Supplementary materials for:

Layered polythiophene-silica composite through self-assembly and polymerization of thiophene-based silylated molecular precursors

Marie-José Zacca, Danielle Laurencin, Sébastien Richeter, Sébastien Clément * and Ahmad Mehdi *

Institut Charles Gerhardt, UMR 5253 - Université de Montpellier, CNRS, ENSCM – CC1701, Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France.

Table of contents:

ATR-FT-IR spectrum of 2	P.2
¹ H NMR spectrum of 2 in CDCl ₃	P.2
¹³ C{ ¹ H} NMR spectrum of 2 in CDCl ₃	P.3
ATR-FT-IR spectrum of 3	P.3
¹ H NMR spectrum of 3 in CDCl ₃	P.4
¹³ C{ ¹ H} NMR spectrum of 3 in CDCl ₃	P.4
¹ H NMR spectrum of 4 in CDCl ₃	P.5
¹³ C{ ¹ H} NMR spectrum of 4 in CDCl ₃	P.5
²⁹ Si{ ¹ H} NMR spectrum of 4 in CDCl ₃	P.6
ATR-FT-IR spectra of hybrid materials $\mathbf{M4}_{25}$ (bottom) and $\mathbf{M4}_{110}$ (top)	P.6
Colour evolution during the chemical polymerization of thiophene units in ${ m M4}_{ m 110}$	P.7
¹³ C CPMAS solid state NMR spectra of M4 ₁₁₀ and P4	P.7
TGA curve of lamellar polythiophenesilica hybrid material P4	P.8

Figure S1 : ATR-FT-IR spectrum of 2.

Figure S2 : ¹H NMR spectrum of 2 in CDCl₃.

Figure S3 : ${}^{13}C{}^{1}H$ NMR spectrum of 2 in CDCl₃.

Figure S4: ATR-FT-IR spectrum of 3.

Figure S5 : ${}^{1}H$ NMR spectrum of 3 in CDCl₃.(*) Water.

Figure S6 : ${}^{13}C{}^{1}H$ NMR spectrum of 3 in CDCl₃.

Figure S7 : ${}^{1}H$ NMR spectrum of 4 in CDCl₃.

Figure S8 : ${}^{13}C{}^{1}H$ NMR spectrum of 4 in CDCl₃.

----45.23

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 (ppm)

Figure S9 : ²⁹Si{¹H} NMR spectrum of 4 in CDCl₃.

Figure S10: ATR-FT-IR spectra of hybrid materials M425 (bottom) and M4110 (top).

Figure S11: Colour evolution during the chemical polymerization of thiophene units in M4₁₁₀.

Figure S12: ¹³C CPMAS solid state NMR spectra of M4₁₁₀ and P4.

Figure S13: TGA curve of lamellar polythiophene--silica hybrid material P4.