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Abstract: Quantum chemical descriptors and empirical parameters are two different types of
chemical parameters that play the fundamental roles in chemical reactivity and model development.
However, previous studies have lacked detail regarding the relationship between quantum chemical
descriptors and empirical constants. We selected polychlorinated biphenyls (PCBs) as an object to
investigate the intrinsic correlation between 16 quantum chemical descriptors and Hammett constants.
The results exhibited extremely high linearity for ∑ σ+

o, m, p with Qxx/yy/zz, α and EHOMO based on the
meta-position grouping. Polychlorinated dibenzodioxins (PCDDs) and polychlorinated naphthalenes
(PCNs) congeners, as two independent compounds, validated the reliability of the relationship.
The meta-substituent grouping method between ∑ σ+

o, m, p and α was successfully used to predict the
rate constant (k) for •OH oxidation of PCBs, as well as the octanol/water partition coefficient (logKOW)
and aqueous solubility (−logSW) of PCDDs, and exhibited excellent agreement with experimental
measurements. Revealing the intrinsic correlation underlying the empirical constant and quantum
chemical descriptors can develop simpler and higher efficient model application in predicting the
environmental behavior and chemical properties of compounds.
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1. Introduction

Computational chemistry is defined as a mathematical description of chemistry that is an
effective tool to investigate the kinetics and rate constant of chemical reactions, develop a predictive
model, and calculate the properties of molecules to obtain some quantum chemical descriptors [1].
Quantum chemical descriptors play a fundamental role in chemistry, environmental protection,
pharmaceutical science, and health research [2], as they identify the correlations between chemical
structures and properties (i.e., quantitative structure−activity relationship, QSAR) [3–6]. A large
number of geometrical, electrostatic, and quantum information regarding molecules can be presented
by computational chemistry software. Thus, many descriptors reflect the properties of molecules and
can provide insight into the chemical nature of compounds under given reaction conditions [7–9].
For example, the descriptors ELUMO (energy of lowest unoccupied molecular orbital) and EHOMO
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(highest occupied molecular orbital) reflect the molecular orbital energies [1,10,11], which play an
important role in predominating many chemical reactions and determining molecular electronic
transition [1,12]. The EHOMO and ELUMO are directly related to the ionization potential and electron
affinity, and characterize the susceptibility of molecules toward attack by electrophiles and nucleophiles,
respectively [1]. Another descriptor polarizability is dependent on the electron distribution of the
entire molecule, which determines the dynamical response to external fields, and provides insight into
a molecular internal structure [13,14].

Molecular descriptors derived from quantum chemical calculations have been widely used for
the prediction and interpretation of quantitative aspects of organic reactions [1,15–18]. For example,
Luo et al. [19] investigated the UV direct photolysis of ibuprofen and sulfamethoxazole based on
experimental measurements, and further accounted for its mechanism based on ELUMO-EHOMO

descriptor. The small ELUMO-EHOMO gap values presented the lower excitation energy and
higher quantum yield, which accounted for the high photolysis rate value [19]. Xiao et al.
developed a QSAR model to predict the second-order rate constants for SO•−4 degradation of
emerging micro-pollutants (kSO•−4

) based on the ratio of oxygen to carbon atoms (#O:C) and
the ELUMO-EHOMO: lnkSO•−4

= 26.8 − 3.97 × (#O:C) − 0.75 × (ELUMO-EHOMO). The model provided

a robust predictive tool for estimating emerging micropollutants removal by SO4
•− mediated

process [20]. More importantly, the QSAR model combining quantum chemical descriptors and
experimental data can predict unobserved chemical phenomena in some cases. Although quantum
chemical descriptors can provide a more accurate and detailed description of electronic effects than
empirical methods, quantum chemical descriptors calculated at a higher level of theory are still difficult
to obtain [21,22]. Thereby, chemical descriptor calculation is an expensive and difficult process, which
limits the high-efficiency prediction at the screening level [21–23]. Furthermore, another type of
empirical parameter is determined by experimentations under the same experimental constraints and
controls, and a common understanding of measurement. An empirical parameter is a similar effect
on the properties or reactivity of each compound in a series of structurally related compounds [24],
such as acid dissociation constant (pKa), octanol/water partition coefficient (logkOW), and substituent
constants. As an important empirical constant, the Hammett substituent constants (σ) has provided
insight into the relationship between reactivity and chemical structures containing aromatic rings [25].
Although this type of constant is reckoned to be accurate, simple, and have a low computational cost,
it still neglects the isomers and the steric effects that exert a great influence on chemical activity [23,26].
Instead, the QSAR model reflects the structural and chemical reactivity of the molecule and exhibits
advantages for an empirical constant model [14,20,27]. For instance, Russell et al. [28] revealed that
Henry’s law constant could be approximated as a linear function of factors related to bulk, lipophilicity,
and polarity based on 63 molecular structures. Overall, both the QSAR model and empirical constants
reflect the relationship regarding structure-activity of compounds [29]; there may be a connection
between the quantum chemical descriptor and empirical constant. The intrinsic relationship underlying
the quantum chemical descriptor and empirical constant still needs to be revealed.

Thus, how to combine the advantage of quantum chemical descriptors and empirical constants to
develop an efficient, accurate, and simple model is quite meaningful to study. However, there rarely
have been other reports about the relationship between quantum chemical descriptors and empirical
constants are rare. Santiago et al. [25] developed a mathematical modeling approach to incorporate
steric effects in Hammett-type correlations. They found a strong correlation between the Hammett
values of para-substitution and natural bond orbital (NBO) charges (R2 = 0.96). The Hammett
values can be used as an alternative to NBO charges [25]. Our previous study had tried to trap
the relationship among polychlorinated compounds between polarizability (α, a quantum chemical
descriptor) and Hammett constant (σ, an empirical constant) [21], which based on two good models
(logk = −11.6 − 1.39 × ∑ σ+

o, m, p [30]) and α (lnk = −0.054 × α − 19.49 [14]) to predicted the kinetics
of •OH oxidation of PCBs (k values) in gas-phase. However, the findings were haphazard and limited.
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Revealing the relationships hidden in quantum chemical descriptors and empirical constants will
greatly improve the efficiency and accuracy of the prediction model. More importantly, the revelation
relationship will disclose the intrinsic correlation between structure and apparent experiment. In this
study, we selected a class of polychlorinated compounds, polychlorinated biphenyls (PCBs) as an
object because of 210 compounds with similar structures and multiple substitution positions, in order
to investigate the relationships between 16 quantum chemical descriptors and Hammett constants.
Another two classes of polychlorinated compounds, polychlorinated dibenzodioxins (PCDDs) and
polychlorinated naphthalenes (PCNs) congeners, were selected to validate the obtained relationship.
To reveal the intrinsic correlation underlying empirical constants and quantum chemical descriptors can
provide a simpler and higher efficient method with great application potential for model development.
The result will help develop fast and tractable prediction power in predicting the phenomenon of
polychlorinated compounds involving environmental pollution and chemical properties.

2. Results and Discussion

2.1. Reveal Relationships between Quantum Descriptors and Hammett Constants

The Hammett constant (including σ, σ+ and σ−) is a reflection of the electronic nature and position
of the substituent [31]. There have been multiple positions substituted by Cl atoms at the ortho-, meta-,
and para-positions, respectively (Figure S1). Thus, the ∑ σo, m, p, ∑ σ+

o, m, p, and ∑ σ−o, m, p values are
the sum of all of the substituent constants of the Cl atoms attached to the aromatic ring, respectively
corresponding to σo, m, p , σ+

o, m, p and σ−o, m, p values (the o, m, and p represent the substitution on
the ortho-, meta- and para-positions, respectively) (in Table S1) [6,31]. Sixteen quantum chemical
descriptors (Table S2) were obtained from the optimized results.

For 210 PCBs congeners, the relationships among 16 quantum chemical descriptors with
∑ σo, m, p, ∑ σ+

o, m, p, and ∑ σ−o, m, p values were listed in Figure S2, Figure 1 and Figure S3, respectively.
The different values of ∑σo, m, p, ∑σ+

o, m, p, and ∑σ−o, m, p values were 72, 74 and 44, respectively. In other
words, many different structures of PCBs congeners were faced with the same sigma values. The results
showed that there have been significantly different trends among ∑σo, m, p, ∑σ+

o, m, p, and ∑σ−o, m, p for
the same quantum chemical descriptors. There are five obvious five groups of linear correlation pattern
of ∑σ+

o, m, p and Qxx/yy/zz, α, and EHOMO, respectively. However, the single linear trend for ∑σo, m, p

and the vertical trend were shown for ∑σ−o, m, p, respectively. All of relationship for others descriptors
with ∑σo, m, p, ∑σ+

o, m, p and ∑σ−o, m, p values were scatter distribution, except for η and S converging
toward a baseline. It’s worth noting that only a single linear for 210 congers did not distinguish more
information relative to the five obvious linear correlation groups. It is worth mentioning that σ−o = σ−p
and σ−m = 2σ−p = 2σ−o , which caused the points of ∑σ−o, m, p and descriptors concentrated distribution
into 15 approximations and hid more discrepant information. Thus, the high relationships among
Qxx/yy/zz, α, EHOMO and ∑σ+

o, m, p were selected for further analysis in this study, respectively.
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Figure 1. Relationships of 16 quantum chemical descriptors (a–r) and ∑σ+
o, m, p for polychlorinated

biphenyls (PCBs) congeners. The (a), (b) referred to our previous study [21].

2.2. Mechanistic Interpretation of Internal Relationship

The further investigation result showed that Qxx/yy/zz, α, and EHOMO all displayed extremely
high linearly correlation to ∑ σ+

o, m, p (Figure 2 and Figure S4). The result showed that all of the PCBs
congeners are classified into five clusters according to the number of Cl atoms substituted at the
meta-position (Nm-Cl) on the ring. As shown in Figure 2, there are 21, 48, 72, 48, and 21 congeners in
each group for meta-position with Nm-Cl ranging from 0 to 4, respectively. In each meta-position cluster,
Qxx/yy/zz and EHOMO values decrease with the increase of ∑ σ+

o, m, p while α values increase with the
increase of ∑ σ+

o, m, p. The R2 for Qxx/yy/zz, and α with ∑ σ+
o, m, p were 0.836~0.935 and 0.987~0.994,

respectively, which were higher the R2 for EHOMO with ∑ σ+
o, m, p (0.759~0.824). The extremely high

R2 (>0.7) indicated that the meta-position chlorination on PCBs congeners play a crucial role in the
relationship between ∑ σ+

o, m, p and Qxx/yy/zz, and α and EHOMO. Furthermore, the trend for Qxx/yy/zz,
α, and EHOMO values also supported that meta-position determined the reactivity of PCBs. The highly
linear correlation illustrated that the simple ∑ σ+

o, m, p can be used to explain or substitute complex
quantum chemical descriptors, such as Qxx/yy/zz, α, and EHOMO, based on meta-substitute grouping.
Their corresponding fitted linear equations were listed in Table 1 (∑ σ+

o, m, p and Qxx, α, EHOMO) and
Table S3 (∑ σ+

o, m, p and Qyy, Qzz).



Molecules 2018, 23, 2935 5 of 12
Molecules 2018, 23, 2935 5 of 12 

 

 

Figure 2. The relationship of ∑σo, m, p
+  and quadrupole moment tensor along the x axis (Qxx), 

polarizability (α) [21] and energy of the highest occupied molecular orbital (EHOMO) for PCBs 

congeners. The Nm-Cl represents the number of Cl atoms substituted at the meta-position, ranging 

from 0 to 4 with the number of congeners n = 21, 48, 72, 48, and 21, respectively. (a) ∑σo, m, p
+  and Qxx; 

(b) ∑σo, m, p
+  and α; (c) ∑σo, m, p

+  and EHOMO. 

Table 1. The fitted linear equations of ∑σo, m, p
+  with Qxx, α and EHOMO for PCBs congeners. 

# 
∑σo, m, p

+  

Range 

Qxx = A × ∑σo, m, p
+ + B α = A × ∑σo, m, p

+ + B [21] EHOMO = A × ∑σo, m, p
+ + B 

A B R2 A B R2 A B R2 

Nm-Cl = 0 0~0.51 −164.46 −63.53 0.903 106.13 113.94 0.994 −2.44 −6.53 0.824 

Nm-Cl = 1 0.4~0.91 −162.23 −13.51 0.879 106.38 81.72 0.993 −1.88 −6.06 0.804 

Nm-Cl = 2 0.8~1.31 −156.71 31.14 0.858 107.73 48.49 0.987 −1.49 −5.88 0.783 

Nm-Cl = 3 1.2~1.71 −152.50 72.28 0.922 107.67 16.33 0.989 −1.20 −5.84 0.779 

Nm-Cl = 4 1.6~2.11 −144.53 104.95 0.935 108.87 −17.84 0.994 −0.87 −6.12 0.759 

In order to gain insights into their connections, the intrinsic characters of Qxx/yy/zz, α and EHOMO 

need further to be further revealed. The ∑σo, m, p
+  is an empirical value reflecting the electronic 

nature and position of the substituent [31]. The quadrupole moment (Qxx, Qyy, Qzz) reflects the 

distribution of the molecular charge in the x-, y-, and z-coordinates or the departure degree relative 

to the spherical-symmetry [32]. The polarizability (α) is defined as the ratio of the induced dipole 

moment of a molecule to the electric field that produces its dipole moment [33], which is an 

important electronic descriptor to reflect the electron distribution in the molecule [34] that is well 

correlated to the overall reactivity of molecule [13,35,36]. EHOMO characterizes the susceptibility of a 

molecule toward attack by electrophiles. A molecule with higher EHOMO is more reactive to attack by 

strong electrophiles [14,21]. Some investigations have shown that Qxx/yy/zz, α and EHOMO are 

associated with many chemical activities and properties. For instance, Kim and Mhin et al. 

suggested that the change in the polarity of the quadrupole moment (Qxx/yy/zz) was related to the 

reduction of the repulsive interaction, which played a vital role in governing the geometry of 

aromatics [37,38]. The investigation reported by Zeng et al. indicated that the quadrupole moment 

(Qyy and Qzz) were successfully used to develop a model for predicting the n-octanol/water partition 

coefficients (logKOW) and aqueous solubility coefficients(−logSW) of PCDDs [39,40]. In addition, our 

previous study developed a QSAR model to predict the •OH degradation of PCBs based on single 

descriptor α. The α played an important role in determining the reaction rate (k) [14]. Luo et al. 

suggested that the more polarizable (α) the molecule, the easier an approaching electrophile (or 

nucleophile) can distort the electron density of the aromatic molecule increasing the rate of reaction 

[21]. For EHOMO descriptor, Yan et al. developed a QSAR model for •OH oxidation of the multiring 

hydrocarbon in the gas‒phase based on partial least squares regression [41]. They reported that 

EHOMO was the most suitable for model development and the higher EHOMO value corresponds to 

higher reactivity. Thus, ∑σo, m, p
+  can be considered as the intuitive experimental phenomenon of the 

structure descriptor, as Qxx/yy/zz, α and EHOMO, and so on. 

Due to Qxx/yy/zz, α, and EHOMO having highly correlated to ∑σo, m, p
+ , there may be collinearity 

between Qxx/yy/zz, α, and EHOMO. Further, Figure 3 showed that α with Qxx and EHOMO had a high 

correlation, with corresponding R2 values of 0.94 and 0.81, respectively. Meanwhile, α and Qyy/Qzz 

0.0 0.5 1.0 1.5 2.0

-200

-180

-160

-140

-120

-100

-80

-60

0.0 0.5 1.0 1.5 2.0

120

140

160

180

200

220

0.0 0.5 1.0 1.5 2.0

-8.0

-7.6

-7.2

-6.8

-6.4

(c)(b)

diphenyl

R2=0.935
R2=0.922

R2=0.858

R2=0.879

R2=0.903

NmCl=0, n=21

NmCl=1, n=48

NmCl=2, n=72

NmCl=3, n=48

NmCl=4, n=21

Q
xx

 (
d

e
b

ye
)

diphenyl

(a)

R2=0.994

R2=0.989

R2=0.987

R2=0.993

R2=0.994

α
 (

B
o

h
r3

)

diphenyl

o,m,p

R2=0.759

R2=0.779

R2=0.783

R2=0.804

R2=0.824

E
H

O
M

O
 (

e
V

)

Figure 2. The relationship of ∑ σ+
o, m, p and quadrupole moment tensor along the x axis (Qxx),

polarizability (α) [21] and energy of the highest occupied molecular orbital (EHOMO) for PCBs congeners.
The Nm-Cl represents the number of Cl atoms substituted at the meta-position, ranging from 0 to 4 with
the number of congeners n = 21, 48, 72, 48, and 21, respectively. (a) ∑ σ+

o, m, p and Qxx; (b) ∑ σ+
o, m, p and

α; (c) ∑ σ+
o, m, p and EHOMO.

Table 1. The fitted linear equations of ∑ σ+
o, m, p with Qxx, α and EHOMO for PCBs congeners.

# ∑σ+
o, m, p Range

Qxx = A × ∑σ+
o, m, p+ B α = A × ∑σ+

o, m, p+ B [21] EHOMO = A × ∑σ+
o, m, p+ B

A B R2 A B R2 A B R2

Nm-Cl = 0 0~0.51 −164.46 −63.53 0.903 106.13 113.94 0.994 −2.44 −6.53 0.824
Nm-Cl = 1 0.4~0.91 −162.23 −13.51 0.879 106.38 81.72 0.993 −1.88 −6.06 0.804
Nm-Cl = 2 0.8~1.31 −156.71 31.14 0.858 107.73 48.49 0.987 −1.49 −5.88 0.783
Nm-Cl = 3 1.2~1.71 −152.50 72.28 0.922 107.67 16.33 0.989 −1.20 −5.84 0.779
Nm-Cl = 4 1.6~2.11 −144.53 104.95 0.935 108.87 −17.84 0.994 −0.87 −6.12 0.759

In order to gain insights into their connections, the intrinsic characters of Qxx/yy/zz, α and EHOMO

need further to be further revealed. The ∑ σ+
o, m, p is an empirical value reflecting the electronic

nature and position of the substituent [31]. The quadrupole moment (Qxx, Qyy, Qzz) reflects the
distribution of the molecular charge in the x-, y-, and z-coordinates or the departure degree relative
to the spherical-symmetry [32]. The polarizability (α) is defined as the ratio of the induced dipole
moment of a molecule to the electric field that produces its dipole moment [33], which is an important
electronic descriptor to reflect the electron distribution in the molecule [34] that is well correlated
to the overall reactivity of molecule [13,35,36]. EHOMO characterizes the susceptibility of a molecule
toward attack by electrophiles. A molecule with higher EHOMO is more reactive to attack by strong
electrophiles [14,21]. Some investigations have shown that Qxx/yy/zz, α and EHOMO are associated with
many chemical activities and properties. For instance, Kim and Mhin et al. suggested that the change
in the polarity of the quadrupole moment (Qxx/yy/zz) was related to the reduction of the repulsive
interaction, which played a vital role in governing the geometry of aromatics [37,38]. The investigation
reported by Zeng et al. indicated that the quadrupole moment (Qyy and Qzz) were successfully used
to develop a model for predicting the n-octanol/water partition coefficients (logKOW) and aqueous
solubility coefficients(−logSW) of PCDDs [39,40]. In addition, our previous study developed a QSAR
model to predict the •OH degradation of PCBs based on single descriptor α. The α played an important
role in determining the reaction rate (k) [14]. Luo et al. suggested that the more polarizable (α) the
molecule, the easier an approaching electrophile (or nucleophile) can distort the electron density of the
aromatic molecule increasing the rate of reaction [21]. For EHOMO descriptor, Yan et al. developed a
QSAR model for •OH oxidation of the multiring hydrocarbon in the gas-phase based on partial least
squares regression [41]. They reported that EHOMO was the most suitable for model development and
the higher EHOMO value corresponds to higher reactivity. Thus, ∑σ+

o, m, p can be considered as the
intuitive experimental phenomenon of the structure descriptor, as Qxx/yy/zz, α and EHOMO, and so on.

Due to Qxx/yy/zz, α, and EHOMO having highly correlated to ∑σ+
o, m, p, there may be collinearity

between Qxx/yy/zz, α, and EHOMO. Further, Figure 3 showed that α with Qxx and EHOMO had a
high correlation, with corresponding R2 values of 0.94 and 0.81, respectively. Meanwhile, α and
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Qyy/Qzz had similarly high correlation (in Figure S5, the R2 values were 0.92 and 0.95, respectively).
The quadrupole moment (Qxx, Qyy, Qzz) and α reflect the electron behavior and the homogeneity in
the electronic properties of the molecule. The α, as one of the molecular electrostatic descriptors [14,20],
is the principal factor determining the structure-activity relationship, even though EHOMO represents
the electron-donating power of the molecule [42]. Yang et al. suggested that the EHOMO reflected only
a single aspect of the molecule, while the α incorporated a number of molecular features [14].
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Figure 3. The relationship of α with Qxx and EHOMO of PCBs congeners.

The reasons for good performance with aromatic meta-substituent grouping regarding the
relationships of quantum chemical descriptors and ∑ σ+

o, m, p need to be further discussed. First of
all, the σ+

m value (0.4) over σ+
p (0.11) and σ+

o (0.073) for Cl substituents was probably attributed
to the meta-position, which determined its dominant role and showed the high correlation [21].
Another important reason, since Cl atoms are substituted on aromatic rings, is electron withdrawing
through the σ-bond, which decreases the ring electron density in the Cl atoms’ substituted site [9,14].
The Cl atoms that were substituted at the meta-position can pull electrons from the aromatic ring,
resulting in decreased electron density and suppressed HOMO distribution [14,21]. The HOMO
distribution is the most direct reflection of the changes in electron distribution. Figure S6 listed
the HOMO distribution of Cl atoms with different Nm-Cl numbers at meta-position and No-Cl at
ortho-position. Luo et al. investigated the changed of HOMO distribution and Cl atoms at the
meta-position [21]. The HOMO distribution of Cl atoms at the meta-position increased independent of
the increasing number of Cl atoms at the meta-position. However, with the increasing number of Cl
atoms at the meta-position, the HOMO distribution of the 1-, 2-, 6-, 1′-, 2′-, 6′-positions in the biphenyl
ring (PCB15, PCB28, PCB100, and PCB155) was easily distorted and greatly varied. For the Cl atoms
increasing at the meta-position and ortho-position, the Cl atoms at the meta-position (PCB15, PCB37,
PCB81, PCB126, and PCB169) do not change the HOMO distribution in the biphenyl junction. However,
once Cl atoms are added at the ortho-position (PCB66, PCB123, PCB167, and PCB189), their HOMO
distribution of biphenyl junction and meta-position were greatly influenced and obviously changed.
It is helpful to deepen our understanding of why meta-position played an important role in correlating
α to ∑ σ+

o, m, p in high linearity. However, the HOMO distribution is easily distorted and greatly varied
when Cl atoms are substituted in other positions [21].
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2.3. Application of Meta-Substituent Grouping

2.3.1. Application in Similar Compounds

The aromatic meta-substituent grouping method was suitable for the application of PCBs
congeners; however, a good method should also be applied to other similar compounds. Thus,
in order to confirm the aromatic meta-substituent grouping method, we examined the relationships of
∑ σ+

o, m, p and quantum chemical descriptors (Qxx/yy/zz, α and EHOMO) with Cl atoms substituted
at meta-position for PCDDs and PCNs congeners (Figures S7 and S8). For PCDDs and PCNs
with only 25 different ∑ σ+

o, m, p values, the trends in the relationships of ∑ σ+
o, m, p and Qxx/yy/zz,

α, and EHOMO were similar to those of the PCBs based on aromatic meta-substituent grouping.
For PCDD, these parallel lines exhibited extremely high linearity for ∑ σ+

o, m, p with α (R2 = 0.994~0.999)
and EHOMO (R2 = 0.982~0.999); however, the linearity for ∑ σ+

o, m, p and Qxx/yy/zz were acceptable
(R2 = 0.712~0.999) (Table S8). For PCNs, the parallel lines Qxx/yy/zz and α also exhibited extremely
high linearity (R2 = 0.883~0.999) except for EHOMO, while the linearity of EHOMO was not obvious
(R2 = 0.438~0.677) (Table S9). The reason may be that the HOMO distribution is severely disturbed
by the naphthalene ring structure relative to the biphenyl structure for PCBs and the dibenzodioxin
structure for PCDDs, especially for the alpha positions in the naphthalene ring. The overall trends of
Qxx/yy/zz, α and EHOMO with ∑ σ+

o, m, p are correlated to the number of Cl atoms substituted on the
meta-position as well. The validation results of PCNs and PCDDs support the application domain in
aromatic compounds based on the meta-substituent grouping method.

2.3.2. Application in Prediction Model

Our previous study was the first to predict the k values of •OH degradation of PCBs in the
gas-phase based on the QSAR model and α [21]. The observed lnk values of •OH oxidation of PCBs
congeners (as validation data) were listed in Table S6. The result showed that the prediction k values
were excellently consistent with experimental measurements (the validation coefficient Q2 = 0.825,
the standard deviation ∆lnk = −0.430~0.626, and the average of standard deviation ∆lnk = −0.03),
and exhibited greater predictive power and convenience than the QSAR model for single α descriptor
(Table 2). We also developed the meta-substituent grouping model to predict the logKOW and −logSW

of PCDDs based on the existent quantum chemical descriptor model (logKOW = 0.03345 × α + 0.39092
and −logSW = 0.0693 × α − 3.6425) (Table 2) and observed values (Table S7) in this study [43–45].
The results showed that the standard deviation ∆logKOW and ∆−logSW ranged from −0.15 to 0.92
and from −0.25 to −1.45, and the average of standard deviation ∆ log KOW and ∆− log SW were
0.45 and −0.92, respectively. The Q2 between the prediction and observation values were 0.954
and 0.981, respectively. All of the models showed that the p < 0.01. These statistical diagnostics
demonstrated that the predicted values of logKOW and −logSW were very accurate, which indicated
that the method of combining the empirical Hammett constant and quantum-chemical descriptor based
on meta-substituent grouping showed fast and tractable prediction power and a great application
potential for model development.

Table 2. The model based on ∑ σ+
o, m, p and meta-substituent grouping for predicting •OH oxidation of

PCBs, logKOW and −logSW of polychlorinated dibenzodioxins (PCDDs).

Congeners Model Statistical Diagnostic

PCBs

Nm-Cl = 0 lnk = -5.73 × ∑ σ+
o, m, p − 25.64 ∆lnk = −0.03

Nm-Cl = 1 lnk = -5.74 × ∑ σ+
o, m, p − 23.90 Q2 = 0.825

Nm-Cl = 2 lnk = -5.82 × ∑ σ+
o, m, p − 22.11 F = 113

Nm-Cl = 3 lnk = -5.81 × ∑ σ+
o, m, p − 20.37 p < 0.01

Nm-Cl = 4 lnk = -5.88 × ∑ σ+
o, m, p − 18.53 [21]
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Table 2. Cont.

Congeners Model Statistical Diagnostic

PCDDs

Nm-Cl = 0 logKOW = 4.60 × ∑ σ+
o, m, p + 4.46 ∆ log KOW = 0.45

Nm-Cl = 1 logKOW = 4.70 × ∑ σ+
o, m, p + 2.97 Q2 = 0.954

Nm-Cl = 2 logKOW = 4.70 × ∑ σ+
o, m, p + 1.48 F = 314

Nm-Cl = 3 logKOW = 4.69 × ∑ σ+
o, m, p + 0.02 p < 0.01

Nm-Cl = 4 logKOW = 4.69 × ∑ σ+
o, m, p− 1.45 [43] *

PCDDs

Nm-Cl = 0 −logSW = 9.52 × ∑ σ+
o, m, p + 4.78 ∆− log SW = −0.92

Nm-Cl = 1 −logSW = 9.73 × ∑ σ+
o, m, p + 1.69 Q2 = 0.981

Nm-Cl = 2 −logSW = 9.74 × ∑ σ+
o, m, p − 1.38 F = 659

Nm-Cl = 3 −logSW = 9.72 × ∑ σ+
o, m, p − 4.42 p < 0.01

Nm-Cl = 4 −logSW = 9.72 × ∑ σ+
o, m, p − 7.46 [45] *

* The quantum-chemical descriptor model obtained from logKOW = 0.03345 × α + 0.39092 and −logSW = 0.0693 × α
− 3.6425 [43,45].

3. Methods

3.1. Data Collection

The experimental k values of •OH oxidation of PCBs (294–300 K) in gas-phase were obtained from
previous study [21]. The experimental logKOW and −logSW values were collected from the studies of
Huang [44] and Kim [45] et al. studies. For PCBs, PCDDs, and PCNs, these comprise in total 210, 76,
and 76 congeners from non to fully (decachloro) Cl substituted on the benzene or naphthalene ring,
respectively. Although diphenyl, dibenzo-1,4-dioxin and naphthalene did not have the substituted
Cl atoms, they were still investigated in this study due to the structural similarities to PCBs, PCDDs
and PCNs, respectively. The Cl substituted PCBs are classified by para (4-, 4′- position), meta (3-, 5-,
3′-, 5′- position), and ortho (2-, 6-, 2′-, 6′- position) substitution patterns, and the PCDDs and PCNs
are classified by meta (2-, 3-, 7-, 8- position), and ortho (1-, 4-, 6-, 9- position) substitution patterns
(without para-position) (Figure S1). The Hammett constant ∑ σo, m, p, ∑ σ+

o, m, p and ∑ σ−o, m, p values
are the sum of the substituent constants σo + σm + σp, σ+

o + σ+
m + σ+

p , and σ−o + σ−m + σ−p respectively,
which are the Cl atoms substituted to the aromatic ring on the ortho−, meta−, and para−positions,
respectively [6,31]. The σ+ and σ− constants represent the compounds with delocalized positive and
negative charges, respectively based upon the heterolysis reaction of para-substituted cumyl chlorides
and phenols [6,46]. The Hammett constants (σ, σ−, σ+) were described in the Supplementary Materials
(Text S1) and their values are listed in Table S1 in detail.

3.2. Quantum Chemical Descriptors Calculation

The structures of 210 PCB congeners, 76 PCDDs, and 76 PCNs congeners (Tables S3–S5) were
created by GaussView 5.0 [47]. First, the global minimum energy was optimized at Spartan’10
program [48] using the MMFF (Merck Molecular Force Field) method [49,50]. Then, the geometries
were performed to further optimize in the gas-phase using Gaussian 09 (Revision C.01) [51]
at the mPW1PW91 (modified Perdew–Wang exchange and Perdew–Wang 91) hybrid density
functional [52,53] combination with the MIDIX+ basis set [54,55]. It is reported that the MIDIX+
basis set had a good performance-to-cost ratio for the geometrical, orbital energy and electrostatic
calculations in aromatic compounds [14,21,56]. All of the optimization structures were the local
minima on potential energy surfaces with positive vibration frequencies. Sixteen quantum chemical
descriptors, including the molecular dipole moment (µ), energy of the highest occupied molecular
orbital (EHOMO), and energy of the lowest unoccupied molecular orbital (ELUMO), energy of the
second HOMO and LUMO (EHOMO−1 and ELUMO+1), gap of ELUMO and EHOMO (ELUMO−EHOMO),
polarizability (α), electron affinity (EA), ionization potential (IP), quadrupole moment tensor along the
x/y/z axis (Qxx/Qyy/Qzz), softness (S), electronegativity (ζ), hardness (η), and electrophilicity index
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(ω) were obtained from the optimized results. The descriptors and their formulas were introduced in
detail in Table S2.

3.3. Model Development

The multilinear regression (MLR) analysis [57] was used to develop the meta-substituent grouping
models in this study. We selected the compounds with experimental measurements (26 lnk, 17 logKOW

and 15 logSW values) to validate the predictive power based on the meta-substituent relationship
(Tables S6 and S7). The standard deviation and average of the standard deviation of prediction values
represent the error between the experimental and predicted values. The determination coefficient R2

measures the observation value repeatability of the model, and the validation coefficient Q2 reflects
the correlation between predicted values and observed values. The Q2 was calculated as following:

Q2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − yi)

2 (1)

where yi and ŷi are the observed and predicted values, respectively, and y was the average values of
the predicted values. High R2 and Q2 values indicate a model with robust performance and good
predictive power, respectively. In addition, the R2 and Q2 > 0.7 indicates the method with a better
predictive performance. The statistical analyses were conducted using SPSS software version 17.0 [58].

4. Conclusions

In this study, we selected the PCBs as an object to investigate the relationships of 16 quantum
chemical descriptors and Hammett constants in order to reveal their intrinsic correlation.
By systematically analyzing the relationship of 16 quantum chemical descriptors and the Hammett
relationship (∑ σ+

o, m, p, ∑ σo, m, p and ∑ σ−o, m, p) for PCBs congeners, a very good correlation of
∑ σ+

o, m, p with Qxx/yy/zz, α, and EHOMO based on meta-position grouping were observed. PCDDs and
PCNs as two independent compounds validated the reliability of the relationship in aromatic
compounds based on the meta-substituent grouping. Furthermore, the meta-substituent grouping
method between ∑ σ+

o, m, p and quantum chemical descriptors was successfully used for apply in
predicting lnk values for •OH oxidation of PCBs, as well as the logKOW and −logSW of PCDDs,
which exhibit excellent agreement with experimental measurements. The results indicated that
combining empirical constants and quantum chemical descriptors based on meta-substituent grouping
has greater tool application for predicting the environmental behavior and chemical properties
of compounds.

Supplementary Materials: The following are available online.
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