Structural Optimization of Foldamer-Dendrimer Conjugates as Multivalent Agents against the Toxic Effects of Amyloid Beta Oligomers

Éva Bartus ¹, Gábor Olajos ¹, Ildikó Schuster ¹, Zsolt Bozsó ¹, Mária A. Deli ², Szilvia Veszelka ², Fruzsina R. Walter ², Zsolt Datki ³, Zsolt Szakonyi ⁴, Tamás A. Martinek ¹ and Livia Fülöp ^{1,*}

- ¹ Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; bartus@pharm.u-szeged.hu (E.B.); olajosg@pharm.u-szeged.hu (G.O.); schuster.ildiko@med.u-szeged.hu (I.S.); bozso.zsolt@med.u-szeged.hu (Z.B.); martinek@pharm.u-szeged.hu (T.A.M.)
- ² Institute of Biophysics, Biological Research Center of HAS, Temesvári krt. 26, H-6726 Szeged, Hungary; deli.maria@brc.mta.hu (M.A.D.); veszelka.szilvia@brc.mta.hu (S.V.); walter.fruzsina@brc.mta.hu (F.R.W.)
- ³ Department of Psychiatry, University of Szeged, Kálvária sgt. 57, H-6725 Szeged, Hungary; datkiz@yahoo.com
- ⁴ Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; szakonyi@pharm.u-szeged.hu
- * Correspondence: fulop.livia@med.u-szeged.hu; Tel.: +36-62-545-698

Supplementary Information

Contents:

Supplementary materials and methods	. 2
Enzyme linked immunosorbent assay (ELISA)	. 2
Supplementary figures and tables	. 3
Figure S1. ITC titration data for 2a-2c and 2f-2h.	. 3
Figure S2. The results of the ELISA experiment of 2a-2i.	. 4
Figure S3. ITC enthalpogram for the titration of A β with different conjugate (4-9)	. 5
Table S1. Details of the purification of compounds.	. 5
Table S2. Results of the <i>ex vivo</i> tissue viability test	. 6
Table S3. Cell viability readouts based on impedance analysis.	. 6
Peptide and conjugate characterization data	. 7

Supplementary materials and methods

Enzyme linked immunosorbent assay (ELISA)

Neutravidin coated microplates (PIERCE, Rockford, IL, USA; capacity: 60 pmol/well) were used for the measurements. The capture molecule was dissolved in 20 mM PBS (pH=7.4) to 10 μ g ml⁻¹ concentration, 100 μ l capture molecule solution was pipetted in each well and incubated for 2 hours at room temperature. The plate was washed with 3 × 200 μ l washing buffer (20 mM PBS, 1% BSA, 0.05% Tween 20, pH=7.4), and incubated with 100 μ l amyloid solution under shaking overnight at 4 °C. The plate was washed with 3 × 200 μ l TPBS (20 mM PBS, 0.05% Tween 20, pH= 7.4). The primary antibody 6E10 (Covance, Leeds, UK) was diluted with the washing buffer (1:10000 dilution) and 100 μ l diluted primary antibody solution was pipetted to each well. The plate was incubated for 1 hour at room temperature and then washed with 3 × 200 μ l TPBS. The secondary antibody Histols-M (Histopatology Ltd., Pécs, Hungary) was diluted with washing buffer (250 × dilution), 100 μ l diluted secondary antibody solution was pipetted to each well and incubated for 1 hour at room temperature. The plate was washed again with 3 × 200 μ l TPBS. Development was carried out with 100 μ l 3,3',5,5'-tetramethylbenzidine solution (TMB, Cell Signaling Technology, Inc., Danvers, MA, USA) pipetted to each well and the absorbance was measured with a FLUOstar OPTIMA plate reader (BMG Labtech, Offenburg, Germany). Signals were recorded for approximately 1.5 hours, until the absorbance reached the plateau.

Supplementary figures and tables

Figure S1. ITC titration data for 2a-2c and 2f-2h. ITC titration raw data (upper) and integrated enthalpograms with fitted curves (lower).

Figure S2. The results of the ELISA experiment of 2a-2i.

Absorbance values were corrected for background signal. Diagram of **2b-2i** contain the signal of the original conjugate **2a** (dashed line) to simplify comparison.

Figure S3. ITC enthalpogram for the titration of A β with different conjugate (4-9). Data was fitted with the two independent site model (black)

	1	L	
Compound Column		Preparative HPLC gradient	calculated MW (g mol ⁻¹)
1	Luna C18	0-40% in 15 min, 40-65% in 80 min; 4 ml min ⁻¹	1034.28
2a	Jupiter C4	20-35% in 20 min, 35-55% in 100 min; 4 ml min ⁻¹	5497.60
2b	Jupiter C4	20-40% in 20 min, 40-60% in 80 min; 4 ml min ⁻¹	5385.54
2c	Jupiter C4	15-35% in 20 min, 35-65% in 100 min; 4 ml min ⁻¹	5553.70
2d	Jupiter C4	20-30% in 20 min, 30-60% in 100 min; 4 ml min ⁻¹	5385.38
2e	Jupiter C4	15-45% in 90 min; 4 ml min ⁻¹	5497.60
2f	Jupiter C4	20-50% in 90 min; 4 ml min ⁻¹	5657.85
2g	Jupiter C4	20-40% in 20 min, 40-60% in 80 min; 4 ml min ⁻¹	5657.85

Table S1. Details of the purification of compounds.

2h	Jupiter C4	20-30% in 20 min, 30-60% in 100 min; 4 ml min ⁻¹	5657.85
2i	Jupiter C4	20-60% in 120 min; 4 ml min ⁻¹	5657.85
3	Jupiter C4	0-30% in 30 min, 30-50% in 90 min; 4 ml min-1	2316.80
4	Jupiter C4	0-60% in 120 min; 4 ml min-1	3999.81
5	Jupiter C4	0-60% in 120 min; 4 ml min ⁻¹	5257.30
6	Jupiter C4	10-50% in 160 min; 4 ml min ⁻¹	10 910.8
7	Jupiter C4	0-20% in 10 min, 20-40% in 80 min; 4 ml min-1	5200.2
8	Jupiter C4	20-40% in 20 min, 40-60% in 80 min; 4 ml min ⁻¹	5484.51
9	Jupiter C4	20-40% in 20 min, 40-60% in 80 min; 4 ml min-1	3956.85

Phenomenex Luna C18 column: 250 x 10.00 mm, particle size: 10 micron, pore size: 100Å

Phenomenex Jupiter C4 column: 250 x 10.00 mm, particle size: 10 micron, pore size: 300Å

Table S2. Results of the *ex vivo* tissue viability test

Relative viability values compared to the control after treatment with A β oligomers in 10 μ M concentration alone and in the presence of compounds **1**, **3-6** in a 1:1 molar ratio (N=4)

	% [(OD550-620 nm)/slices area mm²] (mean ± SD)					
control	100.0 ± 2.6					
Αβ	43.2 ± 1.6					
$A\beta + 1$	51.6 ± 1.6					
Aβ + 3	55.6 ± 3.6					
$A\beta + 4$	74.1 ± 2.7					
Aβ + 5	85.5 ± 4.8					
Aβ + 6	89.3 ± 2.7					

	5 μΜ				10 μΜ			
	24 hours		48 hours		24 hours		48 hours	
	mean	SEM	mean	SEM	mean	SEM	mean	SEM
control	100.0	1.1	100.0	0.9	100.0	1.1	100.0	0.9
Αβ	85.1	2.6	84.0	2.0	85.1	2.6	84.0	2.0
$A\beta + 1$	90.6	3.7	87.0	2.3	96.6	5.1	89.0	1.9
Aβ + 3	85.4	2.9	85.8	3.2	78.9	2.4	79.7	1.0
$A\beta + 4$	92.1	3.4	85.5	2.0	98.7	3.8	91.2	1.7
Aβ + 5	98.0	4.5	98.6	3.4	102.2	4.8	102.1	4.0

Table S3. Cell viability readouts based on impedance analysis.

Peptide and conjugate characterization data Compound **1**

Column: Phenomenex Luna C18 (250 x 4.6 mm, particle size: 5 micron, pore size: 100Å); Gradient: 30-50% 20min 1.2 mL min⁻¹

Compound 2a

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300Å); Gradient: 40-60% 20min 1.2 mL min⁻¹

Compound 2b

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 40-60% 20min 1.2 mL min⁻¹

Compound 2c

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300Å); Gradient: 40-60% 20min 1.2 mL min⁻¹

Compound 2d

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300Å); Gradient: 30-50% 20min 1.2 mL min⁻¹

Compound 2e

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 30-50% 20min 1.2 mL min⁻¹

Compound 2f

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300Å); Gradient: 5-80% 25min 1.2 mL min⁻¹

Compound 2g

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 40-60% 20min 1.2 mL min⁻¹

Compound 2h

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300Å); Gradient: 40-60% 20min 1.2 mL min⁻¹

Compound 2i

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 5-80% 25min 1.2 mL min⁻¹

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 30-50% 20min 1.2 mL min⁻¹

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300Å); Gradient: 35-55% 20min 1.2 mL min⁻¹

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 5-80% 25min 1.2 mL min⁻¹

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 35-75% 20min 1.2 mL min⁻¹

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 40-60% 20min 1.2 mL min⁻¹

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 35-55% 20min 1.2 mL min⁻¹

Column: Phenomenex Jupiter C4 (250 x 4.6 mm, particle size: 5 micron, pore size: 300\AA); Gradient: 45-65% 20min 1.2 mL min⁻¹