methylene blue pre-treatment, which indicated the role of NO, K+ channel and
guanylylcyclase, respectively, on the vasodilatory activity of CAL. It was also demonstrated that
CAL promoted cGMP accumulation and the augmentation of PKG1 levels, and interfered with the
Rho-kinase pathway. Therefore, the endothelium-dependent vasodilation induced by CAL is related
with the NO-cGMP-PKG pathway in rat thoracic aorta, resulting in activation of K+ channels and an
inhibition of the Rho-kinase pathway.

2.5. α-Bisabolol

α-Bisabolol is a monocyclic sesquiterpene tertiary alcohol, which has a weak sweet, floral aroma.
It is found in substantial amounts in the essential oils of Matricaria chamomilla, Salvia runcinata,
Eremanthus erythropappus, Myoporum grassifolium, and Vanillosmopsis sp [48]. Studies that evaluated the
vasorelaxant proprieties of (−)-α-bisabolol (BS) were concentrated on the aortic and mesenteric arteries.
De Siqueira et al. [49] observed the relaxant action of BS in a wide range of smooth muscle preparations,
with a higher pharmacological potency in the mesenteric vessels. Pre-contracted aortic rings also
showed relaxation with BS administration. Later, the same group demonstrated the BS-induced
vascular relaxation mechanism involved with the calcium influx through voltage-dependent
channels [50]. Calcium-dependent vascular relaxation was also observed in porcine coronary and
splenic arteries once the withdrawal of the calcium from the medium completely eliminated the
BS-induced vascular relaxation [51]. Therefore, the studies that were conducted have demonstrated
that BS promoted vasorelaxation by inhibiting the calcium influx through voltage-dependent channels.
The evaluation of the molecular model of the β-subunit isoform of voltage-gated L-type Ca2+ channel
(Cavβ2a) demonstrated that BS interacted preferentially with this channel subunit and promoted the
uncoupling of the Cavβ2a subunit from the α-interaction domain (AID). However, the authors do not
exclude that BS could have also acted as a negative allosteric inhibitor.

2.6. Carvacrol

Carvacrol is a monoterpene phenol found in many essential oils. The compound is an isomer of
thymol. Shabir et al. [52] observed that carvacrol decreased the hypercontraction induced by lead (Pb II)
in the aortic rings of rats at a concentration of 100 µmol/L. The incubation of carvacrol with apocynin,
which is an inhibitor of NADPH oxidase enzyme, did not promote any change in the vasodilatory
response. However, co-incubation with L-NAME decreased the effect of carvacrol, which indicated that
the relaxant effect of this compound was mediated by an increase in NO synthesis. Pires et al. [13] used
cell cultures from parenchymal arterioles and tested the effect of carvacrol on calcium permeability
on the transient receptor potential vanilloid (TRPV). The authors showed that carvacrol promoted an
increased influx of calcium by activating the TRPV3 channel. Therefore, this calcium influx through the
TRPV3 channel, which is important to activate intermediate (IK) and small-conductance Ca2+-activated
K+ (SK) channels and causes hyperpolarization, may contribute to carbachol-endothelium dependent
vascular relaxation. In vivo studies conducted by Dantas et al. [53] demonstrated that carvacrol induced
hypotension and bradycardia in non-anesthetized Wistar rats. The mechanism apparently involved
vasorelaxation through the reduction of Ca2+ influx by changes in voltage-dependent, transient
receptor potentials and store/receptor operator channels (SOCs/ROCs). Taken together, these studies
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demonstrate that Carvacrol can cause vascular relaxation by an endothelium-dependent mechanism
that involves the NO and Ca2+ pathways.

2.7. Borneol

Borneol is a cyclic monoterpene alcohol extracted from Cinnamomum camphora (L.) and other
plants [54]. Silva-Filho et al. [55] demonstrated that borneol promoted the relaxation of aortic
rings that were pre-contracted with phenylephrine or KCl− in a concentration-dependent and
endothelium-independent manner. Additionally, the pre-incubation with K+ channel blockers
attenuated the borneol-induced vasorelaxation. Borneol also interfered with intracellular calcium
mobilization. Bai et al. [56] observed that a borneol-rich extract at a concentration of 1 mg/mL
promoted relaxation, with total relaxation that was obtained at 10 mg/mL. It was observed that a
Suxiao Jiuxin Pill was able to promote vasorelaxation by both endothelium-dependent and -independent
mechanisms. Wu et al. [57] conducted an in vivo study to determine if borneol had neuroprotective
properties against ischemic stroke. The anti-inflammatory proprieties of borneol were demonstrated
in this study. Borneol alone (0.8 mg/kg) was able to promote a reduction on the protein expression
of pro-inflammatory markers (TNF-α, iNOS, IL-1β and COX-2). Additionally, borneol promoted a
reduction of the infarct area in a dose-dependent manner (IC50: 0.36 mg/kg). Together, these results
demonstrated the neuroprotective effects of borneol and promoted an indirect increase of the
scavengers of ROS, and once the expression of iNOS was reduced the production of NO decreased.

2.8. Carvone

Carvone is a monoterpene ketone and the main active component of the oil of Mentha spicata.
The carvones ((+)- and (−)-forms) are probably the most versatile terpene chirogens and suitable
starting materials in stereoselective synthesis, especially terpenes [58]. The most well-known source
of (−)-(R)-carvone is spearmint oil. Its enantiomer is a constituent of dill and caraway oils [59].
To investigate the effect of carvone on conductance arteries, Kundu et al. [60] demonstrated that this
terpenoid was capable of promoting vasorelaxation on pre-contracted aortic rings, even when the
artery was exposed to metals (arsenic and mercury). The antioxidant proprieties of carvone contributed
to this vasorelaxant effect. However, the effect of carvone on calcium voltage-dependent channels
was more important than its ROS scavenger or NO synthesis actions. Using aortic rings and guinea
pig tracheas, De Sousa et al. [61] showed that there was no difference in the pharmacological action
of (+)- and (−)-enantiomers of carvone, both forms presented a vasorelaxant action. Furthermore,
it seems that the action was directly on the smooth muscle, since it was not reduced in the endothelium
deprived rings.

2.9. Eugenol

This phenylpropanoid is used as an ingredient in cosmetics, perfumes, and pharmaceutical and
dental preparations [62]. Kundu et al. [60] demonstrated that eugenol presented antioxidant proprieties
and could promote a vasorelaxant effect, and a calcium blockade in high concentrations. The protective
effect was observed in arteries that were exposed to heavy metal (As and Hg). Along the same line,
Shabir et al. [52] examined that the effects of Eugenol were examined in Pb(II)-hypercontracted aortic
rings. The authors observed that Pb(II) induced hypercontraction through the depletion of NO and by
increased reactive oxygen species (ROS). Eugenol promoted relaxation of Pb(II) hypercontracted aortic
rings by increased NO bioavailability. This effect was probably mediated by the antioxidant proprieties
of this compound. Peixoto-Neves et al. [63] showed that Eugenol promoted a concentration-dependent
dilation of the cerebral arteries by an inhibition of Calcium voltage-dependent channel, which was
confirmed by patch-clamp studies.
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2.10. 1-Nitro-phenylethane

The 1-nitro-phenylethane (NP) is the first nitro compound isolated from essential oil, and one
of the few natural products containing this functional group [64]. The cardiovascular effect of
this compound, isolated from A. canelilla essential oil and others plants, was tested in vivo by
Interaminense et al. [65]. NP promoted bradycardic and hypotensive responses after a bolus injection.
That response was completely eradicated after cervical bivagotomy. The tests that were made with
capsaicin and methylatropine suggested that the mechanism of action used by NP was mediated by
both a vagal reflex and a cholinergic mechanism. Additionally, the application of NP directly on the
heart shows that an effect of pulmonary C-fibers could also be involved.

2.11. Auraptene

Auraptene is a coumarin contained in the peels of citrus fruits such as Citrus paradise [66].
Razavi et al. [67] studied the effect of the chronic administration of auraptene on heart rate and blood
pressure after eight weeks of treatment of normo- and hypertensive rats using the DOCA-Salt model of
hypertension. They observed a dose- and time-dependent decrease in blood pressure in hypertensive
rats and no changes in heart rate. While promising, the study failed to provide mechanisms since a
biomolecular study was not performed.

2.12. Citral

Citral is a mixture of the isomeric aldehydes geranial and neral, which occurs in plants and
citrus fruits. Pereira et al. [68] used aortic rings to investigate the vasorelaxant proprieties of this
monoterpene. The authors showed that this compound promoted vasodilation in phenylephrine
pre-contracted rings using an endothelium-independent mechanism. The results suggested that citral
promoted relaxation by changing calcium dynamics, which is an effect that occurs once citral-inhibited
contractions by both high K+ and phenylephrine manifest. However, the study did not investigate the
effects of citral on calcium receptors.

2.13. Citronellal

The monoterpene citronellal is a major component of the essential oils in various aromatic
species, such as Cymbopogon winterianus Jowitt (Java citronella), Corymbia citriodora (Hook.) K.D. Hill,
and C. nardus L. [69]. Cardiovascular properties of citronellal were evaluated in an NO-inhibition model
of experimental hypertension. Mean arterial pressure (MAP) was reduced by oral acute citronellal
administration. Citronellal also induced vasorelaxation of the mesenteric arteries of rats using an
endothelium-independent mechanism. Although the exact mechanism of the vasodilatory action of
citronellal was not conclusive, it is possible to state that the hypotensive effect should be related to its
vasodilatory action.

2.14. Farnesene

Farnesene is one of the major compounds of the German essential oil chamomile. The action
of this sesquiterpene on vascular tone was investigated using porcine coronary and splenic arteries.
It was demonstrated that farnesene did not promote a vasorelaxant effect even when concentrations
up to 30 µM were used [51].

2.15. Limonene

Limonene is a monoterpene found in citrus fruits, especially in orange and lemon, with high
concentration in their essential oils [70,71]. De Sousa et al. [61] investigated the effects of limonene in
guinea pig tracheas and rat aortas. The authors observed that the compound produced relaxant effects
on the tracheas and aortic rings independent of the endothelium. In this study, both (+)-limonene and
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(−)-limonene enantiomers were used, and no differences were observed. This indicated that limonene
could promote antispasmodic effects on the smooth muscle of the trachea.

2.16. Linalool

The monoterpene linalool (LO) is the major constituent (87.7%) of Rosewood Oil (EOAR).
De Siqueira et al. [72] observed that EOAR induced hypotension and bradycardia in awakened
animals that were abolished by pre-treatment with methylatropine. Additionally, dose-dependent
EOAR blunted the phenylephrine-induced contraction of the aortic rings. Isolated LO reduced the
hypercontraction of aortic segments induced by heavy metals, such as As and Hg, and involved
the enhancement of NO synthesis and the blockade of voltage-dependent calcium channels [60].
Deep investigation of the mechanism of action of LO indicated further participation of soluble guanylyl
cyclase and K+ channel on its vasorelaxant effects [73].

2.17. Linalyl Acetate

The monoterpene ester linalyl acetate (LA) mobilized the intracellular calcium concentration
([Ca]i) in cultured vascular endothelial (EC) or in mouse vascular smooth muscle (MOVAS) cells.
In EC, LA induced a transient increase followed by a sustained decrease in [Ca]i, whereas in MOVAS
the increase remained unchanged. LA blocks the extracellular calcium influx in EC, but not in
MOVAS. Therefore, LA differently affects the endothelium and smooth muscle cells and its effect on
EC may explain its protective effect against endothelium dysfunction associated with cardiovascular
diseases [74].

2.18. Menthol

Menthol is a monoterpene alcohol found in Mentha species such as M. piperita and
M. arvensis [75]. Cheang et al. [76] used different arterial segments (aortae, coronary and mesenteric)
to investigate the proprieties of the menthol to produce vasorelaxation. This monoterpene produced
concentration-dependent and endothelium independent vasorelaxation. The contraction induced by
CaCl2 was suppressed by menthol in a similar way as nifedipine (an L-type Ca2+ channel inhibitor) and
indicated that menthol could affect this kind of channel. This study demonstrated that the vasorelaxant
proprieties of menthol were not affected by cGMP or NO. Therefore, the vasorelaxation induced by
menthol was probably caused by direct action on calcium dynamics.

2.19. N-Butylidenephthalide

N-Butylidenephthalide (BP) is obtained from the volatile oil of Angelica sinensis [77]. The effects
of this compound in angiogenesis and cell proliferation in vitro and ex vivo were evaluated by
Yeh et al. [77]. The researchers showed that this compound was capable of a concentration-dependent
inhibition of endothelial proliferation, endothelial wound healing, and endothelial tube formation on
human umbilical vein endothelial cells (HUVEC). The researchers also investigated the mechanism
of action and determined that BP promoted apoptosis and an increased maintenance of the cell
cycle during the G0–G1 phase. Additionally, BP decreased the capillary sprouting of the aorta and
vascularization of zebrafish. Together, these results indicate the anti-angiogenic effect of BP.

2.20. Rotundifolone

Several studies using the essential oil of Mentha x villosa showed its hypotensive effect in a
dose-dependent manner in hypertensive rats (DOCA-salt hypertensive rats), which is probably
associated with a vasorelaxative activity [78,79]. Similarly, hypotensive properties also were observed
with the monoterpene rotundifolone, the main constituent of the essential oil of Mentha x villosa,
comprising approximately 63% of its content. Rotundifolone promotes a concentration-dependent
vasorelaxant effect on the superior mesenteric arteries of rats. The mechanism by which rotundifolone
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promoted this relaxation was investigated using patch-clamp techniques. The experiment demonstrated
that rotundifolone probably acted by calcium-activated potassium (BKCa) channel activation,
once tetraethylammonium (TEA) eradicated the observed relaxation. However, this mechanism
of action seemed to be more important at low doses and on conducting arteries (aorta). Additionally,
changes on the L-type Ca2+ channels at high concentrations could also precipitate the mechanism by
which rotundifolone caused vascular relaxation.

2.21. α-Terpineol

The in vivo effect of the monoterpene α-terpineol was evaluated by Sabino et al. [80] who used
the model of hypertension induced by L-NAME. Therefore, it was demonstrated that α-terpineol was
capable of inducing a dose-dependent hypotension in awake animals. Likewise, when mesenteric rings
were used, the researchers showed that this compound produced vasorelaxant effects independent
of the endothelium. Those vasorelaxant effects could be attributed, at least in part, to the inhibition
of voltage-dependent calcium channels. Additionally, treatment with α-terpineol for seven days
promoted an induced antioxidant effect in the animals treated with L-NAME. The values of SOD,
catalase and glutathione peroxidase activity were restored to values similar to the control groups,
which indicated the antioxidant capacity of α-terpineol.

The in vitro and in vivo cardiovascular effects of the chemical constituents of essential oils are
shown in Tables 1 and 2.

Table 1. In vitro cardiovascular effects of the chemical constituents of essential oils.

Compound Assay Concentration Effects Reference
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Bisabolol 

Rat smooth muscle 
from vascular and  
non-vascular 

1–1000 μmol/L 
Relaxation by acting in Ca2+ 
voltagem-dependent channel 

[49] 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Rat thoracic aorta 
and mesenteric ring 

1–1000 μmol/L 
Vasorelaxation by acting in 
Ca2+ voltagem-dependent 
channel 

[50] 

 
Borneol 

Human internal 
mammary artery 

Phytotherapic 
preparation 
enriched with 
borneol  
(1 mg/mL) 

Vasorelaxation with and 
without endothelium 

[56] 

Rat thoracic aorta 
artery 

10−9 to 3 × 10−4 M 

Vasorelaxant effect, probably 
by potassium channels 
activation, reduction in 
calcium influx and inhibition 
of calcium mobilization from 
intracellular stores 

[55] 

 
Carvacrol 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat Cerebral and 
cerebellar pial 
Arteries 

10 and 30 μM 
Vasodilatation by increase on 
calcium influx, by activating 
TRPV3 channel 

[13] 

Rat superior 
mesenteric artery 

10−8 to 3 × 10−4 M 

Vasorelaxation by inhibition 
calcium influx through the L-
type Cav, ROC and SOC 
channels 

[53] 

Atria isolates 
10 μM and 100 
μM 

Negative inotropic and 
chronotropic effect 

[53] 

 
Carvone 

Rat thoracic aorta 100 μM 
Vasorelaxation by blocking 
calcium influx through VDDC 

[60] 

Rat thoracic aorta 
and trachea of 
guinea pigs 

10−6 to 3 × 10−4 M Vasorelaxant effect [61] 

 

Rat thoracic aorta 
10−7, 10−6, 10−5, 
and 10−4 g/mL 

Vasodilatory effect by 
inhibiting both Ca2+ influx 
and Ca2+ release 

[43] 

Porcine coronary 
artery 

32–320 μM 
Vasorelaxation by inhibiting 
Ca2+ sensitivity and Ca2+ influx 

[42] 

Ventricular 
cardiomyocytes and 

0.01–1000 μM 
Vasorelaxing action by 
inhibiting L-type Ca2+ 

[44] 

Bisabolol

Rat smooth muscle
from vascular and
non-vascular

1–1000 µmol/L Relaxation by acting in Ca2+

voltagem-dependent channel
[49]

Porcine splenic artery
and coronary artery 3, 10 and 30 µM Vasodilatation by inhibiting calcium

influx [51]

Rat thoracic aorta and
mesenteric ring 1–1000 µmol/L Vasorelaxation by acting in Ca2+

voltagem-dependent channel
[50]
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independent of the endothelium. Those vasorelaxant effects could be attributed, at least in part, to 
the inhibition of voltage-dependent calcium channels. Additionally, treatment with α-terpineol for 
seven days promoted an induced antioxidant effect in the animals treated with L-NAME. The values 
of SOD, catalase and glutathione peroxidase activity were restored to values similar to the control 
groups, which indicated the antioxidant capacity of α-terpineol. 

The in vitro and in vivo cardiovascular effects of the chemical constituents of essential oils are 
shown in Tables 1 and 2. 

Table 1. In vitro cardiovascular effects of the chemical constituents of essential oils. 

Compound Assay Concentration Effects Reference

 
Bisabolol 

Rat smooth muscle 
from vascular and  
non-vascular 

1–1000 μmol/L 
Relaxation by acting in Ca2+ 
voltagem-dependent channel 

[49] 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Rat thoracic aorta 
and mesenteric ring 

1–1000 μmol/L 
Vasorelaxation by acting in 
Ca2+ voltagem-dependent 
channel 

[50] 

 
Borneol 

Human internal 
mammary artery 

Phytotherapic 
preparation 
enriched with 
borneol  
(1 mg/mL) 

Vasorelaxation with and 
without endothelium 

[56] 

Rat thoracic aorta 
artery 

10−9 to 3 × 10−4 M 

Vasorelaxant effect, probably 
by potassium channels 
activation, reduction in 
calcium influx and inhibition 
of calcium mobilization from 
intracellular stores 

[55] 

 
Carvacrol 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat Cerebral and 
cerebellar pial 
Arteries 

10 and 30 μM 
Vasodilatation by increase on 
calcium influx, by activating 
TRPV3 channel 

[13] 

Rat superior 
mesenteric artery 

10−8 to 3 × 10−4 M 

Vasorelaxation by inhibition 
calcium influx through the L-
type Cav, ROC and SOC 
channels 

[53] 

Atria isolates 
10 μM and 100 
μM 

Negative inotropic and 
chronotropic effect 

[53] 

 
Carvone 

Rat thoracic aorta 100 μM 
Vasorelaxation by blocking 
calcium influx through VDDC 

[60] 

Rat thoracic aorta 
and trachea of 
guinea pigs 

10−6 to 3 × 10−4 M Vasorelaxant effect [61] 

 

Rat thoracic aorta 
10−7, 10−6, 10−5, 
and 10−4 g/mL 

Vasodilatory effect by 
inhibiting both Ca2+ influx 
and Ca2+ release 

[43] 

Porcine coronary 
artery 

32–320 μM 
Vasorelaxation by inhibiting 
Ca2+ sensitivity and Ca2+ influx 

[42] 

Ventricular 
cardiomyocytes and 

0.01–1000 μM 
Vasorelaxing action by 
inhibiting L-type Ca2+ 

[44] 

Borneol

Human internal
mammary artery

Phytotherapic
preparation enriched
with borneol (1 mg/mL)

Vasorelaxation with and without
endothelium [56]

Rat thoracic aorta
artery 10−9 to 3 × 10−4 M

Vasorelaxant effect, probably by
potassium channels activation,
reduction in calcium influx and
inhibition of calcium mobilization
from intracellular stores

[55]
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from vascular and  
non-vascular 

1–1000 μmol/L 
Relaxation by acting in Ca2+ 
voltagem-dependent channel 

[49] 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Rat thoracic aorta 
and mesenteric ring 

1–1000 μmol/L 
Vasorelaxation by acting in 
Ca2+ voltagem-dependent 
channel 

[50] 

 
Borneol 

Human internal 
mammary artery 

Phytotherapic 
preparation 
enriched with 
borneol  
(1 mg/mL) 

Vasorelaxation with and 
without endothelium 

[56] 

Rat thoracic aorta 
artery 

10−9 to 3 × 10−4 M 

Vasorelaxant effect, probably 
by potassium channels 
activation, reduction in 
calcium influx and inhibition 
of calcium mobilization from 
intracellular stores 

[55] 

 
Carvacrol 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat Cerebral and 
cerebellar pial 
Arteries 

10 and 30 μM 
Vasodilatation by increase on 
calcium influx, by activating 
TRPV3 channel 

[13] 

Rat superior 
mesenteric artery 

10−8 to 3 × 10−4 M 

Vasorelaxation by inhibition 
calcium influx through the L-
type Cav, ROC and SOC 
channels 

[53] 

Atria isolates 
10 μM and 100 
μM 

Negative inotropic and 
chronotropic effect 

[53] 

 
Carvone 

Rat thoracic aorta 100 μM 
Vasorelaxation by blocking 
calcium influx through VDDC 

[60] 

Rat thoracic aorta 
and trachea of 
guinea pigs 

10−6 to 3 × 10−4 M Vasorelaxant effect [61] 

 

Rat thoracic aorta 
10−7, 10−6, 10−5, 
and 10−4 g/mL 

Vasodilatory effect by 
inhibiting both Ca2+ influx 
and Ca2+ release 

[43] 

Porcine coronary 
artery 

32–320 μM 
Vasorelaxation by inhibiting 
Ca2+ sensitivity and Ca2+ influx 

[42] 

Ventricular 
cardiomyocytes and 

0.01–1000 μM 
Vasorelaxing action by 
inhibiting L-type Ca2+ 

[44] 

Carvacrol

Rat thoracic aorta
artery 1, 10 and 100 µmol L−1 Vasorelaxant effect via inhibition of

ROS and stimulation of NOS [52]

Rat Cerebral and
cerebellar pial Arteries 10 and 30 µM

Vasodilatation by increase on
calcium influx, by activating TRPV3
channel

[13]

Rat superior
mesenteric artery 10−8 to 3 × 10−4 M

Vasorelaxation by inhibition
calcium influx through the L-type
Cav, ROC and SOC channels

[53]

Atria isolates 10 µM and 100 µM Negative inotropic and
chronotropic effect [53]
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Compound Assay Concentration Effects Reference

 
Bisabolol 

Rat smooth muscle 
from vascular and  
non-vascular 

1–1000 μmol/L 
Relaxation by acting in Ca2+ 
voltagem-dependent channel 

[49] 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Rat thoracic aorta 
and mesenteric ring 

1–1000 μmol/L 
Vasorelaxation by acting in 
Ca2+ voltagem-dependent 
channel 

[50] 

 
Borneol 

Human internal 
mammary artery 

Phytotherapic 
preparation 
enriched with 
borneol  
(1 mg/mL) 

Vasorelaxation with and 
without endothelium 

[56] 

Rat thoracic aorta 
artery 

10−9 to 3 × 10−4 M 

Vasorelaxant effect, probably 
by potassium channels 
activation, reduction in 
calcium influx and inhibition 
of calcium mobilization from 
intracellular stores 

[55] 

 
Carvacrol 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat Cerebral and 
cerebellar pial 
Arteries 

10 and 30 μM 
Vasodilatation by increase on 
calcium influx, by activating 
TRPV3 channel 

[13] 

Rat superior 
mesenteric artery 

10−8 to 3 × 10−4 M 

Vasorelaxation by inhibition 
calcium influx through the L-
type Cav, ROC and SOC 
channels 

[53] 

Atria isolates 
10 μM and 100 
μM 

Negative inotropic and 
chronotropic effect 

[53] 

 
Carvone 

Rat thoracic aorta 100 μM 
Vasorelaxation by blocking 
calcium influx through VDDC 

[60] 

Rat thoracic aorta 
and trachea of 
guinea pigs 

10−6 to 3 × 10−4 M Vasorelaxant effect [61] 

 

Rat thoracic aorta 
10−7, 10−6, 10−5, 
and 10−4 g/mL 

Vasodilatory effect by 
inhibiting both Ca2+ influx 
and Ca2+ release 

[43] 

Porcine coronary 
artery 

32–320 μM 
Vasorelaxation by inhibiting 
Ca2+ sensitivity and Ca2+ influx 

[42] 

Ventricular 
cardiomyocytes and 

0.01–1000 μM 
Vasorelaxing action by 
inhibiting L-type Ca2+ 

[44] 

Carvone

Rat thoracic aorta 100 µM Vasorelaxation by blocking calcium
influx through VDDC [60]

Rat thoracic aorta and
trachea of guinea pigs 10−6 to 3 × 10−4 M Vasorelaxant effect [61]

Rat thoracic aorta 10−7, 10−6, 10−5, and
10−4 g/mL

Vasodilatory effect by inhibiting
both Ca2+ influx and Ca2+ release [43]

Porcine coronary
artery 32–320 µM Vasorelaxation by inhibiting Ca2+

sensitivity and Ca2+ influx
[42]

Ventricular
cardiomyocytes and
vascular smooth
muscle cells

0.01–1000 µM
Vasorelaxing action by inhibiting
L-type Ca2+ channels and possible
participation of TRPA1

[44]

Molecules 2017, 22, 1539 9 of 18 

 

vascular smooth 
muscle cells 

channels and possible 
participation of TRPA1 

Cinnamaldehyde 

Rat aorta artery and 
Human 10 μM 

Prevents endothelial 
dysfunction by attenuating 
ROS generation and 

 

 
umbilical vein 
endothelial cells 
(HUVECs) 

 

preserving nitric oxide levels 
and Nrf2 activation and the 
up-regulation of downstream 
target proteins 

[40] 

Cinnamic acid 

Rat thoracic Aorta 
0.1 mM, 0.2 mM, 
0.4 mM, 1 mM,  
and 2 mM 

Vasodilation via the NO–
cGMP-PKG pathway, which 
stimulates Ca2+-activated K+ 
channels 

[46] 

Cinnamyl alcohol 

Rat thoracic aorta 
artery 

0.2 mM, 0.4 mM, 
0.6 mM, 1 mM  
or 1.5 mM 

Vasodilation by activation of 
K+ channels and inhibition of 
Rho-kinase, which inhibit Ca2+ 

sensitization via the NO-
cGMP-PKG pathway 

[47] 

Citral (= geranial + neral) 

Rat thoracic Aorta 
artery 

0.6 to 6 mM 

Vasorelaxation by reduced 
the calcium influx by the 
blockade of voltage 
dependent L-type Ca2+ 
channels 

[68] 

 
Eugenol 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

[63] 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat thoracic aorta 
artery 

100 μM 
Vasorelaxation by inhibiting 
ROS and elevating NO 

[60] 

Rat cerebral artery 100 μM 
Vasorelaxation by inhibiting 
voltage-dependent Ca2+ 

[63] 

 
Farnesene 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Cinnamaldehyde Rat aorta artery and
Human 10 µM Prevents endothelial dysfunction by

attenuating ROS generation and

umbilical vein
endothelial cells
(HUVECs)

preserving nitric oxide levels and
Nrf2 activation and the
up-regulation of downstream target
proteins

[40]
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vascular smooth 
muscle cells 

channels and possible 
participation of TRPA1 

Cinnamaldehyde 

Rat aorta artery and 
Human 10 μM 

Prevents endothelial 
dysfunction by attenuating 
ROS generation and 

 

 
umbilical vein 
endothelial cells 
(HUVECs) 

 

preserving nitric oxide levels 
and Nrf2 activation and the 
up-regulation of downstream 
target proteins 

[40] 

Cinnamic acid 

Rat thoracic Aorta 
0.1 mM, 0.2 mM, 
0.4 mM, 1 mM,  
and 2 mM 

Vasodilation via the NO–
cGMP-PKG pathway, which 
stimulates Ca2+-activated K+ 
channels 

[46] 

Cinnamyl alcohol 

Rat thoracic aorta 
artery 

0.2 mM, 0.4 mM, 
0.6 mM, 1 mM  
or 1.5 mM 

Vasodilation by activation of 
K+ channels and inhibition of 
Rho-kinase, which inhibit Ca2+ 

sensitization via the NO-
cGMP-PKG pathway 

[47] 

Citral (= geranial + neral) 

Rat thoracic Aorta 
artery 

0.6 to 6 mM 

Vasorelaxation by reduced 
the calcium influx by the 
blockade of voltage 
dependent L-type Ca2+ 
channels 

[68] 

 
Eugenol 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

[63] 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat thoracic aorta 
artery 

100 μM 
Vasorelaxation by inhibiting 
ROS and elevating NO 

[60] 

Rat cerebral artery 100 μM 
Vasorelaxation by inhibiting 
voltage-dependent Ca2+ 

[63] 

 
Farnesene 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Cinnamic acid

Rat thoracic Aorta 0.1 mM, 0.2 mM, 0.4 mM,
1 mM, and 2 mM

Vasodilation via the
NO–cGMP-PKG pathway, which
stimulates Ca2+-activated K+

channels

[46]
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vascular smooth 
muscle cells 

channels and possible 
participation of TRPA1 

Cinnamaldehyde 

Rat aorta artery and 
Human 10 μM 

Prevents endothelial 
dysfunction by attenuating 
ROS generation and 

 

 
umbilical vein 
endothelial cells 
(HUVECs) 

 

preserving nitric oxide levels 
and Nrf2 activation and the 
up-regulation of downstream 
target proteins 

[40] 

Cinnamic acid 

Rat thoracic Aorta 
0.1 mM, 0.2 mM, 
0.4 mM, 1 mM,  
and 2 mM 

Vasodilation via the NO–
cGMP-PKG pathway, which 
stimulates Ca2+-activated K+ 
channels 

[46] 

Cinnamyl alcohol 

Rat thoracic aorta 
artery 

0.2 mM, 0.4 mM, 
0.6 mM, 1 mM  
or 1.5 mM 

Vasodilation by activation of 
K+ channels and inhibition of 
Rho-kinase, which inhibit Ca2+ 

sensitization via the NO-
cGMP-PKG pathway 

[47] 

Citral (= geranial + neral) 

Rat thoracic Aorta 
artery 

0.6 to 6 mM 

Vasorelaxation by reduced 
the calcium influx by the 
blockade of voltage 
dependent L-type Ca2+ 
channels 

[68] 

 
Eugenol 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

[63] 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat thoracic aorta 
artery 

100 μM 
Vasorelaxation by inhibiting 
ROS and elevating NO 

[60] 

Rat cerebral artery 100 μM 
Vasorelaxation by inhibiting 
voltage-dependent Ca2+ 

[63] 

 
Farnesene 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Cinnamyl alcohol

Rat thoracic aorta
artery

0.2 mM, 0.4 mM, 0.6 mM,
1 mM or 1.5 mM

Vasodilation by activation of K+

channels and inhibition of
Rho-kinase, which inhibit Ca2+

sensitization via the
NO-cGMP-PKG pathway

[47]
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vascular smooth 
muscle cells 

channels and possible 
participation of TRPA1 

Cinnamaldehyde 

Rat aorta artery and 
Human 10 μM 

Prevents endothelial 
dysfunction by attenuating 
ROS generation and 

 

 
umbilical vein 
endothelial cells 
(HUVECs) 

 

preserving nitric oxide levels 
and Nrf2 activation and the 
up-regulation of downstream 
target proteins 

[40] 

Cinnamic acid 

Rat thoracic Aorta 
0.1 mM, 0.2 mM, 
0.4 mM, 1 mM,  
and 2 mM 

Vasodilation via the NO–
cGMP-PKG pathway, which 
stimulates Ca2+-activated K+ 
channels 

[46] 

Cinnamyl alcohol 

Rat thoracic aorta 
artery 

0.2 mM, 0.4 mM, 
0.6 mM, 1 mM  
or 1.5 mM 

Vasodilation by activation of 
K+ channels and inhibition of 
Rho-kinase, which inhibit Ca2+ 

sensitization via the NO-
cGMP-PKG pathway 

[47] 

Citral (= geranial + neral) 

Rat thoracic Aorta 
artery 

0.6 to 6 mM 

Vasorelaxation by reduced 
the calcium influx by the 
blockade of voltage 
dependent L-type Ca2+ 
channels 

[68] 

 
Eugenol 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

[63] 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat thoracic aorta 
artery 

100 μM 
Vasorelaxation by inhibiting 
ROS and elevating NO 

[60] 

Rat cerebral artery 100 μM 
Vasorelaxation by inhibiting 
voltage-dependent Ca2+ 

[63] 

 
Farnesene 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Citral (= geranial + neral)

Rat thoracic Aorta
artery 0.6 to 6 mM

Vasorelaxation by reduced the
calcium influx by the blockade of
voltage dependent L-type
Ca2+ channels

[68]

Molecules 2017, 22, 1539 9 of 18 

 

vascular smooth 
muscle cells 

channels and possible 
participation of TRPA1 

Cinnamaldehyde 

Rat aorta artery and 
Human 10 μM 

Prevents endothelial 
dysfunction by attenuating 
ROS generation and 

 

 
umbilical vein 
endothelial cells 
(HUVECs) 

 

preserving nitric oxide levels 
and Nrf2 activation and the 
up-regulation of downstream 
target proteins 

[40] 

Cinnamic acid 

Rat thoracic Aorta 
0.1 mM, 0.2 mM, 
0.4 mM, 1 mM,  
and 2 mM 

Vasodilation via the NO–
cGMP-PKG pathway, which 
stimulates Ca2+-activated K+ 
channels 

[46] 

Cinnamyl alcohol 

Rat thoracic aorta 
artery 

0.2 mM, 0.4 mM, 
0.6 mM, 1 mM  
or 1.5 mM 

Vasodilation by activation of 
K+ channels and inhibition of 
Rho-kinase, which inhibit Ca2+ 

sensitization via the NO-
cGMP-PKG pathway 

[47] 

Citral (= geranial + neral) 

Rat thoracic Aorta 
artery 

0.6 to 6 mM 

Vasorelaxation by reduced 
the calcium influx by the 
blockade of voltage 
dependent L-type Ca2+ 
channels 

[68] 

 
Eugenol 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

[63] 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat thoracic aorta 
artery 

100 μM 
Vasorelaxation by inhibiting 
ROS and elevating NO 

[60] 

Rat cerebral artery 100 μM 
Vasorelaxation by inhibiting 
voltage-dependent Ca2+ 

[63] 

 
Farnesene 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Eugenol

Rat atria Muscle 1, 3, 5, 7, and 10 mM

Increase in resting tension by
cooperative activation of cardiac
thin filaments by strongly attached
cross-bridges (rigor state)

[63]

Rat atria Muscle 1, 3, 5, 7, and 10 mM

Increase in resting tension by
cooperative activation of cardiac
thin filaments by strongly attached
cross-bridges (rigor state)

Rat thoracic
aorta artery 1, 10 and 100 µmol L−1 Vasorelaxant effect via inhibition of

ROS and stimulation of NOS [52]

Rat thoracic
aorta artery 100 µM Vasorelaxation by inhibiting ROS

and elevating NO [60]

Rat cerebral artery 100 µM Vasorelaxation by inhibiting
voltage-dependent Ca2+ [63]
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vascular smooth 
muscle cells 

channels and possible 
participation of TRPA1 

Cinnamaldehyde 

Rat aorta artery and 
Human 10 μM 

Prevents endothelial 
dysfunction by attenuating 
ROS generation and 

 

 
umbilical vein 
endothelial cells 
(HUVECs) 

 

preserving nitric oxide levels 
and Nrf2 activation and the 
up-regulation of downstream 
target proteins 

[40] 

Cinnamic acid 

Rat thoracic Aorta 
0.1 mM, 0.2 mM, 
0.4 mM, 1 mM,  
and 2 mM 

Vasodilation via the NO–
cGMP-PKG pathway, which 
stimulates Ca2+-activated K+ 
channels 

[46] 

Cinnamyl alcohol 

Rat thoracic aorta 
artery 

0.2 mM, 0.4 mM, 
0.6 mM, 1 mM  
or 1.5 mM 

Vasodilation by activation of 
K+ channels and inhibition of 
Rho-kinase, which inhibit Ca2+ 

sensitization via the NO-
cGMP-PKG pathway 

[47] 

Citral (= geranial + neral) 

Rat thoracic Aorta 
artery 

0.6 to 6 mM 

Vasorelaxation by reduced 
the calcium influx by the 
blockade of voltage 
dependent L-type Ca2+ 
channels 

[68] 

 
Eugenol 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

[63] 

Rat atria Muscle 
1, 3, 5, 7, and 10 
mM 

Increase in resting tension by 
cooperative activation of 
cardiac thin filaments by 
strongly attached cross-
bridges (rigor state) 

 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat thoracic aorta 
artery 

100 μM 
Vasorelaxation by inhibiting 
ROS and elevating NO 

[60] 

Rat cerebral artery 100 μM 
Vasorelaxation by inhibiting 
voltage-dependent Ca2+ 

[63] 

 
Farnesene 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Farnesene

Porcine splenic artery
and coronary artery 3, 10 and 30 µM Vasodilatation by inhibiting

calcium influx [51]

Molecules 2017, 22, 1539 10 of 18 

 

 
Limonene 

Rat thoracic aorta 
and trachea of 
guinea pigs 

10−6 to 3 × 10−4 M Vasorelaxant effect [61] 

 
Linalool 

Rat thoracic aorta 500 μM 
Vasorelaxation by activating 
sGC and K+ channels and by 
inhibiting Ca2+ influx 

[73] 

Rat thoracic aorta 100 μM 

Vasorelaxation by blocking 
voltage dependent calcium 
channel (VDCC) and 
elevating NO 

[60] 

 
Linalyl acetate 

The mouse vascular 
smooth muscle cell 
line MOVAS-1 
(MOVAS) and 
human umbilical vein 
endothelial cell line 
EA.hy926 (EA) 

0.01% v/v 
Increase the intracellular K+ 
levels 

[74] 
 

 
Menthol 

Rat aorta, mesenteric 
and coronary arteries 

0.01-1 mM 

Vasorelaxation through 
inhibiting Ca2+ influx via 
nifedipine-sensitive Ca2+ 
channels in vascular smooth 
muscle 

[76] 

 
N-Butylidenephtalide 

Human umbilical 
vein endothelial 
cells (HUVECs) 

20–50 μg/mL 

Anti-angiogenic activities by 
increase of maintaining cell 
cycle on G0–G1 phase, and 
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inflammatory markers and 
infarct area. Antioxidant 
proprieties of borneol were 
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Carvacrol 

Wistar rats 1–20 mg/kg 

Hypotension and 
bradycardic effects 
associated with a decrease 
in heart rate, in a dose-
dependent manner 

[53] 

Cinnamaldehyde 

Isoproterenol model of 
myocardial ischemia 

22.5, 45 and  
90 mg/kg 

Decrease of cardiac injury 
and pro-inflammatory 
cytokines after per-treatment 
(14 days), additionally an 
increase of NO and SOD 
levels of heart tissue 

[14] 

Cinnamic acid 

Isoproterenol model of 
myocardial ischemia 

37.5, 75 and 
150 mg/kg 

Decrease of biochemical 
markers of myocardial 
infarct and increase of NO 
levels. Indicating antioxidant 
proprieties of CD 

[14] 

 
Citronellal 

L-NAME hypertensive 
and normotensive rats 

5, 10, 20, and 
40 mg/kg in 
bolus and  
200 mg/kg 
orally 

In bolus promotes 
hypotensive and 
bradycardic effects of 
normotensive rats. 
Treatment of L-NAME 
hypertensive rats promotes 
decrease of MAP. The 
results suggest that 
muscarinic receptors could 
be involved 

[82] 

1-Nitro-phenylethane

Spontaneously
hypertensive rats (SHR) 1–10 mg/kg

Promotes bradycardic and
hypotensive responses after in
bolus application. The mechanism
suggested is by cholinergic and
vagal reflex activation

[65]
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capable of inducing a dose-dependent hypotension in awake animals. Likewise, when mesenteric 
rings were used, the researchers showed that this compound produced vasorelaxant effects 
independent of the endothelium. Those vasorelaxant effects could be attributed, at least in part, to 
the inhibition of voltage-dependent calcium channels. Additionally, treatment with α-terpineol for 
seven days promoted an induced antioxidant effect in the animals treated with L-NAME. The values 
of SOD, catalase and glutathione peroxidase activity were restored to values similar to the control 
groups, which indicated the antioxidant capacity of α-terpineol. 

 

The in vitro and in vivo cardiovascular effects of the chemical constituents of essential oils are 
shown in Tables 1 and 2. 

Table 1. In vitro cardiovascular effects of the chemical constituents of essential oils. 

Compound Assay Concentration Effects Reference

 
Bisabolol 

Rat smooth muscle 
from vascular and  
non-vascular 

1–1000 μmol/L 
Relaxation by acting in Ca2+ 
voltagem-dependent channel 

[49] 

Porcine splenic 
artery and coronary 
artery 

3, 10 and 30 μM 
Vasodilatation by inhibiting 
calcium influx 

[51] 

Rat thoracic aorta 
and mesenteric ring 

1–1000 μmol/L 
Vasorelaxation by acting in 
Ca2+ voltagem-dependent 
channel 

[50] 

 
Borneol 

Human internal 
mammary artery 

Phytotherapic 
preparation 
enriched with 
borneol  
(1 mg/mL) 

Vasorelaxation with and 
without endothelium 

[56] 

Rat thoracic aorta 
artery 

10−9 to 3 × 10−4 M 

Vasorelaxant effect, probably 
by potassium channels 
activation, reduction in 
calcium influx and inhibition 
of calcium mobilization from 
intracellular stores 

[55] 

 
Carvacrol 

Rat thoracic aorta 
artery 

1, 10 and 100 
μmol L−1 

Vasorelaxant effect via 
inhibition of ROS and 
stimulation of NOS 

[52] 

Rat Cerebral and 
cerebellar pial 
Arteries 

10 and 30 μM 
Vasodilatation by increase on 
calcium influx, by activating 
TRPV3 channel 

[13] 

Rat superior 
mesenteric artery 

10−8 to 3 × 10−4 M 

Vasorelaxation by inhibition 
calcium influx through the L-
type Cav, ROC and SOC 
channels 

[53] 

Atria isolates 
10 μM and 100 
μM 

Negative inotropic and 
chronotropic effect 

[53] 

Rat thoracic aorta 100 μM 
Vasorelaxation by blocking 
calcium influx through VDDC 

[60] 

Auraptene

DOCA-salt
hypertensive rats 2–16 mg/kg/day Decrease of blood pressure dose

and time dependent [67]
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Citronellal

L-NAME hypertensive
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5, 10, 20, and 40 mg/kg
in bolus and 200
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normotensive rats. Treatment of
L-NAME hypertensive rats
promotes decrease of MAP. The
results suggest that muscarinic
receptors could be involved
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Linalool 

Normotensive rat 1–20 mg/kg 

They evaluate the essential 
oil of Rosewood enriched 
with linalool. In bolus 
treatment promotes 
biphasic hypotension and 
bradycardic responses by 
vagal reflex and cholinergic 
mechanism 

[72] 

 
α-Terpineol 

L-NAME hypertensive rats 
25–100 
mg/kg/day 

Cardioprotective effect by 
induced hypotension and 
antioxidant potential by 
restoring antioxidant 
enzyme activities (catalase 
and glutathione peroxidase) 

[80] 

Thymoquinone 

Airway inflammation by 
acute exposure to diesel 
exhaust particles (DEP) 

0.01–0.1 
mg/mL 

Pre-treatment with 
thymoquinone prevents the 
worse effects promoted by 
DEP such as leukocytosis, 
increase of IL-6 and 
decrease of SOD plasma 
activity. The platelet 
numbers and prothrombotic 
events were also decreased 

[34] 

Isoproterenol model of 
myocardial ischemia 

12.5–50 mg/kg 

Antioxidant and 
Cardioprotective effects by 
decrease of LDH levels and 
TBARS activity. The SOD 
activity was increased to 
almost normal levels. The 
GSH/GSSG ratio decreased 
gradually and returned to 
near normal levels with 
corresponding increases in 
the dose 

[35] 

 
Abdominal aorta 
ischemia followed by 
reperfusion (I/R) 

20 mg/kg 

Reduction of oxidative 
stress determined by Total 
Oxidant Status and 
Oxidative Stress Index in 
blood samples. Decreased 
of histopathologic injury in 
in lung, renal, and heart 
tissues 

[33] 

 
1,8-Cineole 

Systolic blood pressure 
measured in rats 

0.1 mg/kg 

Antihypertensive activity 
associated with the 
regulation of nitric oxide 
and oxidative stress in rats 
chronically exposed to 
nicotine 

[83] 

2.22. 1,8-Cineole 

The effect of cyclic monoterpene 1,8-cineole was investigated on systolic blood pressure (SBP) 
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2.22. 1,8-Cineole 
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and oxidative stress in rats chronically exposed to nicotine. The dose of 0.1 mg/kg of this monoterpene 
significantly reduced SBP, while, at the dose of 1.0 mg/kg, there was an increase of plasma nitrite 
concentrations. At doses of 0.01 mg/kg and 0.1 mg/kg, 1,8-cineole also antagonized nicotine-induced 
lipid peroxidation. It has been suggested that the regulation of nitric oxide and oxidative stress in 
rats should contribute to the antihypertensive effect of 1,8-cineole [83]. 

1,8-Cineole

Systolic blood pressure
measured in rats 0.1 mg/kg

Antihypertensive activity
associated with the regulation of
nitric oxide and oxidative stress in
rats chronically exposed
to nicotine

[83]

2.22. 1,8-Cineole

The effect of cyclic monoterpene 1,8-cineole was investigated on systolic blood pressure (SBP) and
oxidative stress in rats chronically exposed to nicotine. The dose of 0.1 mg/kg of this monoterpene
significantly reduced SBP, while, at the dose of 1.0 mg/kg, there was an increase of plasma nitrite
concentrations. At doses of 0.01 mg/kg and 0.1 mg/kg, 1,8-cineole also antagonized nicotine-induced
lipid peroxidation. It has been suggested that the regulation of nitric oxide and oxidative stress in rats
should contribute to the antihypertensive effect of 1,8-cineole [83].

3. Conclusions

Essential oils are a new option of bioactive substances in animal models that are being used in
the study of new candidates for cardiovascular drugs. Due to the diversity of chemical structures
and mechanisms of action, such as blockade of voltage dependent L-type Ca2+ channels, cholinergic
and vagal reflex activation, and participation of muscarinic receptors, it is not possible to establish
a principal chemical characteristic of cardiovascular activity. The lipid solubility and volatility are
common properties of these substances. However, several compounds have high pharmacological
potency, for example 1,8-cineole and borneol. Pharmacological evaluation of the synthetic derivatives of
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these constituents appears to be an interesting way to optimize the pharmacologic profile and advance
the knowledge to promote accomplishing prototypes for new cardiovascular drugs. In addition,
the simplicity of the chemical structures of the bioactive compounds may result in the preparation of
low cost drug candidates.
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Abbreviations

AID Alfa (α) Interaction Domain
BP N-Butylidenephthalide
BS (−)-α-Bisabolol
CAL Cinnamyl Alcohol
Cavβ2a β-Subunit isoform of voltage-gated L-type Ca2+ channel
cGMP Cyclic guanosine monophosphate
CK-MB Creatine kinase MB
CVD Cardivascular diseases
DOCA Deoxycorticosterone acetate
EC Cultured vascular endothelial
EDHF Endothelium-Derived Hyperpolarizing Factor
eNOS Endothelial NO Synthase
EOAR Rosewood Oil
GR Glutathione Reductase
GSH/GSSG Reduced or Oxidized Glutathione ratio
HUVEC Human Umbilical Vein Endothelial Cells
IK Active Intermediate
IL-1β Interleukin 1β
IL-6 Interleukin 6
iNOS Inducible NO Synthase
LA Linalyl Acetate
LDH Lactate Dehydrogenase
L-NAME N(ω)-Nitro-L-Arginine Methyl Ester
LO Linalool
MAP Mean Arterial Pressure
MI Myocardial Injury
MOVAS Mouse Vascular Smooth Muscle
NCD Non Communicable Diseases
NO Nitric oxide
NP 1-Nitro-Phenylethane
Nrf2 NF-E2-related factor 2
PKG Protein Kinase G
RAS Renin-angiotensin Aldosterone System
ROC Receptor Operator Channels
ROS Reactive Oxygen
SBP Species Systolic Blood Pressure
SK Small-conductance Ca2+-activated K+

SKCa/IKCa Calcium Activated Potassium Channels
SOCs Store Operator Channels
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SOD Superoxide Dismutase
TBARS Thiobarbituric Acid Reactive Substances
TEA Tetraethylammonium
TNF-α Tumor Necrosis Factor alpha
TQ Thymoquinone
TRPA1 Transient Receptor Potential Ankyrin 1
TRPV Transient Receptor Potential Vanilloid
VCM Ventricular Cardiac Myocytes
VOCC Voltage-Operated Calcium Channel
VSMC Vascular Smooth Muscle Cells
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