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Abstract: The reliability of a QSAR classification model depends on its capacity to achieve confident
predictions of new compounds not considered in the building of the model. The results of this
external validation process show the applicability domain (AD) of the QSAR model and, therefore,
the robustness of the model to predict the property/activity of new molecules. In this paper we
propose the use of the rivality and modelability indexes for the study of the characteristics of the
datasets to be correctly modeled by a QSAR algorithm and to predict the reliability of the built
model to prognosticate the property/activity of new molecules. The calculation of these indexes
has a very low computational cost, not requiring the building of a model, thus being good tools for
the analysis of the datasets in the first stages of the building of QSAR classification models. In our
study, we have selected two benchmark datasets with similar number of molecules but with very
different modelability and we have corroborated the capacity of the predictability of the rivality and
modelability indexes regarding the classification models built using Support Vector Machine and
Random Forest algorithms with 5-fold cross-validation and leave-one-out techniques. The results
have shown the excellent ability of both indexes to predict outliers and the applicability domain of
the QSAR classification models. In all cases, these values accurately predicted the statistic parameters
of the QSAR models generated by the algorithms.
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1. Introduction

Research on the applicability domain (AD) of Quantitative Structure-Activity Relationship (QSAR)
models has caught the attention of the Chemometric community in the last years [1–8]. From the
publication of the OECD report [9] describing the principles for the validation of QSAR models, several
proposals have been published with the aim of determining the AD of QSAR models.

According to the OECD guiding principles, a QSAR model should have: (i) a defined endpoint,
(ii) an unambiguous algorithm, (iii) a defined domain of applicability, (iv) appropriate measures of
goodness-of-fit, robustness, and predictivity, and (v) a mechanistic interpretation where possible [9,10].

The AD concept can be applied in different ways, depending on the type of QSAR model and
modeling approach [11]. Some approaches for defining the AD are based on similarity analysis [12]
considering the AD as a measurement aimed to estimate the uncertainty in the prediction of a particular
molecule based on how similar it is to the molecules used in the building of a model. Thus, AD can be
defined as a distance measurement between all the molecules used in the building of the model and,
also, the distance between the molecules of the training and external sets.
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In summary, the goal of the AD approaches is to estimate the prediction reliability for each
modeled compound individually. Using this information, it would be possible to estimate the accuracy
of prediction for an arbitrary data set regardless of its similarity to the set used to validate the
model [13].

QSAR studies can assess the accuracy of predictions in different ways [14–16]. The simple ones
try to distinguish reliable versus non reliable predictions, assuming that the accuracy of prediction
of molecules, which are inside a space of descriptors covered by the training set, is similar to the
estimated accuracy of the model.

Due to the data representation of the molecules being, generally, based on molecular descriptors
as variables, the applicability domain has been defined by different methods: the value ranges of these
variables, the value ranges of the principal components of these variables, the optimal prediction space
(TPKAT), geometric methods, probabilistic density distribution methods, distance based methods,
etc. [17,18]

All of these methods are based on the QSAR principle of similarity, so a molecule falls within
of the AD of a model if in the training set there is, at a closer distance, similar molecules with more
similar activity than any other dissimilar molecule of similar activity.

Most of the proposals used to measure the AD are based on the distance based methods (DM)
considering that a molecule is inside the AD when the distance from this molecule to the distance of
the training set is lower than a predefined threshold.

Carrió et al. [19] have proposed a method (ADAN) based on the calculation of six measurements:
(i) the distance between the query compound and the centroid of the training set, (ii) the distance
between the query compound and the closest compound in the training set, (iii) the distance to model
(DModX), (iv) the difference between the predicted biological property and the average biological
property in the training set, (v) the difference between the predicted biological property and observed
biological value for the closest compound in the training set, (vi) SDEP (standard deviation error of the
predictions) of 5% of the closest compounds in the training sets to the query compound.

Although the method contains no tunable parameters and can work unsupervised, producing
reasonable estimations of the prediction errors in highly unfavorable conditions, it requires a high
number of calculations and the execution of algorithms for the building of the models and calculations
of the parameters used for the predictions.

Yun et al. [20] have proposed to define the AD by means of population analysis (PA) strategy,
including model population analysis (MPA) and approach population analysis (APA). MPA employed
bounding box, Mahalannobis distance and K-nearest neighbors methods to define AD with a large
amount of sub-datasets derived from training set. APA was used to get a union of all results generated
by the AD approaches to give a consensus list of samples as falling outside the AD.

Liu and Wallqvist [2] have proposed the use of the fusion of random forest (RF) and variable
nearest neighbor method (v-NN) for the building of classification models of Ames mutagenecity
benchmark dataset. In this proposal, authors show the advantages of extended connectivity fingerprint
(ECFP) for the dataset representation. The predictions of the class belonging to each molecule of the
dataset is carried out by means of the following expression:

y =
∑v

i=1 yie−(
di
h )

2

∑v
i=1 yie−(

di
h )

2 , d ≤ d0 (1)

where di denotes the Tanimoto distance between a target molecule for which a prediction is made and
molecule i of the training set, yi denotes the experimentally measured value of molecule i, v denotes the
total number of training set molecules satisfying the condition di ≤ d0, h is a smoothing factor which
dampens the distance penalty, and d0 is a Tanimoto-distance threshold beyond which two molecules
are not considered sufficiently similar to be included in the average.
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Therefore, this approach has the lack of needing to adjust two parameters: the molecular structural
similarity threshold, determining the threshold of the AD and the smoothing factor, although the
authors reach a clear improvement in the accuracy with a high coverage.

Roy et al. [21,22] proposed a standardization approach to define the outliers in the training set and
identifying the compounds that reside outside the AD in the test set. Sushko et al. [18] demonstrated
that the DMs based on an ensemble (consensus) model provide systematically better performance
than other DMs. In this paper, the authors use 30 QSAR models being capable of identifying 30–60%
of molecules having an accuracy of prediction similar to the inter-laboratory accuracy of the Ames
test, which is estimated to be 90%, proposing that the in-silico predictions can be used to halve the
cost of experimental measurements by providing a similar prediction accuracy. Authors used different
MD calculations for the molecules of the dataset to calculate the accuracy in the predictability of the
molecule activity: the standard deviation of the predictions (STD, leverage, correlation, concordance,
CLASS-LAG, etc.).

CLASS-LAG method provides a simple and clear measure of the AD. This method proposed by
Manallack et al. [23] is used for binary datasets (molecules belonging to two classes: −1, +1), and with
those machine learning algorithms providing continuous (not discrete) results of the predictions. For
each molecule of the dataset a continuous value in the interval [−1, +1] is obtained as follows:

dCLASS−LAG(J) = min{|−1− y(J)|, |1− y(J)|} (2)

where: J represents the molecules of the dataset and y(J) is the prediction value of J obtained by the
machine learning algorithm used in the building of the model.

Thus, the distance between dCLASS-LAG(J) value for the molecule J and the class (−1 or +1) to
which J belongs is a measurement of the accuracy of the predictability of J.

Despite the large number of DM methods proposed for the calculation of AD and the goodness
of these methods to detect the molecules inside and outside of the AD of a model, the fault in the
AD studies with DM methods is to find those molecules which are in the edge of the predictability,
so different results are obtained depending of the DM method used, what different authors have
proposed is to combine different DM approaches and strategies [24,25].

In this paper, we propose a simple and fast DM method for the calculation of the AD. The method
does not require the building of a model, so it can be used in the first stages of the QSAR investigation.
Thus, the AD calculation is independent to the machine learning used in the building of a model. The
aim of our approach is to propose a simple DM measurement capable of providing the researcher, in
the initial stages of the development of a QSAR model, information about the molecules of the training
set, the expected results on the robustness of the model and the capability of this model to correctly
predict the activity of new molecules.

Although in this paper we describe the approach for classification models, the method can be
extended to regression problems. For classification problems, a commonly used measure of prediction
accuracy is Correct Classification Rate (CCR), which is simply the percentage of compounds correctly
classified by a model. CCR is appropriate for balanced sets, and for binary datasets sensitivity and
specificity are also measures of the accuracy of the prediction.

The method proposed can be applied to the molecules in the training and external sets (for
external validation) and to calculate a global measure of the CCR for the training set and a local
measure of the predictability of each one of the molecules of the training and external sets.

In our study, we have selected two benchmark datasets with similar number of molecules but with
very different modelability. Then, we have built classification models using Support Vector Machine
and Random Forest algorithms with 5-fold cross-validation and leave-one-out techniques.

The local measure of the predictability of each molecule is calculated by means of its rivality
index (RI) [26]. The rivality index is a measure of the capacity of each molecule to be correctly
classified by an algorithm. Independently of the classes existing in the dataset and the assigned label
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(Positive/Negative, Active/Inactive, classes 0 and 1, classes −1 and +1, etc.), the RI assigns values in
the interval [−1, +1] to each molecule.

Molecules with high positive values are determined as outside of the AD. Molecules with high
low negative values are determined as inside of the AD. In addition, molecules with RI value close to
zero (positive or negative) are determined as “activity borders” [26]. Thus, our proposal is capable of
finding those molecules which are in the edge of the predictability and, even to determine the capacity
of an algorithm to classify, and to predict, correctly/incorrectly these molecules.

Global measurements of the RI for the whole training and test sets allow us to calculate the
modelability index of the training set and the predictability of the external set. The modelability index
values calculated for the datasets have shown the different characteristics of the datasets and their
different capacity of being modeled. In addition, the rivality index values for the molecules of each
dataset have allowed to detect the activity cliff molecules, predicting the outliers or false positive
molecules detected by the algorithms. These results allow to predict the results of the algorithm and
the robustness of the built model.

Moreover, we have carried out the external validation process for these datasets in order to study
the AD of the QSAR models. In this process, we have partitioned the datasets in two independent sets.
The training set has been used for the building of the QSAR models with leave-one-out technique, and
the external set has been used for the external validation and analysis of the AD of the built models.
This process was performed three times carrying out three random partitions of each dataset.

External validation results obtained for each algorithm were compared with the rivality index
values calculated for each molecule of the external set and the modelability index values obtained for
the external set. This analysis has shown the excellent ability of both indexes to predict outliers and
the applicability domain of the QSAR classification models. In all cases, these values accurately predict
the statistic parameters of the QSAR models generated by the algorithms. The manuscript has been
organized as follows: next to the Introduction. In Section 2 we describe the experimental carried out
for the two datasets and we discuss the results. In the Discussion section we comment the advantages
of the new DM method proposed for the analysis of the applicability domain. Finally, in Materials and
Methods we have described the datasets used for the calculations and the foundations of the rivality
and modelability indexes.

2. Results

2.1. Behavior of RI and CMODI Indexes, and RF and SVM Algorithms with the YES1 Dataset

Initially we have studied the behavior of RF and SVM algorithms in order to analyze the
results of the models built. In this study we build the classification models using LOO and 5-folds
cross-validation (CV). Using CV, we have repeated the building of the models five times. Thus, we
were able to study the stability of the algorithms in the detection of outliers (false class 0 and false
class 1 molecules).

As observed in Figure 1, RF algorithm detects a lower number of molecules incorrectly classified
than SVM algorithm, although the molecules detected as incorrectly classified by RF are also detected
by SVM algorithm. RF algorithm detects a lower number of molecules incorrectly classified using
LOO than almost all of the models built with CV, belonging most of these molecules to class 0. We
can also observe that for the five models built using CV, the molecules incorrectly classified (these
molecules will be named as outliers along the manuscript) detected are practically the same, so RF is a
stable classification algorithm.
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Figure 1. Outliers detected by RF (a) and SVM (b) in the building of classification models for YES1
dataset using LOO and 5-fold cross-validation (5 models were built).

The behavior of SVM is quite similar. Using LOO a lower number of outliers is detected than
when using CV. However, in the five models built using CV, a different number of outliers is detected.

For both algorithms, a set of common molecules are always detected as outliers: 22, 56, 58, 59, 60
and 67, and other molecules are detected as outliers only by one of both algorithms.

Figure 2 shows the behavior of the modelability and rivality indexes for YES1 dataset for values of
threshold of neighbors (TN) from 1 to 5. As observed, CMODI index detects as outliers/activity cliffs
practically the same molecules detected by RF and SVM algorithms (in Figure 2a are also represented
the results for RF and SVM in the building of a model using CV).
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Figure 2. For YES1 dataset, outliers detected by the modelability index for different values of TN (a),
values of the rivality index for different values of TN (b).

We can appreciate in Figure 2a that the number of outliers detected by CMODI decreases as TN
increases, although for any value of TN the molecules 22, 56, 58, 59 and 60 are detected as activity cliffs.
Moreover, CMODI detects the molecules 62 and 67 as outliers, just as RF algorithm does. In addition
CMODI also detects as an outlier the molecule 21, just as SVM does for some of the CV models built
(see Figure 1).

Besides, we can observe in Figure 2a that the number of outliers detected by CMODI decreases as
TN increases. Thus, molecules 114 and 124 only are detected as outliers for values of TN lower than 3.

This behavior is clearly described in Figure 2b. In this figure we can observe the changes in the
values of the rivality index for each molecule of the dataset with the changes in the TN values. For
a high number of molecules, few changes in the RI values are observed. These molecules maintain
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values of RI very close to −1 and, therefore, these molecules are considered as correctly classifiable. As
it can also be observed, these molecules are the same that RF and SVM algorithms classify correctly.

In addition, we can appreciate in Figure 2b that some molecules always have a positive value of
the RI independently of the TN value. These molecules are the same molecules detected by RF and
SVM algorithms as outliers for any CV and LOO model.

However, some molecules as 114 and 124 change from positive to negative their RI value with the
increasing of TN. Thus, for values of TN greater than 2, CMODI considers these molecules as correctly
classifiable, and we can check that RF and SVM classify these molecules correctly.

Moreover, we can interpret the deviation existing between the molecules detected as outliers by
the algorithms and CMODI. For instance, the molecule 113 is detected as an outlier by RF algorithm (see
also Figure 1). However, CMODI detects this molecule as correctly classifiable. Observing Figure 2b
we see that this molecule is an activity border [26]. The molecule has a negative value very close to
zero for low values of TN. When, TN increases the RI value for this molecule takes lower values and,
therefore, is considered as correctly classifiable. Similar interpretation can be given for the molecules
108 and 124.

For the molecule 21, the opposite happens. This molecule is detected as an outlier by CMODI
but the algorithms classify this molecule correctly (see also Figure 1). Observing the Figure 2b, this
molecule is also an activity border, taking positive values very close to zero for low values of TN, and
increasing the RI value when TN also increases.

The behavior of the outlier for YES1 dataset is even better shown in Figure 3. In Figure 3a we see,
for each molecule of the dataset, the number of the firsts nearest neighbors belonging to a different
class. As observed, the same molecules detected as outliers by the algorithms and CMODI have a
high number of first nearest neighbors belonging to a different class closer than those belonging to the
same class.
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Figure 3. Study of the outlier behavior for YES1 dataset: (a,c) number nearest neighbors of a different
class for the molecules of the dataset, (b,d) pairs of activity cliffs molecules.
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For instance, there are 23 molecules of class 1 closer to the molecule 56 (class 0) than any other
molecule of the dataset belonging to the class 0 (see Figure 3a). Thus, the molecule 56 is more similar to
molecules belonging to class 1 than to any molecule belonging to class 0 and, therefore, this molecule
is an activity cliff and it always will be detected as an outlier.

For other molecules, such as 21 and 114, there is only one closer molecule belonging to a different
class. Consequently, if values of TN greater than 1 are considered these molecules could move from
incorrectly to correctly classifiable.

Figure 3b shows this information in detail. Observing the X-axis, we see the molecules having
their firsts nearest neighbor belonging to a different class. Thus, for instance, the first nearest neighbor
of the molecule 21, above commented, is the molecule 110, and for the molecule 114 it is the molecule
60. We can also observe the 23 molecules belonging to the class 1 closer to the molecule 56 than any
other molecule belonging to the class 0.

One of these molecules is the molecule 85. Now, observing the Y-axis, we can appreciate that this
molecule 85 is also the first nearest neighbor of three molecules 22, 56, 58 and 60 and, therefore, this
molecule 85 is the one responsible for these molecules being detected as activity cliffs.

In Figure 3c,d we have represented the same information but considering the behavior of the
dataset for a neighborhood between TN = 2 and TN = 3. That is, only the presence of molecules
between the second and the third neighbor of any class for each molecule of the dataset.

We observe that some molecules continue being affected by closer neighbors belonging to a
different class. For instance, the molecule 60 will always be detected as outlier, because there are
16 molecules belonging to the class 1 closer than the third neighbor of the molecule 60 belonging to the
class 0. However, this molecule 60 is not responsible for any other molecule to be detected as outlier,
as happened for TN = 1.

Moreover, we see as the molecule 85 continues affecting other molecules of the dataset. For TN = 3,
the molecule 85 affects to molecules 59 and 62 and, therefore, these molecules are detected as outliers
by CMODI and the algorithms.

On the other hand, we can observe that the increasing of TN generates a diminishing of the
number of molecules affecting the neighborhood of molecules of the same class to each molecule.
Therefore, it produces a diminishing in the number of activity cliffs.

In Figure 4a are represented the results of the predictions generated using CMODI index and the
statistics results obtained with RF and SVM algorithms, and in Table 1 are shown the values of the
classification parameters.

Molecules 2018, 23, x 7 of 21 

 

to molecules belonging to class 1 than to any molecule belonging to class 0 and, therefore, this 
molecule is an activity cliff and it always will be detected as an outlier. 

For other molecules, such as 21 and 114, there is only one closer molecule belonging to a different 
class. Consequently, if values of TN greater than 1 are considered these molecules could move from 
incorrectly to correctly classifiable. 

Figure 3b shows this information in detail. Observing the X-axis, we see the molecules having 
their firsts nearest neighbor belonging to a different class. Thus, for instance, the first nearest neighbor 
of the molecule 21, above commented, is the molecule 110, and for the molecule 114 it is the molecule 
60. We can also observe the 23 molecules belonging to the class 1 closer to the molecule 56 than any 
other molecule belonging to the class 0. 

One of these molecules is the molecule 85. Now, observing the Y-axis, we can appreciate that 
this molecule 85 is also the first nearest neighbor of three molecules 22, 56, 58 and 60 and, therefore, 
this molecule 85 is the one responsible for these molecules being detected as activity cliffs. 

In Figure 3c,d we have represented the same information but considering the behavior of the 
dataset for a neighborhood between TN = 2 and TN = 3. That is, only the presence of molecules 
between the second and the third neighbor of any class for each molecule of the dataset. 

We observe that some molecules continue being affected by closer neighbors belonging to a 
different class. For instance, the molecule 60 will always be detected as outlier, because there are 16 
molecules belonging to the class 1 closer than the third neighbor of the molecule 60 belonging to the 
class 0. However, this molecule 60 is not responsible for any other molecule to be detected as outlier, 
as happened for TN = 1. 

Moreover, we see as the molecule 85 continues affecting other molecules of the dataset. For TN 
= 3, the molecule 85 affects to molecules 59 and 62 and, therefore, these molecules are detected as 
outliers by CMODI and the algorithms. 

On the other hand, we can observe that the increasing of TN generates a diminishing of the 
number of molecules affecting the neighborhood of molecules of the same class to each molecule. 
Therefore, it produces a diminishing in the number of activity cliffs. 

In Figure 4a are represented the results of the predictions generated using CMODI index and 
the statistics results obtained with RF and SVM algorithms, and in Table 1 are shown the values of 
the classification parameters. 

   
(a) (b) (c) 

Figure 4. Modelability values and statistic parameter of the classification models built with RF and 
SVM algorithms for the whole dataset (a), outliers detected for the cleaned dataset without the activity 
cliffs detected for TN = 3 (b), and the resulting values of modelability and statistics parameters for the 
cleaned dataset without activity cliffs (c). 

As it can be observed, the values of the statistics increase as TN increases until a value of TN 
equal to 3. Thus, for YES1 dataset the consideration of the third nearest neighbors is enough to predict 
the behavior of the molecules of the dataset. The values obtained for the sensitivity, specificity and 
accuracy using the rivality index are very close to the values of these parameters obtained by the 
classification models generated with RF and SVM algorithms. We observe that the lower values are 
obtained for the sensitivity. As previously described, the higher number of activity cliffs are detected 
for the molecules belonging to class 0. 

0.85

0.90

0.95

1.00

1 2 3 4 5
Threshold of Neighbors

For the whole dataset
CMODI (Se) CMODI (Sp) CMODI (CCR)

RF (Se) RF (Sp) RF (CCR)

SVM (Se) SVM (Sp) SVM (CCR)

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

Th
re

sh
ol

d o
f N

ei
gh

bo
rs

Molecules

Activity cliffs detected by RF, SVM and CMODI, without cliffs of TN=3

RF SVM

0.96

0.97

0.98

0.99

1.00

1 2 3 4 5
Threshold of Neighbors

Dataset without cliffs for TN=3
CMODI (Se) CMODI (Sp) CMODI (CCR)

RF (Se) RF (Sp) RF (CCR)

SVM (Se) SVM (Sp) SVM (CCR)

Figure 4. Modelability values and statistic parameter of the classification models built with RF and
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cleaned dataset without activity cliffs (c).
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Table 1. Results of the predictions using CMODI for different values of TN and the algorithms for the
whole datasets and the dataset erasing the activity cliffs detected for TN = 3.

All Molecules of the Dataset Erasing Cliffs for TN = 3

Algorithm TN SE SP ACC CMODI CCR SE SP ACC CMODI CCR

1 0.887 0.935 0.911 0.911 1.000 0.984 0.991 0.992
2 0.887 0.952 0.919 0.919 0.982 1.000 0.991 0.991
3 0.887 0.984 0.935 0.935 0.982 1.000 0.991 0.991
4 0.887 0.984 0.935 0.935 0.982 1.000 0.991 0.991
5 0.887 0.984 0.935 0.935 0.964 1.000 0.983 0.982

RF 0.923 0.966 0.944 0.945 1.000 0.982 0.991 0.991
SVM 0.882 0.964 0.919 0.923 0.968 1.000 0.983 0.984

As it can be observed, the values of the statistics increase as TN increases until a value of TN
equal to 3. Thus, for YES1 dataset the consideration of the third nearest neighbors is enough to predict
the behavior of the molecules of the dataset. The values obtained for the sensitivity, specificity and
accuracy using the rivality index are very close to the values of these parameters obtained by the
classification models generated with RF and SVM algorithms. We observe that the lower values are
obtained for the sensitivity. As previously described, the higher number of activity cliffs are detected
for the molecules belonging to class 0.

If we erase these activity cliffs detected for the dataset for a TN value equal to 3, we observe in
Figure 4b that for TN = 1 only the molecule 124 is detected as an activity cliff by the rivality index,
although for values of TN greater than 1, the molecule 26 is detected as an activity cliff. And for TN = 5
also the molecule 39. RF algorithm detects the molecule 113 and SVM algorithm the molecules 7 and
57 in the model built using CV.

Thus, as observed in Figure 4c and Table 1, by erasing the activity cliffs detected for the whole
dataset and TN = 3, a clear improvement of the statistics parameters is obtained. Now, the prediction
of CMODI and the CCR values for both algorithms are very close to 1, being the predictions obtained
using the rivality index an excellent predictive parameter of the behavior of the classification algorithms
of YES1 dataset.

2.2. Analysis of the Applicability Domain of the Classification Models for the YES1 Dataset

With the aim of confirming the good behavior of the rivality index for the study of the applicability
domain of the classification models, we have carried out the following experimental:

• YES1 dataset was randomly partitioned (80/20). This process was performed three times obtaining
three sets for training (TRS) and three sets for external validations (TES). Thus, we can reproduce
the behavior of the algorithms, the rivality and modelability indexes in the external validation
process of the classification models, and to study the applicability domain of those models.

• Using the training sets (TRS), the classification models were built using RF and SVM algorithms
and LOO technique. In this way, the results are reproducible and they are independent of the
partitions generated when CV technique is used. For each of the models built, the values of
sensitivity (SE), specificity (SP), accuracy (ACC) and CCR were stored.

• Values of the rivality index and CMODI were calculated for each one of the three TRS, and the
activity cliffs detected were also stored.

• External validations were performed for each one of the three TES for each of the models built
using RF and SVM.

• Finally, the analysis of the AD for the three TES was performed.

The analysis of the AD is carried out obtaining the values of the rivality index for each one of
the molecules of the TES regarding the molecules of the corresponding TRS. This iterative procedure
consists on adding one by one the molecules of the TES to the TRS and calculating the rivality index of
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the added molecule. Thus, the calculation of the AD is quite similar to the external validation process
performed using the algorithms.

Figure 5 shows the results of the study of the AD for the three training sets. We observe that in
spite of the different composition of the three training sets, the rivality index is capable of detecting the
activity cliffs that the algorithms will detect as outliers.
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Figure 5. Outliers detected by the algorithms and activity cliffs detected by the rivality index for
different values of TN for the three training sets (TRS) (a), values of the rivality index for the molecules
included in the three training sets (b).

For a value of TN = 3, as described above, most of the outliers detected by RF and SVM in
the building of the training models are detected by the RI, and any deviation is produced by those
molecules described as activity borders, that is, those molecules with value of their rivality index close
to zero (positive or negative).

This predictive capacity of the rivality index can be observed in Table 2. For the three training sets
the values of SE, SP, ACC and CMODI obtained are very close to the corresponding values obtained in
the building of the classification models using RF and SVM algorithms.

Therefore, the rivality index is capable of detecting those molecules of the datasets out of the AD.
These molecules, those with high values of their rivality index, are detected as activity cliffs. These
molecules introduce a non convenient noise in the training model, distorting the predictive robustness
of that model to be used with an external (test) set.

Figure 6 shows the results of the external validation carried out with the three test sets
corresponding to the three training sets. As observed in this figure, the rivality index is an excellent
predictive index of the behavior of the molecules of the test set. Independently of the composition
of the training and test set, the rivality index detects those molecules that will be detected by the
algorithms as false positive or false negative.
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Table 2. Results of the predictions using CMODI for different values of TN and the algorithms for the
three whole training sets and the training sets erasing the activity cliffs detected for TN = 3.

All Molecules of the Dataset Erasing Cliffs for TN = 3

Algorithm TN SE SP ACC CMODI CCR SE SP ACC CMODI CCR

Training set TRS-01

1 0.918 0.941 0.930 0.930 1.000 1.000 1.000 1.000
2 0.918 1.000 0.960 0.959 1.000 1.000 1.000 1.000
3 0.918 1.000 0.960 0.959 1.000 1.000 1.000 1.000
4 0.918 1.000 0.960 0.959 1.000 1.000 1.000 1.000
5 0.898 1.000 0.950 0.949 0.978 1.000 0.990 0.989

RF 0.925 0.957 0.940 0.941 1.000 1.000 1.000 1.000
SVM 0.909 0.978 0.940 0.943 0.980 0.978 0.979 0.979

Training set TRS-02

1 0.900 0.939 0.919 0.919 1.000 0.979 0.989 0.990
2 0.880 0.980 0.929 0.930 0.978 1.000 0.989 0.989
3 0.900 0.980 0.939 0.940 0.978 1.000 0.989 0.989
4 0.880 0.980 0.929 0.930 0.978 1.000 0.989 0.989
5 0.900 0.980 0.939 0.940 0.978 1.000 0.989 0.989

RF 0.922 0.958 0.939 0.940 1.000 0.978 0.989 0.989
SVM 0.923 0.979 0.949 0.951 1.000 1.000 1.000 1.000

Training set TRS-03

1 0.868 0.935 0.899 0.901 1.000 1.000 1.000 1.000
2 0.868 0.935 0.899 0.901 1.000 1.000 1.000 1.000
3 0.868 0.957 0.909 0.912 0.978 1.000 0.989 0.989
4 0.868 0.957 0.909 0.912 0.978 1.000 0.989 0.989
5 0.868 0.957 0.909 0.912 0.957 1.000 0.978 0.978

RF 0.898 0.960 0.929 0.929 1.000 0.979 0.989 0.989
SVM 0.860 0.939 0.899 0.899 0.957 1.000 0.978 0.978
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Figure 6. False positive/negative detected by RF and SVM algorithms and CMODI in the three
external validations (a), rivality index values of the molecules of the external sets in the three external
validations (b).

As observed in Figure 6b, these molecules have a high positive value of the rivality index and,
therefore, the classification model built with the training set is out of the applicability domain to
correctly predict the activity of these molecules included in the test set.
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Observing the molecules incorrectly predicted by the algorithms and also detected as out of the
AD by the rivality index (see Figure 6a, these molecules are the same to those detected as activity cliffs
in the study of the whole dataset (see also Figures 2 and 3). Therefore, these molecules are noisy points
in any set, generating a distortion of any training model built including these molecules, and being
always classified as false positive/negative in any external validation.

Once again, any deviation between the results obtained using the rivality index and the algorithms
is caused by the activity borders. These type of molecules are in limit conditions to be correctly
predicted and, therefore, the composition of the training set is determinant for their correct prediction.
Thus, the simple and fast calculation of the rivality index for the molecules of the test set allows to the
researcher to know the AD of the training model and the capacity of the building of a classification
model to correctly predict the activity of each one of the molecules of the test set in the external
validation process.

Table 3 shows the results of the three external validations carried out. As observed, in all cases the
use of the rivality index and CMODI allows to obtain an excellent prediction of the results obtained
using RF or SVM algorithms. All the statistics parameters obtained have very close or equal values to
their corresponding parameter values obtained using RF or SVM.

Table 3. Results of the predictions using CMODI for different values of TN and the algorithms for the
three whole training sets and the training sets erasing the activity cliffs detected for TN = 3.

All Molecules of the Training Sets Erasing Cliffs for TN = 3

Algorithm TN SE SP ACC CMODI CCR SE SP ACC CMODI CCR

Test set TES-01

1 0.846 0.909 0.875 0.878 0.769 0.909 0.833 0.838
2 0.769 0.909 0.833 0.839 0.692 0.909 0.792 0.801
3 0.769 0.909 0.833 0.839 0.692 0.909 0.792 0.801
4 0.769 0.909 0.833 0.839 0.692 0.909 0.792 0.801
5 0.692 0.909 0.792 0.801 0.692 0.909 0.792 0.801

RF 0.846 0.727 0.792 0.787 0.846 0.818 0.833 0.832
SVM 0.923 0.727 0.833 0.825 0.923 0.909 0.917 0.916

Test set TES-02

1 0.833 1.000 0.920 0.917 0.833 1.000 0.917 0.920
2 0.833 1.000 0.920 0.917 0.833 1.000 0.917 0.920
3 0.833 1.000 0.920 0.917 0.833 1.000 0.917 0.920
4 0.833 1.000 0.920 0.917 0.833 1.000 0.917 0.920
5 0.833 1.000 0.920 0.917 0.833 1.000 0.917 0.920

RF 0.833 1.000 0.920 0.917 0.833 1.000 0.920 0.917
SVM 0.667 1.000 0.840 0.833 0.667 1.000 0.840 0.833

Test set TES-03

1 0.889 0.875 0.880 0.882 0.889 0.938 0.920 0.913
2 0.889 0.875 0.880 0.882 0.889 0.938 0.920 0.913
3 0.889 1.000 0.960 0.944 0.889 1.000 0.960 0.944
4 0.889 1.000 0.960 0.944 0.889 1.000 0.960 0.944
5 0.889 1.000 0.960 0.944 0.889 1.000 0.960 0.944

RF 0.889 1.000 0.960 0.944 0.889 1.000 0.960 0.944
SVM 0.889 0.938 0.920 0.913 0.889 1.000 0.960 0.944

2.3. Application to Datasets with Low Modelability

In the analysis and the results obtained, described above, we have applied our study to a dataset
with high modelability. YES1 is a dataset containing a set of molecules perfectly distributed in two
classes. Except for very few activity cliffs detected and described previously, the molecules of each
class are very similar between each other, and the dissimilarity between molecules of different classes
is high.
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Regrettably, this characteristic is not common for most of the datasets. MRP4 is also a binary
dataset with a number of molecules similar to YES1, but with a low modelability, having described a
modelability of reference equal to 0.67 [27].

Thus, with this dataset we have carried out the same study to the one described for YES1 dataset,
in order to demonstrate that the use of the rivality index for the analysis of the applicability domain of
the classification models is extensible to any type of dataset.

Figure 7a shows the reasons for the low modelability of MRP4 dataset. As observed, RF and SVM
detect a lot of outliers belonging to both classes of molecules. Most of these outliers are also detected
as activity cliffs by CMODI for different values of TN, having values of the rivality index greater than
zero (see Figure 7b).
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Figure 7. Activity cliffs detected by CMODI and outliers detected by RF and SVM algorithms (a),
values of the rivality index for different values of TN (b), modelability values obtained by CMODI and
the algorithms (c).

However, we can also observe in Figure 7b, the high number of molecules of this dataset having
a value of the rivality index close to zero (positive or negative). Many of these activity borders are
little affected by the value of the TN, and other activity borders change their rivality index value from
negative to positive.

Thus, as it is represented in Figure 7c, higher values of SE, SP and CCR are obtained using CMODI
than the ones obtained by the algorithms, because RF and SVM algorithms consider these activity
borders as outliers (for instance, molecules 24 and 25).

These differences between YES1 and MRP4 datasets are clearly detected by the rivality index.
Observing the Figure 8a,b, we can appreciate the higher number of molecules of MRP4 dataset having
their firsts nearest neighbors belonging to a different class (see Figure 8a). For a lot of molecules their
firsts nearest neighbor belongs to a different class and for other high number of molecules also the
second and third nearest neighbors belong to a different class (see Figure 8c,d).

Thus, as we can observe in Figure 8b, in MRP4 dataset a lot of molecules are more similar to
molecules of a different class than to any other molecule that belongs to its same class. For instance, the
molecule 63 belongs to class 1, and it is more similar to 11 molecules (6, 14, 15, 35, 38, 43, 51, 55, 56, 59
and 60) belonging to class 0 than to any other molecule belonging to class 1. As a result, this molecule
63 is well detected by the rivality index as activity cliff, being considered as a molecule incorrectly
classifiable by an algorithm. This prediction is confirmed by RF and SVM.

Due to the existence in MRP4 dataset of a lot of molecules having many nearest neighbors
belonging to a different class, the consideration of values of TN greater than 1 will only affect slightly
to the modelability of the dataset. Thus, as observed in Figure 8c,d for TN = 3, also a high number of
molecules have a lot of nearest neighbors belonging to a different class closer than their third neighbor
belonging to their same class (i.e., the molecule 20 has 8 molecules of the class 1 closer than its third
first nearest neighbor belong to the class 0).
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Figure 8. Study of the outlier behavior for MRP4 dataset: (a) number nearest neighbors of a different
class for the molecules of the dataset for TN = 1, (b) pairs of activity cliffs for TN = 1, (c) number nearest
neighbors of a different class for the molecules of the dataset for TN = 2 to TN = 3, (d) pairs of activity
cliffs for TN = 2 to TN = 3.

This problematic composition of molecules of MRP4 dataset is highlighted in the results of the
three models built for the training sets in the three external validations performed with this dataset.
As observed in Figure 9, independently of the training set composition, RF and SVM algorithms detect
a lot of molecules as false positive/negative. Most of these molecules are also detected as activity cliffs
by the rivality index, and the difference, as above explained, is due to the activity borders molecules
(see Figure 9). Therefore, these results set in question the applicability domain of these models.
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Figure 9. False positive/negative detected by RF and SVM algorithms and CMODI for the training sets
in the three external validations carried out.

This suspect is confirmed by the results obtained in the three external validations. These results
are shown in Figure 10 and we can observe a lot of molecules incorrectly predicted by the algorithms
in the three internal models built.
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Figure 10. False positive/negative detected by RF and SVM algorithms and CMODI in the three
external validations (a), rivality index values of the molecules of the external sets in the three external
validations (b).

These molecules belonging to the three test sets take values of the rivality index greater than zero
for any value of TN. That is, in the training set there is always more than one nearest neighbor to any
neighborhood value belonging to a different class. Or, in the case of the activity borders, in the training
set there are molecules belonging to a different class very similar between each other and very similar
to the molecules of the test set.

Thus, the modelability of the dataset is little affected by the value of the cardinality of the
neighborhood (TN). That is due to the absence of a clear dissimilarity between molecules of the two
classes, and as a result it is highly frequent that a molecule of a given class is more similar to its first,
second, etc., neighbor of a different class than to another of the same class. The results of the internal
model (for the training set) and external validation (for the test set) obtained for the three external
validation carried out have shown these characteristics of the MRP4 dataset.

In Table 4 are shown the statistic values obtained for the internal models generated for the
three training sets. We can observe that the values of CMODI are quite similar to the values of CCR
corresponding with the models generated with RF and SVM algorithms for the whole training sets.
The low modelability of this dataset is mainly caused by the molecules belonging to class 1 (molecules
from 62 to 122), generating low values of the specificity. This fact was observed in the previously
described analysis of the activity cliffs. For these molecules there is a high number of other more
similar molecules belonging to class 0.

When, in the training sets, we erase the activity cliffs detected for a value of TN = 3, the new
internal models built for the three training sets improve considerably. As shown in Table 4, the statistic
parameters reach values greater than 0.9. Thus, as most of the activity cliffs for TN = 3 belong to the
class 1, when erasing these molecules from the training sets, the specificity reaches values greater than
0.9. As observed, the values of the sensitivity also increase, but this increasing is very low due to the
fact that few activity cliffs corresponding to class 0 have been erased.
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Table 4. Results of the MRP4 predictions using CMODI for different values of TN and the algorithms
for the three whole training sets and the training sets erasing the activity cliffs detected for TN = 3.

All Molecules of the Dataset Erasing Cliffs for TN = 3

Algorithm TN SE SP ACC CMODI CCR SE SP ACC CMODI CCR

Training set TRS-01

1 0.904 0.733 0.825 0.819 0.977 0.970 0.974 0.973
2 0.885 0.733 0.814 0.809 0.953 0.909 0.934 0.931
3 0.827 0.733 0.784 0.780 0.977 0.909 0.947 0.943
4 0.808 0.756 0.784 0.782 0.977 0.818 0.908 0.897
5 0.827 0.644 0.742 0.736 0.977 0.758 0.882 0.867

RF 0.707 0.714 0.711 0.711 0.882 0.929 0.908 0.905
SVM 0.714 0.727 0.722 0.721 0.848 0.884 0.868 0.866

Training set TRS-02

1 0.735 0.708 0.722 0.722 0.947 0.969 0.957 0.958
2 0.776 0.667 0.722 0.721 0.947 0.906 0.929 0.927
3 0.776 0.667 0.722 0.721 0.947 0.969 0.957 0.958
4 0.796 0.688 0.742 0.742 0.868 0.969 0.914 0.919
5 0.776 0.729 0.753 0.752 0.868 0.969 0.914 0.919

RF 0.868 0.694 0.691 0.691 0.964 0.881 0.914 0.923
SVM 0.735 0.750 0.742 0.742 0.903 0.897 0.900 0.900

Training set TRS-03

1 0.869 0.705 0.787 0.787 0.959 0.977 0.968 0.968
2 0.852 0.721 0.787 0.787 0.939 0.977 0.957 0.958
3 0.803 0.721 0.762 0.762 0.959 0.977 0.968 0.968
4 0.803 0.770 0.787 0.787 0.939 0.977 0.957 0.958
5 0.803 0.787 0.795 0.795 0.939 0.955 0.946 0.947

RF 0.712 0.698 0.705 0.705 0.860 0.977 0.914 0.918
SVM 0.746 0.763 0.754 0.754 0.840 0.953 0.892 0.897

However, although the training models improve when erasing the activity cliffs, the applicability
domain of those training models does not improve. This behavior is observed analyzing the Table 5. In
this Table 5 are shown the results of the three external validations carried out. We can observe how the
values of the statistic parameters are highly affected by the composition of the training and test sets.

Thus, for instance, using RF algorithm we have obtained values of the sensitivity of 0.69, 0.92 and
0.56 for each one of the three external validations using the whole training sets. If the activity cliffs for
TN = 3 are erased from those training sets, values for the sensitivity of 0.39, 0.92 and 0.56, respectively,
are obtained.

As a result, any model built with this dataset will have a low domain of applicability. As
commented above, in this dataset there is no presence of a marked structural difference between
molecules of both classes and, therefore, the prediction of the activity of an external molecule is clearly
dependent of the molecules existing in the training for the building of the internal model.

We can also observe in Tables 4 and 5 that, as above commented, the consideration of distinct
values of TN has a very low effect in the results. Depending of the composition of the training and
test sets, the best results are obtained for values of TN equal or close to 3. However, due to the fact
that most molecules have nearest neighbors belonging to a different class at different values of TN, the
changes in the neighborhood cardinality do not clearly improve the modelability of the dataset.
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Table 5. Results of the MRP4 predictions using CMODI for different values of TN and the algorithms
for the three whole training sets and the training sets erasing the activity cliffs detected for TN = 3.

All Molecules of the Training Sets Erasing Cliffs for TN = 3

Algorithm TN SE SP ACC CMODI CCR SE SP ACC CMODI CCR

Test set TES-01

1 0.769 0.636 0.708 0.703 0.692 0.545 0.625 0.619
2 0.769 0.545 0.667 0.657 0.692 0.545 0.625 0.619
3 0.769 0.545 0.667 0.657 0.692 0.636 0.667 0.664
4 0.692 0.636 0.667 0.664 0.692 0.636 0.667 0.664
5 0.769 0.636 0.708 0.703 0.615 0.545 0.583 0.580

RF 0.692 0.636 0.667 0.664 0.385 0.455 0.417 0.420
SVM 0.846 0.727 0.792 0.787 0.692 0.636 0.667 0.664

Test set TES-02

1 0.833 0.385 0.600 0.609 0.667 0.692 0.680 0.679
2 0.750 0.615 0.680 0.683 0.667 0.769 0.720 0.718
3 0.917 0.682 0.800 0.804 0.583 0.615 0.600 0.599
4 0.833 0.615 0.720 0.724 0.583 0.538 0.560 0.561
5 0.833 0.615 0.720 0.724 0.583 0.538 0.560 0.561

RF 0.917 0.538 0.720 0.728 0.917 0.615 0.760 0.766
SVM 0.750 0.692 0.720 0.721 0.750 0.692 0.720 0.721

Test set TES-03

1 0.778 0.688 0.720 0.723 0.778 0.750 0.760 0.764
2 0.778 0.750 0.760 0.764 0.778 0.750 0.760 0.764
3 0.778 0.750 0.760 0.764 0.778 0.750 0.760 0.764
4 0.778 0.750 0.760 0.764 0.778 0.750 0.760 0.764
5 0.778 0.813 0.800 0.795 0.778 0.750 0.760 0.764

RF 0.556 0.875 0.760 0.715 0.556 0.875 0.760 0.715
SVM 0.333 0.813 0.640 0.573 0.333 0.688 0.560 0.510

3. Discussion

The construction of robust and applicable classification models for datasets of molecules is a
complex task. In this process, using techniques such as cross-validation, the modeler tests different
algorithms by adjusting their parameters, in order to obtain a model with the higher reliability possible,
so as to be used in the prediction of new molecules.

Independently of the mathematical basis of the algorithm used, all the algorithms build a
classification model taking into account the similarity principle. Consequently, the presence in the
dataset of activity cliffs, very similar molecules belonging to different classes, causes the detection of
outliers by the classification model. As a result, classification models with low accuracy are obtained.

In the prediction of new molecules using the built classification model, these activity cliffs are
considered and, moreover, new activity cliffs could be detected, generating incorrect predictions of the
external molecules.

In this paper we have described the capacity of the weighted rivality index to detect the activity
cliffs present in the datasets. These molecules, detected as outliers by most of the algorithms, take
positive values of the rivality index.

Consequently, the value of the rivality index corresponding to the molecules of the dataset
allows the modeler to know the dataset characteristics in a previous stage to the construction of the
classification model and the capacity of any algorithm to generate a robust classification model.

The values of the rivality index of the molecules of the dataset also allow to obtain a predictive
value of the modelability of the dataset, being this value highly correlated with the correct classification
rate value that will be obtained in the classification model generated by the algorithm.

Moreover, the study of the values of the rivality index considering different values of the
neighborhood also allows the modeler to know the capacity of each molecule of the dataset to be
correctly predicted by an algorithm.
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Thus, by means of an easy and fast calculation, the rivality index allows to detect those molecules
that will, always or depending on the consideration of a set of neighbors, be detected as outliers.

As a result, this information will be used by the modeler for the depuration of the dataset in order
to improve the robustness of the classification model.

In addition, in the prediction of new molecules, the rivality index offers an extra information to
the modeler. Highly negative values of the rivality index will inform the modeler that a classification
model built with the dataset is inside the applicability domain of prediction of those molecules.

On the contrary, if the external molecules take values of the rivality index close to one, the
molecules of the dataset are outside of the applicability domain of prediction of those new molecules.
Therefore, those molecules will, with a high probability, be predicted incorrectly.

In this paper, we have proved the capacity of the rivality index to inform the modeler about these
characteristics of the dataset providing, in a stage previous to the building of the classification model
by means of a fast calculation, information about the outliers and allowing the improvement of the
robustness and applicability of the classification model.

The results obtained for a dataset of very high modelability and a dataset with very low
modelability have shown that the proposal is applicable for any type of dataset, producing in any
case an improvement of the accuracy of the classification models built and, moreover, a very clear
improvement in the prediction of new molecules using those models.

4. Materials and Methods

4.1. Datasets Description and Representation

From Chembench website [27], YES1 and 342_MRP4x (MRP4) datasets were gathered for the
analysis and validation of the proposal presented in this paper. These datasets have been selected due
to the fact that they contain a medium/low number of molecules, which will allow us to clearly show
the graphics corresponding to the analysis carried out.

YES1 and MRP4 are binary and perfectly balanced datasets. YES1 contains 124 molecules (1–62
belong to class 0 and 63–124 belong to class 1). MRP4 contains 122 molecules (1–61 belong to class 0,
and 62–122 belong to class 1). However, the characteristics of these datasets are quite different. YES1
is a highly modelable dataset, being reported for this dataset a modelability index of reference equal
to 0.85 [27]. On the contrary, MRP4 is a poorly modelable dataset, having a modelability index of
reference equal to 0.67 [27].

The data representation of the datasets used in the calculations has been their descriptor matrices,
also gathered from Chembench website [27]. The type of descriptor matrix selected has been
CDK descriptors [28], containing 149 variables describing 1D and 2D molecular descriptors (see
Supplementary Materials).

4.2. Experimental Method

The descriptors matrix data representation of each dataset was analyzed, and columns (variables)
having any value equal to NaN/Inf were erased. In addition, columns with value equal to zero for
all rows were also deleted. The resulting matrices were normalized (range-scaled) by columns. Thus,
maximum and minimum value of each column was calculated and Max/Min criterion was used
to update the values of the matrix to their normalized values in the range [0, 1]. These normalized
matrices were used in the calculations of the classification models and the indexes described in
this paper.

For the calculation of the nearest neighbors, Euclidean distance was considered, and distance
matrices were generated for each dataset. These matrices are symmetrical matrices of size MxM,
being M the number of molecules of the dataset, where the elements (i, j) store the Euclidean distance
between the molecules i and j. This Euclidean distance has been calculated using the range scaled
descriptor matrix.
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The diagonal of these matrices was set to Inf, and the distance matrices were sorted in ascending
order by rows. Then, for each row (molecule) the neighbors to each molecule were ordered from the
nearest (lower distance value) to the furthest (greater distance value).

For the calculations performed in this work, Matlab2017b [29] was used. In addition, using the
Statistic and Machine Learning Toolbox [30], Support Vector Machine (SVM) with linear kernel, and
ensemble bagged decision trees (Random Forest) algorithms were applied for the building of the
classification models and calculation of the sensibility (SE), specificity (SP), accuracy (ACC) and correct
classification rate (CCR). Ballabio et al. [31] have studied different metrics for the assessment of the
classification performance, proving the excellent behavior of the sensitivity, specificity, accuracy and
CCR in the analysis of classification results for binary and balanced datasets. In order to allow the
experiments to be easily reproduced by other researchers, the algorithms were executed using the
default values of the parameters established by Matlab2017b [29,30], so no changes were introduced
for improving the results in the building of the classification models for the two datasets.

The building of the classification models was performed using Leave-One-Out (LOO) and 5-folds
cross-validation (CV), with random partitioning of the dataset in the training set (80% of molecules)
and test set (20% of molecules).

4.3. Rivality Index

The rivality index (RI) is a measurement of the capability to correctly predict the activity of a
molecule by a statistic algorithm. For any molecule of a given dataset, the rivality index is defined
as follows:

RIi =
dx

i − dy
i

dx
i + dy

i
(3)

where: dx
i is the distance between the molecule i and its nearest neighbor molecule belonging to the

same class of i, and dy
i is the distance between the molecule i and its nearest neighbor molecule that

belongs to any class different to the class of molecule i.
The implementation of Equation (3) is quite simple. The Euclidean distances between all pairs of

molecules of the dataset are obtained, and for each molecule the distance to the remaining molecules
is sorted (this process is performed in the pre-processing stage as described above). When that is
done it is only necessary to find, for each molecule, the first nearest neighbor of the same and of a
different class.

RI is a normalized index which takes values between +1 and −1. Thus, values lesser than zero
imply that the first nearest neighbor of molecule i is a molecule that belongs to the same class of i,
and values of RI greater than zero mean that the first nearest neighbor of the molecule i is a molecule
belonging to a different class of i.

RI values close to 1 mean that the first nearest neighbor belongs to the same class of a given
molecule i is at a higher distance than any other molecule belonging to a different class. That is, there
exists a molecule belonging to a different class much more similar to the given molecule i than any
other molecule belonging to the same class of i.

Thus, the ratio between the summation of the values of RI for each class and the number of
molecules of that class originates a global RI, informing of a global measurement of the modelability
of the class, that is, the sensitivity and specificity values in the case of binary datasets. Besides, the
summation of the global RI of all the classes in the dataset produces an absolute measurement of the
dataset modelability. Global values of the RI for the dataset close to −1 imply that the data set is rather
highly modelable. When values of RI for the dataset tend to zero, the modelability of the dataset
decreases, and datasets with values of RI greater than zero are very little modelable.

4.4. Weighted Rivality Index

The rivality index is supported on the basis of QSAR approaches, considering that similar
molecules should show similar properties. Therefore, if the first nearest neighbor to a given molecule
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belongs to the same class, that molecule should be correctly classified, and vice versa, if the first nearest
neighbor of a given molecule belongs to a different class that molecule may be considered as an activity
cliff. The molecule will have a positive value of its rivality index, being prognosticated as incorrectly
classified by an algorithm.

However, there are molecules with values of RI equal to zero or very close to zero (positive or
negative), being lower than the standard deviation of the distance between all pairs of molecules of
the dataset. These molecules have been defined as activity borders [26].

Thus, in some cases, the numerator of Equation (3) takes the value dx
i = dy

i 6= 0. These cases RI = 0,
which informs about molecules being at the same distance of a molecule of its same class and another
molecule of a different class. In other cases the numerator of Equation (3) takes the value dx

i = dy
i = 0.

Then, in the dataset there exists at least three molecules (i, x and y) at the same distance and, therefore

the value of RI = dx
i − dy

i
dx

i + dy
i
= 0

0 = NaN (indetermination). In this case, RI value is set to −10−6, in order

to be differentiated of those cases in which dx
i = dy

i 6= 0 and this term takes the value of 0.
We observe that this index takes into account only the first nearest neighbor of each molecule, not

considering other nearest and similar molecules. In many cases, the first two neighbors of a molecule
are molecules of either the same or different classes, but a considerable number of the following
neighbors belong to a unique class (equal or different to the one of the considered molecule). Thus,
when some of the N firsts neighbors are selected in the training set, a different result is obtained than
when some of these molecules are not in the training set.

Thus, we defined a weighted rivality index as follows:

RI =
(dx

i ∗ wx
i )− (dy

i ∗ wy
i )

(dx
i ∗ wx

i ) + (dy
i ∗ wy

i )
(4)

where: dx
i is the Euclidean distance from the molecule i to its first nearest neighbor x belonging to

the same class of i, dy
i is the Euclidean distance from the molecule i to its first nearest neighbor y that

belongs to a different class than the one of i, wx
i is the weight assigned to the neighbor that belongs to

the same class of i and wy
i is the weight assigned to the neighbor belonging to a class different to the

class of i.
These weights are calculated through the following expression:

wx
i =

CNi − CNx
i

CNi
, wy

i =
CNi − CNy

i
CNi

(5)

where: wx
i is the weight assigned to the distance between the molecule i and its first nearest neighbor

x of the same class of i, wy
i is the weight assigned to the distance between the molecule i and its first

nearest neighbor y of a different class than the one of i, CNi is the cardinality of the neighborhood
assigned to the molecule i, CNx

i and CNy
i are the cardinalities in the neighborhood of the molecules

belonging to the same and different classes of molecule i, respectively.
The value of the cardinality of the neighborhood is calculated using a threshold of neighbors (TN)

describing the minimum number of neighbors of each class that must exist in the neighborhood. Thus,
selecting a TN for the dataset, the cardinality of the neighborhood could be different for each molecule
due to the fact that, for each molecule i, its TN first nearest neighbors of each class can be in a different
order depending on their distance to that molecule i.

As the value of TN changes, the cardinality of the neighborhood also changes, and this value of the
cardinality of the neighborhood could be different for each molecule of the dataset. Thus, considering
this threshold (TN) for the calculation of the CNi value, we can partially estimate that the status of the
neighborhood of each molecule of the dataset is like the one existing in for any partition of the dataset
in the cross-validation stage.
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4.5. Modelability Index

The rivality index is a DM measurement of the predictability of a molecule combining the
CLASS-LAG [23] and population analysis methods [20] in a simpler definition of AD and in a fastest
calculation. Thus, the calculation of RI does not require the building of a model, the values of AD
contribute with an absolute measurement of the capability to a molecule to be correctly predicted by a
model and, in addition, these RI values inform of the molecules inside, outside and borders of the AD.

High positive values of RI describe molecules outside of the AD, low negative values of RI
describe molecules inside of the AD having a high predictability accuracy, and molecules with values
(positive/negative) of RI close to zero describe molecules with high uncertainty to be predicted.
However, the weighted of the RI considering the neighborhood of each molecule allows to refine this
uncertainty, informing of those molecules existing in the training set responsible of the low accuracy of
the predictability and allowing to improve the AD by means of the curation of the training set.

Therefore, values lower than zero of the weighted rivality index describe molecules capable of
being correctly classified by an algorithm. That way, we can obtain a measurement of the dataset
modelability. The MODelability Index (CMODI) [26] is a quantitative measurement to quickly assess
whether a predictive QSAR model can be obtained for a chemical dataset and can be calculated as
follows:

CMODI =
1
k

k

∑
j=1

[
1

Mk

Mk

∑
i=1

1, ∀RIi ≤ 0

]
(6)

where: k is the number of exiting classes in the dataset, RIi is the value of the rivality index of the
molecule i and Mk is the number of molecules of the class k in the dataset.

CMODI takes values between 0 and 1 and is a measure of the number of molecules of a dataset
that will be correctly classified by an algorithm. Therefore, it is a predictive measurement of the value
of the correct classification rate (CCR) obtained by an algorithm. In addition, analyzing the Equation (6),
it can be observed that the expression between brackets calculates the sensibility/specificity, that is,
the modelability of each class for binary datasets.

Supplementary Materials: YES1.xlsx and 342_MRP4x.xlsx files containing the information of the datasets used
in this manuscript are available online.
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