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Abstract: Motivation: Extensive efforts have been devoted to understanding the antigenic peptides
binding to MHC class I and II molecules since they play a fundamental role in controlling immune
responses and due their involvement in vaccination, transplantation, and autoimmunity. The genes
coding for the MHC molecules are highly polymorphic, and it is difficult to build computational
models for MHC molecules with few know binders. On the other hand, previous studies
demonstrated that some MHC molecules share overlapping peptide binding repertoires and
attempted to group them into supertypes. Herein, we present a framework of the utility of supertype
clustering to gain more information about the data to improve the prediction accuracy of class
II MHC-peptide binding. Results: We developed a new method, called superMHC, for class II
MHC-peptide binding prediction, including three MHC isotypes of HLA-DR, HLA-DP, and HLA-DQ,
by using supertype clustering in conjunction with RLS regression. The supertypes were identified by
using a novel repertoire dissimilarity index to quantify the difference in MHC binding specificities.
The superMHC method achieves the state-of-the-art performance and is demonstrated to predict
binding affinities to a series of MHC molecules with few binders accurately. These results have
implications for understanding receptor-ligand interactions involved in MHC-peptide binding.

Keywords: class II MHC; MHC-peptide binding; supertype; ensemble learning

1. Introduction

Major histocompatibility complex (MHC) molecules, called human leukocyte antigen (HLA) in
humans, act as cell surface vessels, which hold antigen fragments within their binding groove for
recognition by T cells. There are two main classes of MHC molecules: class I and II, which differ in
terms of which cells express them, in the source of the antigens they bind to, and in terms of which
T cells they present antigen pieces to [1,2]. Class I MHC molecules exist on the surface of nearly
all nucleated cells and specialize in displaying antigenic peptides that originate from the cytosol.
CD8+ T cells recognize the complex of the class I MHC molecules plus antigenic peptides and kill cells
expressing such intracellular antigens. On the other hand, class II MHC molecules are predominantly
expressed on antigen-presenting cells (B cells, macrophages, and dendritic cells) and specialize in
displaying antigen fragments that originate from extracellular spaces. CD4+ T cells recognize those
foreign peptides in complex with class II MHC molecules and then produce a large number of cytokines
to activate various cells toward destroying extracellular invaders [3].

Class II MHC molecules are composed of two different chains: α (33 kDa) and β (28 kDa),
each of which consists of two external domains: α1 and α2 domains in the α chain and β1 and β2
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domains in the β chain. The peptide-binding cleft of class II MHC molecule is formed by the α1
and β1 domains. X-ray crystallographic study reveals that the binding clefts of class I and II MHC
molecules are different at both ends: MHC class I is closed at both ends, while MHC class II is open at
both ends. The reason is class I MHC molecules have conserved residues that bind to the terminal
residues of antigenic peptides, while these kinds of conserved residues do not exist in the class II MHC
molecules. Class II MHC molecules can accommodate longer peptides than class I MHC molecules,
which results in increased difficulty in performing accurate prediction for class II MHC-peptide
binding. In humans, the α and β chains of class II MHC molecules are encoded by the DP, DQ, and DR
loci. Each MHC locus encodes numerous allele variants [2]. By May 2018, the IPD-IMGT/HLA
database [4] release listed 2450 DRB (the abbreviation for the gene encoding the class II HLA-DR
β-chain) alleles, 1193 DQB (HLA-DQ β-chain) alleles, and 974 DPB (HLA-DP β-chain) alleles. Such high
levels of polymorphism presumably enhance the probability of whole species survival via a wide
range of infectious diseases, but cause difficulty for the designation of high population coverage
vaccines. The supertype identification problem essentially is to identify peptides that can bind to a
set of MHC molecules, aiming at reducing the total number of epitopes for multi-epitope vaccines’
design without compromising population coverage [5,6]. The first class I HLA supertypes were
proposed by [5], who defined nine supertypes based on clustering the structural motifs derived from
experimentally-determined binding data. Some MHC molecules share significant peptide-binding
repertoires despite apparent motif differences [7]; thus, some methods have been developed to classify
HLA molecules into supertypes by considering the peptide-binding repertoires [8–11]. However,
most of these works studied peptide-binding specificities by using peptide-binding repertoires
predicted by computational approaches, such as the position-specific scoring matrix (PSSM) [8] or
neural networks [10,11]. The work described in [9] used actual peptide-binding measurements, but the
binding repertoire was less than 90 peptides for each molecule.

The interactions of T cells with MHC-peptide complexes play a vital role for the T or B lymphocytes
to proliferate and differentiate into effector cells or memory cells [2]. Previous studies have clarified
that the MHC-peptide binding strength has a strong correlation with peptide immunogenicity [12,13].
Many different approaches for the prediction of class II MHC-peptide binding have been developed,
including TEPITOPE [14], TEPITOPEpan [15], NetMHCII [16], NetMHCIIpan [17], KernelRLS,
and KernelRLSPan [18]; however, a few methods among them [10,11] can make the prediction for
HLA-DP and HLA-DQ molecules.

In this study, a large-scale dataset derived from quantitative MHC binding assays was employed
to characterize supertypes from the 41 most common class II HLA molecules covering the DR, DP,
and DQ loci. To make meaningful comparisons between peptide-binding repertoires, we developed
a novel repertoire dissimilarity index (RDI) as a measure of distance between them to quantify the
difference in MHC binding specificities. Furthermore, we explored the utility of supertype clustering
in prediction for class II MHC-peptide binding, including three class II HLA isotypes of HLA-DR,
HLA-DP, and HLA-DQ.

2. Results and Discussion

2.1. Identification of HLA II Supertypes

In the present study, a large-scale dataset derived from quantitative MHC binding assays was
employed to characterize supertypes from 41 class II HLA molecules covering the DR, DP, and DQ
loci. This dataset (see Table 1 for more details) contained 96,674 class II MHC-peptide pairs with
IC50 measurements, in which 46,113 pairs were associated with good (IC50 ≤ 50 nM) or intermediate
binding (50 nM < IC50 ≤ 500 nM).
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Table 1. Overview of the class II MHC peptide-binding repertoires.

Allele #Peptides #Binders

DRB1_0101 9605 6049
DRB1_0401 5834 2984
DRB1_0404 3361 1846
DRB1_0701 5857 3418
DRB1_0802 4160 2023
DRB1_0901 4090 2146
DRB1_1001 1995 1485
DRB1_1101 5320 2646
DRB1_1302 4061 2178
DRB1_1501 4374 2051
DRB1_1602 1643 977
DRB3_0301 778 504
DRB4_0101 3634 1520
DRB4_0103 700 522
DRB5_0101 4495 2381
HLA-DPA10103-DPB10201 674 139
HLA-DPA10103-DPB10301 1280 566
HLA-DPA10103-DPB10401 2251 637
HLA-DPA10103-DPB10601 437 240
HLA-DPA10201-DPB10101 2272 808
HLA-DPA10201-DPB10501 2119 710
HLA-DPA10201-DPB11401 2017 844
HLA-DPA10301-DPB10402 2381 879
HLA-DQA10101-DQB10501 2489 815
HLA-DQA10102-DQB10502 643 156
HLA-DQA10102-DQB10602 2599 1253
HLA-DQA10103-DQB10603 255 90
HLA-DQA10104-DQB10503 723 105
HLA-DQA10201-DQB10202 793 119
HLA-DQA10201-DQB10301 624 374
HLA-DQA10201-DQB10303 554 265
HLA-DQA10201-DQB10402 570 238
HLA-DQA10301-DQB10302 2812 568
HLA-DQA10303-DQB10402 323 117
HLA-DQA10401-DQB10402 2707 928
HLA-DQA10501-DQB10201 2663 873
HLA-DQA10501-DQB10301 3474 1809
HLA-DQA10501-DQB10302 680 203
HLA-DQA10501-DQB10303 461 179
HLA-DQA10501-DQB10402 614 336
HLA-DQA10601-DQB10402 352 132

Total 96,674 46,113

To quantify the overlapping MHC-peptide binding repertoires, we developed the RDI as a
measure of distance between repertoires. This metric uses Kendall’s rank correlation coefficient [19]
to ascertain the degree of association among a given set of peptide-binding repertoires for two MHC
molecules. Using the RDI, we generated a dissimilarity matrix whose entries quantified the difference
in MHC binding specificities. Hierarchical clustering [20] of this dissimilarity matrix revealed four
main supertypes covering the 34 most common HLA DR, DP, and DQ molecules (Figure 1). The cut-off
distance for the formation of clusters was set to 0.7 to exclude negative and weaker correlations.
We can see that cutting the cluster tree at this level separates HLA molecules at different loci. As shown
in Figure 2, the high variance in different MHC peptide-binding repertoires resulted in orders of
magnitude difference in counts of sharing binding peptides (Figure 2a), while the matrix of RDI
clearly displayed four blocks on the diagonal, which was in accordance with the four main supertypes
(Figure 2b).
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Figure 1. Cluster tree on 41 class II HLA molecules. The height of each horizontal line corresponds to
the distance between the two clusters it merges. The numbers given in the figure are the diameters of
the corresponding unions of clusters. Four main clusters, main DR, main DQ1, main DQ2, and main
DP, are highlighted in red, orange, blue, and green, respectively.

We identified two main supertypes for HLA-DQ and one each for HLA-DR and HLA-DP. The HLA
molecules within the supertypes are all encoded by either the DR, DP, or DQ locus, and no cross-loci
supertypes were found, which is consistent with the earlier findings [9–11]. The cluster tree in Figure 1
shows that the main DQ1 supertype was closer to the main DR supertype, while the main DQ2
supertype was closer to the main DP supertype. The average Kendall’s correlation coefficient for
molecules between main DQ2 and main DP was 0.169, and it was close to zero or negative for molecules
between other main supertypes, indicating very weak positive correlations between distinct main
supertypes. Furthermore, we assigned split supertypes to certain HLA molecules in the cluster tree
based on the common binding motifs previously described [11]. Table 2 lists the broad supertypes in
connection with the split supertypes and the corresponding peptide motifs.

For class II MHC molecules, the β chain is much more polymorphic than the α chain; thus,
we compared the sequence motifs of the polymorphic pocket residues on the β chain, as shown
in Figure 3. For the HLA-DR β chain, pockets 4, 6, 7, and 9 are responsible for the peptide
binding specificity and are mainly formed by the polymorphic residues, as described in the work of
Tiziana et al. [14]. Pocket 1 plays an important role in determining the binding core. The HLA-DP and
HLA-DQ molecules were demonstrated to have minor variations from HLA-DR in the peptide-binding
domain [10]; therefore, we investigated their anchor pockets by using the same residues as the
HLA-DR’s. Residue 86 takes part in the formation of pocket 1. From the sequence logos in Figure 3,
the β chains of HLA-DR, -DQ, and -DP have Gly/Val86β, Glu/Ala86β, and Asp/Gly86β, respectively.
In contrast to Gly/Val86β making up a deep and nonpolar pocket, pocket 1 with Glu86β and Asp86β was
more shallow and negatively charged; however, all class II MHC isotypes share a strong preference
for large hydrophobic residues in position 1 of the peptide binding core (see Table 2). In contrast,
the P4, P6, P7, and P9 motifs are more diverse across different isotypes and are described in the
following subsections.
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Figure 2. Comparison of the number of peptide binders with repertoire dissimilarity index (RDI) values
of class II HLA molecules. (a) Heatmap of the number of peptide binders shared by HLA molecules;
(b) heatmap of the RDI values between HLA molecules.

2.2. HLA-DR Supertypes

In our analysis, the molecules included in the main DR cluster matched very well to the previously
described “main DR supertype” [6,9]. The study in [6] demonstrated that a set of seven HLA-DR
molecules (DRB1*0101, DRB1*0401, DRB1*0701, DRB5*0101, DRB1*1501, DRB1*0901, and DRB1*1302)
shared overlapping peptide binding repertoires by using a panel of quantitative assays. The main
DR supertype described in this study identified a larger set of HLA-DR molecules, characterized
by overlapping peptide-binding repertoires, which not only covered all of those seven molecules
described earlier, but also identified six additional HLA-DR molecules (DRB1*0404, DRB1*0802,
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DRB1*1001, DRB1*1602, DRB1*1101 and DRB4*0101). The average Kendall’s correlation coefficient
between molecules within the main DR supertype was 0.526. The cluster tree (Figure 1) describing
the HLA-DR molecules was characterized by three split supertypes, called DR1, DR52, and DR53,
based on common binding motifs predicted in [11]. As shown in Table 2, the DR1 cluster comprising
DRB1*0101, DRB1*1001, DRB1*0701, DRB1*0901, DRB1*1602, DRB1*0401, DRB1*0404, and DRB1*1501,
can be characterized by a shared preference for hydrophobic residues (F, Y, I, L) in position 1 [9],
small and/or aliphatic residues (L, A, I, S, T) in position 4, small residues (A, S, G, P, T) in position
6, and hydrophobic and aliphatic residues (L, V) in position 9 of the 9-mer binding core. The DR52
cluster includes DRB3*0301 and DRB1*1302, while the DR53 cluster includes DRB1*0802, DRB5*0101,
DRB1*1101, DRB4*0101, and DRB4*0103. Both DR52 and DR53 clusters showed a strong preference for
hydrophobic residues in position 1, as well. The DR52 cluster was characterized by a preference for
peptides bearing hydrophilic residues (N, S) in position 4. The DR53 cluster was observed to prefer
positively-charged amino acid R in position 2 and the positions near the C-terminal end of the binding
core (P5–P9). The anchor positions 1, 4, 6, and 9 at the binding core were identified to govern the
binding strength of peptides with class II MHC molecules [3] and were observed to dominate the
HLA-DR peptide binding specificities, as well.

2.3. HLA-DQ Supertypes

The data presented herein suggest that there are two main supertypes for HLA-DQ molecules,
called main DQ1 and main DQ2. The average Kendall’s correlation coefficient between molecules
within main DQ1 and main DQ2 was 0.643 and 0.638, respectively, while it was 0.009, near zero,
for molecules between main DQ1 and main DQ2. From the sequence logos shown in Figure 3,
the residues 70/71/74 composing pocket 4, 30/71 in pocket 7, and 9/57 in pocket 9 play an important
role in DQ classification.

The HLA-DQ molecules were grouped into five split supertypes, as summarized in Table 2,
which is highly consistent with the groups in the distance tree presented in [11]. All split supertypes
shared strong specificities for hydrophobic residues in position 1. The anchor positions of DQ7
cluster were in positions 1, 3, 4, 6, and 9. The peptide motifs of the DQ7 cluster comprising
DQA1*0501-DQB1*0301, DQA1*0201-DQB1*0301, DQA1*0102-DQB1*0602, DQA1*0103-DQB1*0603,
DQA1*0201-DQB1*0303, DQA1*0501-DQB1*0302, and DQA1*0501-DQB1*0303 were observed to bear
small and/or hydrophobic residues in positions 3, 4, 6, and 9. The DQ4 cluster (DQA1*0201-DQB1*0402,
DQA1*0303-DQB1*0402, DQA1*0601-DQB1*0402, and DQA1*0501-DQB1*0402) recognized a broad
motif characterized by hydrophobic residues (F, A, W) in position 4, small and/or hydrophobic residues
in positions 6 and 9, and positively-charged residue R and amino acid A in position 7. The DQ5 cluster
included DQA1*0102-DQB10502, DQA1*0104-DQB10503, and DQA1*0101-DQB10501, whose peptide
motifs were characterized by a shared preference for aromatic residues in position 4 and acidic amino
acid D in positions 6 and 7. The clusters DQ2 and DQ8 preferred acidic residues (D, E) in the positions
P4–P9 and P7–P9, respectively.

2.4. HLA-DP Supertypes

The cluster tree grouped most HLA-DP molecules into a main HLA-DP supertype that comprises
DPA1*0103-DPB1*0401, DPA1*0201-DPB1*0101, DPA1*0201-DPB1*0501, DPA1*0301-DPB1*0402,
DPA1*0103-DPB1*0201, and DPA1*0103-DPB1*0601. The average Kendall’s correlation coefficient
between molecules within the main DP cluster was 0.590. In our analysis, the HLA-DP molecules
were classified into two split supertypes, called DP1 and DP3. The DP1 cluster was characterized by a
consensus motif including large hydrophobic residues (F, L, Y, I) in positions 1 and 6 and amino acid L
in positions 7 and 9. The DP3 cluster, including DPA1*0103-DPB1*0301, and DPA1*0201-DPB1*1401,
also favors large hydrophobic resides in position 1, but strongly prefers positively-charged residues
(R, K) in position 2 and small and/or hydrophobic residues in positions 4, 6, and 7.
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Table 2. Broad supertypes, split supertypes, and binding motifs.

Broad Supertype Split Supertype HLA Molecule
Common Binding Motifs

p1 p2 p3 p4 p5 p6 p7 p8 p9

DR52
DRB3*0301

ILVF NS ASN VIL

main DR

DRB1*1302

DR1

DRB1*0101

FYIL LAIST ASGPT LV

DRB1*1001
DRB1*0701
DRB1*0901
DRB1*1602
DRB1*0401
DRB1*0404
DRB1*1501

DR53

DRB1*0802

FILY R LAIV R AR RL R R

DRB5*0101
DRB1*1101
DRB4*0101
DRB4*0103

DQ7

HLA-DQA10501-DQB10301

AVI AGTS AS AVPI ASVG

HLA-DQA10201-DQB10301
HLA-DQA10102-DQB10602

main DQ1

HLA-DQA10103-DQB10603
HLA-DQA10201-DQB10303
HLA-DQA10501-DQB10302
HLA-DQA10501-DQB10303

DQ4

HLA-DQA10201-DQB10402

FLIV FAW AVPIT RA ASLV

HLA-DQA10303-DQB10402
HLA-DQA10601-DQB10402
HLA-DQA10501-DQB10402

main DQ2

DQ8
HLA-DQA10301-DQB10302

AVI AVI EAL EAD EDHLA-DQA10401-DQB10402

DQ5

HLA-DQA10102-DQB10502

LIF FYW F DLIV D
HLA-DQA10104-DQB10503
HLA-DQA10101-DQB10501

DQ2
HLA-DQA10501-DQB10201

FLIV AVILD AVID ED ED ELDHLA-DQA10201-DQB10202

main DP DP1

HLA-DPA10103-DPB10401

FLYI FLYI LF L

HLA-DPA10201-DPB10101
HLA-DPA10201-DPB10501
HLA-DPA10301-DPB10402
HLA-DPA10103-DPB10201
HLA-DPA10103-DPB10601

DP3
HLA-DPA10103-DPB10301

FLRIY RK ALS APVSI ALHLA-DPA10201-DPB11401

2.5. Class II MHC-Peptide Binding Prediction

In the following section, we present the results of a novel ensemble method, called superMHC,
for class II MHC-peptide binding prediction, including three class II HLA isotypes of HLA-DR,
HLA-DP, and HLA-DQ. The NetMHCIIpan-3.2 dataset was used for evaluation. The superMHC
method is a pan-allele approach, which can make accurate predictions of those class II HLA
molecules with few binders available by making use of those MHC-peptide pairs having experimental
measurements. A schematic overview of the superMHC model construction is shown in Figure 4.
Basically, the model construction was composed of two steps. First, we classified the training set into
five clusters. In Section 2.1, four main supertypes are identified for molecules from the HLA-DR,
HLA-DP, and HLA-DQ loci. Based on the broad supertype classification, all the samples in the training
set were partitioned into five parts by mapping their MHC molecules to the main supertypes, in which
four parts were associated with the corresponding four main supertypes and the remaining samples
were associated with a single cluster, named diverse cluster, molecules that have no broad supertype
classification herein. Second, a separate regularized least squares (RLS) regression [21] model was then
trained on each of these five clusters. After five base learners were produced, making a prediction of a
point from the test set was as illustrated in Figure 5, which involved two steps:
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1. If the MHC molecule of the test point belongs to one of the five existing clusters, then use the
corresponding cluster model to perform prediction for the test point.

2. Otherwise, identify the MHC isotype of the test point. The base learners Model 1 and Model
5 associated with the main DR and diverse clusters respectively were combined to make a
prediction for the test point from the HLA-DR isotype. Since about 66% of data points associated
with the diverse cluster in the training set were from the HLA-DR isotype, Model 1 was combined
with Model 5 to perform the prediction. The base learner Model 2 associated with the main DP
cluster was applied to perform prediction for the test point from HLA-DP isotype. The base
learners Model 3 and Model 4 associated with the main DQ1 and main DQ2 clusters, respectively,
were combined to perform prediction for the test point from the HLA-DQ isotype.

Main DQ1

86 13 70 71 74 78 11 28 30 47 61 67 71 9 37 57 60 61
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Main DQ2
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Figure 3. Sequence logos for anchor pocket residues of MHC II β chains. The residues making up
anchor pockets 1, 4, 6, 7, and 9 are separated by gray vertical lines. Pocket 1 consists of residue 86.
Pocket 4 consists of residues 13, 70, 71, 74, and 78. Pocket 6 consists of residue 11. Pocket 7 consists of
residues 28, 30, 47, 61, 67, and 71. Pocket 9 consists of residues 9, 37, 57, 60, and 61. The residues are
numbered based on the HLA-DR β chain.
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We validated superMHC on the NetMHCIIpan-3.2 dataset through five-fold cross-validation.
The NetMHCIIpan-3.2 dataset was partitioned into the same five folds as [11]. In each test, we merged
four parts of the data objects as the training set and left the other part as the test set. The pan-allele
kernel K̂3

PAN in Equation (8) was defined by using β∗peptide = 0.1137 and β∗allele−b = 0.06, as suggested

in [18], to define K̂3
P (p, p′) and K̂3

B(b, b′), while βallele−a for K̂3
A (a, a′) and λ for RLS were chosen from

sets {0.02× n : n = 1, 2, 3, 4}⋃{en : n = −15,−14, · · · ,−11}. We found that the model performed best
with β∗allele−a = 0.02 and λ∗ = e−13. The predictive performances of superMHC compared with the
NetMHCIIpan-3.2, NetMHCII-2.3, and their consensus method are shown in Table 3. The performance
of superMHC was significantly better than NetMHCII-2.3 (p < 0.05, paired t-test). The average
AUC scores over all 54 MHC molecules were 0.840 and 0.857 for NetMHCII-2.3 and superMHC,
respectively. The performance of superMHC was comparable to those of NetMHCIIpan-3.2 and the
consensus method.

Training set

main DR main DP main DQ1 main DQ2 Diverse cluster

Mapping

Set 1 Set 2 Set 3 Set 4 Set 5

KernelRLS KernelRLS KernelRLS KernelRLS KernelRLS

Model 1 Model 2 Model 3 Model 4 Model 5

Figure 4. Schematic illustration of generating multiple prediction models.

A test point
Does the test

 point belong to an

 existing cluster?

Use corresponding 

cluster model

Identify MHC isotype

No

            Identify cluster

Prediction

Yes           

HLA-DPHLA-DR

Use Model 1 Use Model 5

HLA-DQ

Use Model 3 Use Model 4Use Model 2

Prediction
Ensemble 

model

Prediction

Ensemble 

model

Prediction

Figure 5. Schematic illustration of making a prediction on a test point.
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Table 3. The performance of superMHC in comparison with NetMHCII-2.3, NetMHCIIpan-3.2,
and their consensus method on the NetMHCIIpan-3.2 dataset in terms of AUC.

MHC Molecules # of Peptides NetMHCII-2.3 NetMHCIIpan-3.2 Consensus (Net) superMHC (AUC) superMHC (RMSE)

DRB1_0101 10412 0.829 0.832 0.838 0.835 0.197
DRB1_0103 42 0.250 0.678 0.599 0.697 0.178
DRB1_0301 5352 0.816 0.816 0.826 0.831 0.183
DRB1_0401 6317 0.798 0.809 0.813 0.809 0.199
DRB1_0402 53 0.633 0.701 0.649 0.663 0.229
DRB1_0403 59 0.644 0.841 0.787 0.830 0.140
DRB1_0404 3657 0.787 0.812 0.808 0.811 0.189
DRB1_0405 3962 0.839 0.827 0.846 0.836 0.173
DRB1_0701 6325 0.877 0.875 0.885 0.880 0.173
DRB1_0801 937 0.834 0.844 0.854 0.834 0.170
DRB1_0802 4465 0.834 0.834 0.844 0.842 0.182
DRB1_0901 4318 0.832 0.833 0.843 0.831 0.175
DRB1_1001 2066 0.912 0.923 0.924 0.910 0.157
DRB1_1101 6045 0.867 0.864 0.873 0.865 0.175
DRB1_1201 2384 0.891 0.868 0.892 0.883 0.146
DRB1_1301 1034 0.828 0.857 0.856 0.855 0.225
DRB1_1302 4477 0.889 0.885 0.895 0.883 0.184
DRB1_1501 4850 0.833 0.834 0.842 0.842 0.188
DRB1_1602 1699 0.879 0.883 0.888 0.883 0.154
DRB3_0101 4633 0.898 0.888 0.900 0.891 0.160
DRB3_0202 3334 0.887 0.869 0.886 0.873 0.183
DRB3_0301 884 0.824 0.840 0.845 0.818 0.198
DRB4_0101 3961 0.837 0.822 0.844 0.852 0.171
DRB4_0103 846 0.839 0.841 0.861 0.867 0.193
DRB5_0101 5125 0.849 0.849 0.858 0.854 0.192
HLA-DPA10103-DPB10201 787 0.910 0.917 0.921 0.920 0.144
HLA-DPA10103-DPB10301 1563 0.914 0.902 0.916 0.914 0.165
HLA-DPA10103-DPB10401 2725 0.935 0.935 0.939 0.936 0.144
HLA-DPA10103-DPB10402 45 0.497 0.710 0.636 0.515 0.186
HLA-DPA10103-DPB10601 584 0.996 0.995 0.995 0.996 0.105
HLA-DPA10201-DPB10101 2447 0.903 0.903 0.909 0.899 0.145
HLA-DPA10201-DPB10501 2470 0.914 0.911 0.919 0.915 0.153
HLA-DPA10201-DPB11401 2302 0.937 0.930 0.938 0.940 0.151
HLA-DPA10301-DPB10402 2641 0.906 0.904 0.910 0.900 0.158
HLA-DQA10101-DQB10501 2946 0.917 0.900 0.917 0.916 0.144
HLA-DQA10102-DQB10501 833 0.867 0.839 0.874 0.869 0.192
HLA-DQA10102-DQB10502 800 0.850 0.835 0.859 0.868 0.157
HLA-DQA10102-DQB10602 2747 0.905 0.890 0.906 0.893 0.152
HLA-DQA10103-DQB10603 462 0.816 0.861 0.855 0.856 0.186
HLA-DQA10104-DQB10503 883 0.844 0.805 0.844 0.840 0.145
HLA-DQA10201-DQB10202 944 0.851 0.814 0.853 0.838 0.133
HLA-DQA10201-DQB10301 827 0.864 0.849 0.871 0.857 0.195
HLA-DQA10201-DQB10303 761 0.887 0.894 0.899 0.891 0.150
HLA-DQA10201-DQB10402 768 0.858 0.860 0.875 0.857 0.186
HLA-DQA10301-DQB10301 207 0.761 0.839 0.814 0.875 0.183
HLA-DQA10301-DQB10302 3111 0.849 0.810 0.842 0.854 0.125
HLA-DQA10303-DQB10402 567 0.836 0.820 0.855 0.835 0.176
HLA-DQA10401-DQB10402 2890 0.894 0.883 0.897 0.894 0.117
HLA-DQA10501-DQB10201 2897 0.889 0.876 0.888 0.882 0.133
HLA-DQA10501-DQB10301 3585 0.922 0.915 0.924 0.922 0.143
HLA-DQA10501-DQB10302 847 0.831 0.822 0.840 0.824 0.136
HLA-DQA10501-DQB10303 564 0.884 0.876 0.892 0.887 0.132
HLA-DQA10501-DQB10402 749 0.857 0.868 0.876 0.863 0.166
HLA-DQA10601-DQB10402 565 0.845 0.848 0.872 0.859 0.187

Average 0.840 0.854 0.861 0.857 0.167

Consensus (Net) represents the consensus method by averaging the prediction scores from NetMHCII-2.3 and
NetMHCIIpan-3.2. The performance of superMHC in terms of RMSE is given in the last column.

To investigate the generalization ability of the superMHC method, we used the whole
NetMHCIIpan-3.2 dataset for training and tested its predictive performance on a new dataset. To avoid
overlapping between the training and testing sets, those MHC-peptide pairs overlapping with the
training set were removed. The performance of superMHC in comparison with the NetMHCII-2.3,
NetMHCIIpan-3.2, and their consensus method is given in Table 4. Since some molecules in the test set
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were insufficient to define the AUC scores, we compared the algorithm performance in terms of RMSE,
which is a better measure than AUC, as suggested in [18]. The NetMHCII-2.3 and consensus method
could only make the prediction in 9 out of 33 MHC molecules. For these 9 molecules, the performance
of superMHC in comparison with the other three methods was comparable. Both superMHC and
NetMHCIIpan-3.2 were able to perform prediction for all 33 molecules. Comparing the performance of
superMHC with NetMHCIIpan-3.2, we found that their RMSE scores were not significantly different
(p > 0.05, paired t-test). Specifically, among the four predicted methods, superMHC achieved the best
performance for 15 molecules and NetMHCIIpan-3.2 performed the best for 14 molecules. The smallest
RMSE score for each molecule is highlighted in bold in Table 4.

Table 4. Predictive performance of the superMHC method compared with those of NetMHCII-2.3,
NetMHCIIpan-3.2, and their consensus method on the new test set in terms of RMSE.

MHC Molecules #Peptides NetMHCII-2.3 NetMHCIIpan-3.2 Consensus (Net) superMHC

DRB1_0101 1427 0.241 0.244 0.240 0.249
DRB1_0301 912 0.235 0.222 0.224 0.230
DRB1_0302 148 0.260 0.233
DRB1_0401 1392 0.210 0.221 0.212 0.238
DRB1_0402 6 0.351 0.238 0.288 0.292
DRB1_0404 34 0.211 0.203 0.203 0.178
DRB1_0405 14 0.202 0.236 0.213 0.229
DRB1_0701 125 0.284 0.277 0.277 0.278
DRB1_0801 9 0.186 0.126 0.153 0.105
DRB1_0806 118 0.363 0.326
DRB1_0813 1370 0.251 0.229
DRB1_0819 116 0.213 0.206
DRB1_0901 28 0.200 0.256 0.223 0.260
DRB1_1101 163 0.338 0.350
DRB1_1104 7 0.339 0.292
DRB1_1201 115 0.335 0.340
DRB1_1202 124 0.370 0.353
DRB1_1301 9 0.352 0.399
DRB1_1302 17 0.371 0.423
DRB1_1402 125 0.255 0.237
DRB1_1404 30 0.198 0.193
DRB1_1412 116 0.310 0.313
DRB1_1501 132 0.298 0.300
DRB1_1502 6 0.361 0.447
DRB1_1601 16 0.240 0.233
DRB3_0101 41 0.281 0.242
DRB3_0301 159 0.297 0.313
DRB4_0101 18 0.193 0.207
DRB5_0101 1331 0.226 0.237
DRB5_0102 8 0.231 0.219
DRB5_0202 16 0.190 0.233
HLA-DPA10103-DPB10201 751 0.126 0.118
HLA-DQA10302-DQB10301 9 0.203 0.045

Average I 8892 0.236 0.225 0.226 0.229
Average II 0.261 0.259

“Average I” is calculated over 9 MHC molecules covered by NetMHCII-2.3. “Average II” is calculated over all
33 MHC molecules. The smallest RMSE score in each row is marked in bold.

3. Materials and Methods

3.1. Datasets

3.1.1. MHC II-Peptide Binding Repertoires

A large-scale peptide-binding dataset containing 72 human class II MHC molecules was
considered in this study. This dataset was obtained from the NetMHCIIpan-3.2 web server [11], and all
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mouse H-2 molecules were excluded. The NetMHCIIpan-3.2 dataset covers 131,008 MHC-peptide
pairs, in which there are 36 HLA-DR, 27 HLA-DQ, and 9 HLA-DP molecules, which were used as the
training set in this study.

A new test set of class II HLA-peptide binding data was downloaded from the Immune Epitope
Database (IEDB) [22] to verify the performance of the superMHC method. We retrieved all quantitative
data by including either radioactivity or fluorescence competition binding assays with half maximal
inhibitory concentration (IC50) response. To avoid overlapping between the training and testing
sets, those MHC-peptide pairs overlapping with the training set were removed. Since both the
NetMHCII-2.3 and NetMHCIIpan-3.2 methods cannot perform the prediction for peptides of less than
9 amino acids, those MHC-peptide pairs with a peptide length less than 9 were excluded as well.
In addition, we just included those MHC molecules with more than five measured peptides. Finally,
the new test set was composed of 33 MHC molecules and 8892 pairs covering the HLA-DR, HLA-DP,
and HLA-DQ loci. Most publicly-available peptide-binding data from the HLA-DP and HLA-DQ loci
have been included in the training set; hence, the new test set covers limited data from these two loci.
The IC50 scores usually lie between zero and 50,000 nanomolar (nM), which measured the binding
strength of a peptide binding to an MHC molecule, and are normalized by Equation (1).

ψ(IC50) =


0 IC50 > 50, 000,
1− log50,000 IC50 1 ≤ IC50 ≤ 50, 000,
1 IC50 < 1.

(1)

3.1.2. MHC II Sequences

The aligned protein sequences of the class II MHC molecules were downloaded from the
IMGT/HLA Sequence Database. Two markers listed in Table 5 were used to identify the polymorphic
part of a class II MHC allele, each of which consists of three amino acids. For each allele, we only
consider the amino acids located from the “start marker” to the “end marker” since this region
constitutes the whole of exon 2. The class II MHC gene exon 2 encodes the peptide-binding sites,
thereby contributing to the diversity in antigen presentation [23–25]. The DRA (HLA-DR α-chain)
allele is very monomorphic; in contrast, both the DQA (HLA-DQ α-chain) and DPA (HLA-DP α-chain)
alleles contain the polymorphisms specifying the peptide binding specificities [26], so we therefore
considered the polymorphisms of both the α and β chains in the superMHC model development.

Table 5. Start and end markers to identify the polymorphic region of an allele.

Alpha Chain Beta Chain

Loci DPA DQA DRA DPB DQB DRB

Start DHV DHV EHV NYL/NYV DFV RFL
End AAN/ATN ATN ITN QRR QRR QRR

“Start marker” represents the location of its first occurrence in the allele. “End marker” represents the location of
its last occurrence in the allele.

3.2. Methods

3.2.1. Analysis of Peptide-Binding Repertoire Dissimilarity

In this study, the large-scale dataset studied in [11] was utilized to generate the peptide-binding
repertoires. The peptide-binding dataset contains 41 class II HLA molecules and 96,674 MHC-peptide
pairs, as shown in Table 1. All MHC-peptide pairs in the dataset have an IC50 score between 1 nM
and 50,000 nM. Furthermore, each MHC molecule in the dataset has at least 200 peptides with known
binding affinities. We developed the RDI as a measure of distance between repertoires to quantify
the difference in MHC binding specificities. There are a number of challenges associated with the
quantification of overlapping peptide-binding repertoires. First, the high variance in different MHC
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peptide-binding repertoires can often result in orders of magnitude difference in counts of sharing
peptides. In addition, MHC molecules with small binding repertoires display very limited overlap
with other molecules. To account for these challenges and to make meaningful comparisons between
repertoires, the RDI was defined in three steps.

1. Let P and M be finite sets of peptides and MHCs, respectively. Suppose Z̄ = {(Pi, Fi)}m
i=1 is a

sample set of peptide-binding repertoires with Pi ⊂P and Fi ⊂ R; for each MHC molecule Mi,
fpi represents the normalized binding affinity (see Equation (1)) between peptide p and MHC
molecule Mi. Here, the number of peptides shared by MHC molecules Mi and Mj is denoted by
|Pij|, where Pij = Pi ∩ Pj.

2. Calculate the average absolute difference between the normalized binding affinities given by the
two MHC molecules Mi, Mj and their shared peptides. The difference is defined as:

dij =
1
|Pij| ∑

p∈Pij

∣∣ fpi − fpj
∣∣ (2)

3. Subsequently, we defined the RDI to quantify the dissimilarity in binding specificity by
transforming Kendall’s rank correlation coefficient, which is more robust to outliers compared to
Pearson correlation [27]. This metric employs Kendall’s rank correlation coefficient to evaluate
the degree of similarity between two sets of ranks given to the same set of objects. The value of
the correlation coefficient varies between −1 and 1.

rK =
2

|M |(|M | − 1) ∑
k<k′

Mk ,Mk′∈M

sign((dki − dk′i)(dkj − dk′ j)), ∀Mi, Mj ∈M . (3)

where {(dui, duj), Mu ∈ M } is a set of pairs of differences between MHC molecules Mu and
Mi, Mj, as defined in Equation (2). This coefficient depends on only the order of the pairs.

The RDI is given by:
RDI = 1− rK, ∀Mi, Mj ∈M . (4)

3.2.2. Identification of Supertypes for MHC II Molecules

Class II HLA supertypes were obtained by clustering the peptide-binding repertoires. First,
the RDI was utilized to measure the difference in peptide-binding specificities for all distinct pairs of
class II HLA molecules. WPGMA (weighted pair-group method using arithmetic averages) linkage
was used to measure the proximity between clusters. Suppose P′ and P′′ are merged into a new cluster
P, then the proximity between P and another cluster Q is defined as follows:

∆(P, Q) =
∆(P′, Q) + ∆(P′′, Q)

2
(5)

Then, hierarchical agglomerative clustering was applied to build a cluster tree, which is a tree on
which every node represents the cluster of the set of all leaves descending from that node, and the
relationship was visualized in the form of a cluster tree. Finally, class II HLA supertypes were identified
by cutting the cluster tree at a proper height to classify the molecules into disjoint subsets.

3.2.3. Ensemble Learning

Following from the previous section, clustering the MHC molecules gives a compressed
representation, the MHC molecules assigned in the same supertype displaying higher functional
similarity, while the MHC molecules in different supertypes displaying very limited functional overlap.
This transformation tells us something interesting about the structure of the data, and in this study,
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we exploited it to improve the predictive performance of class II MHC-peptide binding. We trained
a separate predictor on each cluster rather than training a single predictor on the entire dataset.
The separate predictors were then properly combined to generate an ensemble predictor. We regard
ensemble learning as sets of machine learning approaches whose decisions are integrated in a proper
way to enhance the whole system’s performance [28–30]. The generalization ability of an ensemble is
usually much better than that of a single learner [31,32].

The construction of an ensemble predictor comprises the following three steps:

1. The whole training set of peptide-binding repertoires was clustered into K (K = 5 herein)
disjoint subsets.

2. For each subset, the RLS supervised learning algorithm was trained on the data objects inside it.
We then obtained a set of K separate predictors.

3. An ensemble predictor was generated by combining the separate predictors derived from the
same MHC isotype by uniform averaging.

3.2.4. Pan-Allele Kernel and RLS Regression

According to the definition of a K3 string kernel in [18], it can be used as a measure of similarity
between amino acid sequences, and two sequences are considered similar if they contain many
high-score local alignments. We briefly review the kernel definition herein. Given two amino acid
sequences f and g, the string kernel K3 is defined as:

K3( f , g) = ∑
u⊂ f ,v⊂g
|u|=|v|=k
all k=1,2,...

k

∏
i=1

(
Q(ui, vi)

p(ui)p(vi)

)β

, for some β > 0 (6)

where Q(x, y) represents the frequency of a x to y amino acids substitution in the alignment blocks
to generate a BLOSUM62 substitution matrix [33], p(x) = ∑y∈A Q(x, y), A is a set of 20 amino acids,
and u and v are substrings of f and g, respectively, of the same length k.

With correlation normalization:

K̂3( f , g) =
K3( f , g)√

K3( f , f )K3(g, g)
. (7)

Each HLA class II molecule consists of two chains of α and β. For HLA-DR, the β chain is highly
polymorphic, while the α chain is closely monomorphic. Different from HLA-DR, both HLA-DP and
HLA-DQ contain the polymorphism in α and β chains, which specify the peptide binding specificities.
Therefore, for HLA-DP and HLA-DQ, both α and β chains should be taken into account to predict
peptide binding. The pan-allele kernel proposed in [18] solely considered the β chain of the MHC
molecules. In this study, this pan-allele kernel was further explored to take both α and β chains into
account. For all HLA-DR molecules, the same α chain of DRA*01:01 was adopted.

Let A and B be finite sets of amino acid sequences representing the MHC II α and β chains,
respectively. Let P be a set of peptides. We define the pan-allele kernel on the product space of
A ×B ×P as:

K̂3
PAN((a, b, p), (a′, b′, p′)) = K̂3

A (a, a′)K̂3
B(b, b′)K̂3

P (p, p′). (8)

The kernel K̂3
PAN was implemented with RLS for MHC-peptide binding prediction. Let a set of

data {(xi, yi)}m
i=1 be given, where for each i, xi = (ai, bi, pi) with ai ∈ A , bi ∈ B, pi ∈P , and yi ∈ [0, 1]

is the normalized binding affinity of peptide pi to class II MHC molecule (ai, bi). The problem comes
to solve:

f̄ = arg min
f∈HK

m

∑
i=1

( f (xi)− yi)
2 + λ‖ f ‖2

K, for λ > 0. (9)
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where K = K̂3
PAN, and f (xi) is the predicted binding affinity of peptide pi to class II MHC molecule

(ai, bi).
The prediction at a data point x∗ will be given by [21]:

f (x∗) =
m

∑
i=1

ciK(xi, x∗), for some ci ∈ R (10)

3.2.5. Performance Measures

Predictive performance of MHC II peptide binding was evaluated using the root mean squared
error (RMSE), as well as the area under the receiver operating characteristics curve (AUC). A smaller
RMSE or higher AUC score reflects a better performance. We used a binding threshold of 500 nM to
evaluate the AUC score, which is between 0 and 1, where the AUC score is equal to 1 for a perfect
classifier and 0.5 for a random classifier.

A paired t-test was used for statistical comparison, and the score comparison result is considered
to be statistically significant if p is less than 0.05.

4. Conclusions

The T lymphocytes are one type of the central cells of adaptive immunity, typically of cell-mediated
immunity. T cell receptors only recognize antigenic peptides that are bound to MHC molecules,
thus peptides displayed by MHC molecules comprise a pivotal process to activate T cells. The binding
measurement by chemical and biological experiments is time consuming and expensive; hence,
many computational tools have been developed for this binding prediction. In the present study,
we have developed a new method, called superMHC, for class II MHC-peptide binding prediction by
using supertype clustering in conjunction with RLS regression. By using the kernel-based RLS, we need
to create the kernel matrix K by computing all pairwise similarities, which is memory intensive and
speed consuming for very large datasets. The conjunction of RLS regression with supertype clustering
enables building individual RLS regression models on a much smaller subset of the data, thus reducing
the memory and speed usage.

We utilized a large-scale dataset derived from quantitative MHC binding assays to identify
clusters, or supertypes, from the 41 most common class II human MHC molecules covering the DR, DP,
and DQ loci. The dissimilarity in the binding specificity of any two MHC molecules was quantified by
a novel RDI based on Kendall’s rank correlation coefficient. Our results identified two main supertypes
for HLA-DQ and one each for HLA-DR and HLA-DP. However, we did not include all class II MHC
molecules in the cluster tree construction; therefore, more supertypes might be identified in the future
when more MHC molecules are considered. The identification of supertypes provides a compressed
representation, and the MHC molecules assigned in different main supertypes display very limited
binding repertoire overlap or functional overlap. The supertype clustering was done in a completely
unsupervised way without any regard to the target. These four main supertypes and a diverse cluster
have been employed to derive five base learners. The superMHC method is a more complex model
that contains five base learners herein. An important issue about the ensemble method was choosing
which predictions to average. The methodology chosen in this study was a uniform averaging of the
predictions made by the base learners derived from the same MHC isotype. The choice of combining
the predictors derived from the same MHC isotype was due to the observation that class II MHC
molecules from different loci display very limited binding repertoire overlap.

There are very limited methods available for pan-allele HLA-DR, HLA-DP, and HLA-DQ binding
prediction. It is more difficult to develop a cross-loci method for class II MHC molecules due to
the differences of the polymorphisms and binding motifs of different loci. The superMHC method
is a pan-allele method that is able to make accurate prediction for the three isotypes of HLA-DR,
HLA-DP, and HLA-DQ. Both HLA-DP and HLA-DQ molecules contain the polymorphism in α

and β chains that contributes to the diversity in antigen presentation; thus, the superMHC method
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considers both the α and β chains in the model construction by defining a pan-allele kernel on the
product space of MHC α chains, β chains, and peptides. In addition, only a few MHC molecules
have sufficient measured peptides for construction of a reliable prediction model up to date, and the
pan-allele kernel enabled us to make an accurate prediction of those MHC molecules with few
binders available. We compared the superMHC method with the state-of-the-art NetMHCII-2.3
and NetMHCIIpan-3.2 methods, both of which have been shown to be among the best methods
for MHC II binding prediction [11,34]. Both the NetMHCII-2.3 and NetMHCIIpan-3.2 methods
are based on artificial neural networks. The NetMHCII-2.3 method is a fixed-allele method that
can only make predictions of 25 HLA-DR, 9 HLA-DP, and 20 HLA-DQ molecules. The same as
the superMHC method, the NetMHCIIpan-3.2 method is a pan-allele method, which integrates
information of both peptides and MHC molecules and is capable of predicting binding affinities to all
class II HLA molecules with a known primary sequence. The NetMHCIIpan-3.2 method considered
information of class II MHC molecules using a binding pocket pseudo-sequence of 34 residues in length;
however, the superMHC method incorporated the continuous region covering the whole of exon 2,
which encodes the peptide-binding sites. We first evaluated superMHC on the NetMHCIIpan-3.2
dataset by five-fold cross-validation, and the results show that the performance of superMHC is
significantly better than NetMHCII-2.3, while comparable with NetMHCIIpan-3.2 and the consensus
method of NetMHCII-2.3 and NetMHCIIpan-3.2. Next, we used the whole NetMHCIIpan-3.2 dataset
for training and validated superMHC on a new test set downloaded from the Immune Epitope Database
(IEDB). This test set has no MHC-peptide pairs overlapping with the training set. The NetMHCII-2.3
and the consensus method of NetMHCII-2.3 and NetMHCIIpan-3.2 can only make the prediction
in 9 out of 33 MHC molecules in the test set, while superMHC and NetMHCIIpan-3.2 can make the
prediction for the whole test set covering three MHC II isotypes. The performance of superMHC in
comparison to NetMHCIIpan-3.2 is not significantly different in terms of RMSE (P > 0.05, paired t-test).
Specifically, the superMHC method achieves the best performance in 15 out of 33 MHC molecules
among the four compared methods.

In summary, the purpose of this work was to present a framework of the utility of supertype
clustering to gain more information about the data to improve the prediction accuracy of class
II MHC-peptide binding. The results show that the ensemble method superMHC achieves the
state-of-the-art performance. This ensemble learning framework of combining supertype clustering
with RLS regression is applicable to other base learning algorithms, which can be support vector
machines, neural networks, or other kinds of machine learning algorithms.
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