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Abstract: Lyn kinase, a member of the Src family of protein tyrosine kinases, is mainly expressed
by various hematopoietic cells, neural and adipose tissues. Abnormal Lyn kinase regulation causes
various diseases such as cancers. Thus, Lyn represents, a potential target to develop new antitumor
drugs. In the present study, using 176 molecules (123 training set molecules and 53 test set molecules)
known by their inhibitory activities (IC50) against Lyn kinase, we constructed predictive models by
linking their physico-chemical parameters (descriptors) to their biological activity. The models were
derived using two different methods: the generalized linear model (GLM) and the artificial neural
network (ANN). The ANN Model provided the best prediction precisions with a Square Correlation
coefficient R2 = 0.92 and a Root of the Mean Square Error RMSE = 0.29. It was able to extrapolate to
the test set successfully (R2 = 0.91 and RMSE = 0.33). In a second step, we have analyzed the used
descriptors within the models as well as the structural features of the molecules in the training set.
This analysis resulted in a transparent and informative SAR map that can be very useful for medicinal
chemists to design new Lyn kinase inhibitors.
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1. Introduction

Many signaling pathways transmit extracellular signals by altering the phosphorylation state of
tyrosine residues. Phosphorylation of proteins in which tyrosine amino acid residue is phosphorylated
by tyrosine kinases by the addition of a covalently bound phosphate group of ATP (adenosine
triphosphate) [1], accounts only 0.1% of total protein phosphorylation in mammals. However, tyrosine
kinases play a key role in the regulation of many biological phenomena such as cell proliferation,
differentiation and motility. There are two families of tyrosine kinases: receptor tyrosine kinases (RTK)
and non-receptor tyrosine kinases (NRTK) [2].

The existence of multiple conformations of kinases (active and non-active state) and the structural
diversity of the ATP-binding site as well as the activation loop provide different strategies for designing
inhibitors. Some inhibitors, by binding into the active site of the receptor tyrosine kinase, block the
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signal transduction resulting from the binding of certain growth factors (EGF, FGF, Gas6 . . . ) to their
receptors (EGFR, FGFR, AXL . . . ) and consequently the growth factor activity. These inhibitors are
often used to prevent the tumor’s growth because many cellular tyrosine kinases are produced by the
proto-oncogene and they are the most frequent oncogenesis mechanism in human cancer [1,3,4].

One of the most important and the largest non-receptor tyrosine kinases family is the Src family. It
is considered for targeted therapies because Src family members are essential intermediaries in signal
transduction and they can interact with a variety of growth factors, proliferating factors, and regulators
of gene expression (migration, adhesion, differentiation, angiogenesis, invasion, immune function and
G-protein-coupled receptors) [3,5,6]. The Src family of tyrosine kinases comprises 11 related kinases:
Blk, Fgr, Fyn, Hck, Lck, Lyn, c-Src, c-Yes, Yrk, Frk (also known as Rak) and Srm with specific functions
and domains. Some members of these kinases are exclusively present in certain cells as breast, colon,
lung, hematopoietic, adipocyte, hepatocyte, lymphoid cells, as well as in skeleton cells [6,7].

Src signaling pathways are among the leading causes of cancer, and Src inhibitors are the keys
of stopping many tumorigeneses. Therefore, that is why most of the FDA-approved protein kinase
inhibitors are directed against the activation of many Src family tyrosine kinases (STKs) pathways
including cell division and survival [7,8].

Lyn non-receptor tyrosine kinase is a member of Src family [9]. Lyn kinase plays an important
role in the regulation of a variety of epithelial and hematopoietic cells, including the regulation of
innate and adaptive immune responses, hematopoiesis, responses to growth factors and cytokines,
integrin signaling, responses to DNA and genotoxic agents, as well as drug resistance [9–11].
This tyrosine kinase is a critical regulator of several cellular processes of many human cancer
cells. The over-expression of Lyn gene according to various studies is highly correlated with
the development and progression of several tumors as esophageal adenocarcinoma [12], prostate
cancer (Castrate-resistant prostate cancer) [13,14], pancreatic cancer [15], cervical cancer [16], breast
cancer [17,18], and it can be the cause of hepatic fibrosis [19].

Some studies have proven that Lyn is overactive in the hematological malignancies including
chronic myelogenous leukemia, chronic lymphocytic leukemia B [20], Burkitt lymphoma [21], and the
most common cancer diagnosed in children, Acute Lymphoblastic Leukemia (ALL) [22]. It has also
been shown that the inhibition of lyn is a promoter treatment of lymphoma resistance [23,24]. Lyn
is also involved in nilotinib resistance to cancer treatments [25,26], Zardan et al. suggested Lyn as a
critical regulator of androgen receptor (AR) expression and activity, particularly in androgen-deprived
conditions [14]. He et al. found that Lyn plays an important role in the development and progression
of glioblastoma, the most aggressive brain tumors [27]. Developing new Lyn kinase inhibitors is an
important therapeutic approach to block diseases where Lyn is heavily involved.

In the last decades, the identification and development of new drugs, medicinal chemists
have benefited from drug rational design thanks to the chemoinformatics and molecular modeling
approaches. Quantitative Structure-Activity Relationships (QSAR) is one of the chemoinformatics
methodologies that allows medicinal chemist to correlate variations in a biological response of a ligand
to its structural variations.

QSAR is a helpful methodology used in these recent years in drug discovery research [28–30].
In QSAR, the central idea is to link, through a mathematical function, several properties or molecular
descriptors (topological, electronic, physico-chemical parameters . . . ) to the activity of a set of
molecules [31]. The obtained relationship is materialized by a mathematical model that can be
used to predict the activity of new or existing molecules when their structural properties are known.
These predictions can be also used to prioritize the organic synthesis of a small set of potentially active
molecules. However, QSAR approach suffers from the fact that the predictive models are sometimes
very difficult to use (qualified as black-boxes) directly during the design by medicinal chemists whose
main objective is to establish the structure-activity relationships (SAR) map of the molecules under
investigation [32]. It is also hard to use such models to provide to chemists future directions for
modifying the molecules to improve a biological property of interest.
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In the present study, using known ligands and their inhibitory activities against Lyn kinase,
we constructed and validated predictive models using QSAR approach. We have also analyzed the
selected molecular descriptors and the structural fragments of the inhibitors to draw a SAR map for
the inhibition of Lyn kinase that can be used to build new and potentially active inhibitors.

2. Materials and Methods

2.1. Dataset Source and Preparation

A set of 440 molecules with their two-dimensional atomic coordinates and IC50 were fetched
from the BindingDB database [33]. This set was reduced to 176 molecules by applying a set of filters:
(1) Lipinski’s rule (number of hydrogen-bond donors less than 5, number of hydrogen acceptor less
than 10, molecular weight less than 500 and log P less than 5; and the sum of donors and acceptors
(N + O) less than 10) [34], (2) filtering out duplicates (we kept only the molecule that has the highest
IC50) and (3) removing all the molecules without reported IC50 for Lyn kinase.

We randomly distributed the 176 molecules into two subsets: 123 molecules (70%) represent the
training set to derive and validate internally the models and 53 molecules (30%) for the test set, to
perform external validation and assessment of its extrapolation capacity to new data (Supplementary
Materials). The targeted biological property of our QSAR study is IC50 (concentration of the ligand
that induces 50% of the inhibition of the enzyme activity). The IC50 values have been converted to
molar units pIC50 (defined as −log10 IC50). The distributions of pIC50 values (max = 4.34; min = 9.30)
within the training and test set reproduced their distributions within the whole set.

2.2. Calculation of Molecular Descriptors

A set of 184 two-dimensional molecular descriptors were calculated by Molecular Operating
Environment (MOE) package (version 2008.10, Chemical Computing Group, Montreal, Canada) [35].
These descriptors cover different classes of molecular parameters such as chemical constitution,
topology, geometry and electrostatic properties, wave function, potential energy surface or some
combination of these items for a given chemical structure.

2.3. Diversity Analysis

The structural diversity of the data was defined by using Principal Component Analysis (PCA)
which is a powerful approach for exploring high-dimensional data [36]. We calculated the principles
components (PC) using JMP (14.0.1) package [37] for a data matrix p × n dimension where n = 176
inhibitors and p = 184 descriptors.

2.4. Descriptors Selection

The 184 molecular structural descriptors for the 123 inhibitors of the training set data have been
reduced sequentially using two phases: (1) We first used variable importance calculated from Partial
Least-Squares (PLS) method where we excluded all the descriptors that have a Variable Importance less
than 1, (2) in a second step, the resulting descriptors were submitted to a stepwise forward selection.

2.5. Model Development and Validation

To build our models, we used a training set of 172 molecules selected randomly from the initial
data set. To fit the physico-chemical properties of the training set to the pIC50 values, we used
Generalized Linear Model (GLM) as a linear discriminant analysis method [38] and Artificial Neuronal
Network (ANN), with feedforward backpropagation to train the model, as a nonlinear method [29,39].
Both methods are implemented in JMP software package [37]. For the GLM, we generated our models
using a normal distribution, a unitary link function, and Maximum likelihood as estimation method.
For ANN models, we varied the hidden layer size from range 3 to 12 neurons and used 10-fold
cross-validation repeated 10 times as an internal validation method process to validate the models. For
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the external validation of the model, we used a test set containing 53 molecules selected randomly
from the initial data set.

2.6. Domain of Applicability of the Models

To assess the reliability of the QSAR model for prediction purposes, we defined a domain of its
applicability using a Mahalanobis distance-based approach [40]. The Mahalanobis distance to the
training set is calculated for each molecule to be predicted. This distance, compared to Euclidian
distance, accounts for the covariance among variables [40]. We have implemented a python program
implementing the Mahalanobis distance algorithm as defined below.

In general, if
→
x = [x1, x2, . . . , xp]T and

→
µ = [µ1, µ2, . . . , µi]T are multivariate data-observations

drawn from a set of p variables with a p × i covariance matrix C, then the Mahalanobis distance DM
between them is defined as:

DM2 = (x− µ)T ×C−1 × (x− µ) (1)

where DM2 = Mahalanobis distance; x = Vector of data; µ = Vector of mean values of independent
variables; C−1 = Inverse Covariance matrix of independent variables and T = Transposed matrix.

3. Results and Discussion

3.1. Diversity Analysis

During the split of initial data (all data set) into training set of 123 molecules and a test set of
53 molecules, we ensured that the distribution of pIC50 value remains the same in the training and test
sets as in the initial data set (Figure 1).
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Figure 1. pIC50 values distribution in the training and test sets.

The PCA analysis of the molecular descriptors space explained 56.34% of the global information of
the original space (PC1: 35.4%; PC2: 12.8% and PC3: 8.14%). This analysis showed that the molecules
in the training set and the test set were distributed homogeneously in the PCA space resulting in a
good structural diversity in the data (Figure 2). This is in agreement with the different chemotypes
represented in the initial data as shown in Table 1.
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Table 1. Cont.

Compounds

12 Molecules
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3.2. Descriptors Pertinence

The initial descriptor pool number (184 descriptors) was first reduced by eliminating out the
descriptors with constant and near constant values. PLS was then used to further reduce the number
of descriptors according to variable importance in the model. In fact, the PLS model resulted in a
coefficient of determination R2 of 0.72 and a cross-validated coefficient of determination q2 of 0.63.
When the variable importance threshold was set to the unit value, only 80 descriptors were retained.
After using a stepwise forward selection procedure, the set of descriptors was further reduced to
35 descriptors that were then subjected to the data modeling step with the aim to find the best fit
between the descriptors and the inhibitory activities of the molecules. These descriptors account for
7 different molecular categories as defined in Table 2.

The selected descriptors cover the main structural features of the molecules needed for their
biological activity. In fact, the physico-chemical properties such as logP, logS, MR, apol TPSA, logP
and Subdivided Surface Areas represent molecular features that could explain the bioavailablity of the
drugs. Pharmacophoric features, connectivity and shape indices as well as partial charge properties are
features that represent the mode of interaction of drugs with their targeted receptor. Finally, atom and
bond accounts and adjacency and distance matrix descriptors are features representing the topology as
well as the geometry of the molecules.
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Table 2. Categories and definitions of computed molecular descriptors [41].

Categories of Descriptors Definition Categories of Descriptors Definition

Physico-Chemical
Properties

LogP (o/w) Log of the octanol/water partition
coefficient (including implicit hydrogens) MR Molecular refractivity (including

implicit hydrogens)

logS Log of the aqueous solubility (mol/L) TPSA

Polar surface area (Å2) calculated using
group contributions to approximate the
polar surface area from connection table

information only

apol Sum of the atomic polarizabilities
(including implicit hydrogens)

SlogP_VSA0 SlogP_VSA1
SlogP_VSA3 SlogP_VSA5

SlogP_VSA6

Subdivided logP Surface Areas are
descriptors based on an approximate

accessible van der Waals surface area (in Å2)
calculation for each atom along with its

contribution to logP property

Atom and Bond
Counts

PEOE_RPC_− Relative negative/positive partial charge:
the smallest negative qi divided by the sum

of the negative qi. Q_RPC−/Q_RPC+ is
identical to RPC−/RPC+ which has been

retained for compatibility

PEOE_VSA_0
Sum of vi (a der Waals surface area of atom i)
where qi (partial charge of atom i) is in the

range (−0.05, 0.00)

PEOE_RPC_+ PEOE_VSA_FPOS

Fractional positive van der Waals surface
area. This is the sum of the vi such that qiis
non-negative divided by the total surface

area. The vi are calculated using a
connection table approximation

Atom and Bond
Counts

b_double Number of double bonds. Aromatic bonds
are not considered to be double bonds lip_acc The number of O and N atoms

a_ICM

Atom information content (mean). This is
the entropy of the element distribution in

the molecule (including implicit hydrogens
but not lone pair pseudo-atoms)

lip_don The number of OH and NH atoms

b_count Number of bonds
(including implicit hydrogens) lip_druglike One if and only if Lipinski’s rules violation <

2 otherwise zero

Pharmacophoric
Features

a_acc,

Number of hydrogen bond acceptor atoms
(not counting acidic atoms but counting

atoms that are both hydrogen bond donors
and acceptors such as -OH)

vsa_don,

Approximation to the sum of VDW surface
areas of pure hydrogen bond donors (not
counting basic atoms and atoms that are

both hydrogen bond donors and acceptors
such as -OH) (Å2)

a_don,

Number of hydrogen bond donor atoms
(not counting basic atoms but counting

atoms that are both hydrogen bond donors
and acceptors such as -OH)

vsa_other
Approximation to the sum of VDW surface

areas (Å2) of atoms typed as “other”
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Table 2. Cont.

Categories of Descriptors Definition Categories of Descriptors Definition

Connectivity and
Shape Indices

chi0 Atomic connectivity index (order 0) KierFlex Kier molecular flexibility index

chil_C Carbon connectivity index (order 1)

Adjacency and
Distance Matrix

Descriptors

VDistMa If m is the sum of the distance
matrix entries BCUT_SLOGP_1 The BCUT descriptors using atomic

contribution to logP (using the Wildman and
Crippen SlogP method)WeinerPath Wiener path number. BCUT_SLOGP_3

balabanJ Balaban’s connectivity topological index GCUT_SMR_1 The GCUT descriptors using atomic
contribution to molar refractivity (using the
Wildman and Crippen SMR method) instead

of partial chargeBCUT_PEOE_3

Adjacency and distance matrix descriptors.
The BCUT descriptors are calculated from

the eigenvalues of a modified
adjacency matrix

GCUT_SMR_3

BCUT_SMR_2

The BCUT descriptors using atomic
contribution to molar refractivity (using the
Wildman and Crippen SMR method) instead

of partial charge
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3.3. QSAR Model Derivation and Validation

Using GLM approach to fit the 35 selected descriptors to the pIC50 values of the training set
resulted in a weak predictive power as judged by the correlation coefficient between experimental and
predicted values of R2 = 0.65 and a Mean Square Error RMSE = 0.64. When the model is applied to the
test set, the correlation coefficient drops down to a value of R2 = 0.39 and RMSE = 0.85. Consequently,
GLM was not able to provide neither a predictive model for the molecules in the training set for
the inhibition of Lyn kinase nor an extrapolation power to molecules used in the test set. The GLM
model was not capable of predicting the pIC50 value of the Lyn kinase inhibitors even if the descriptor
selection step was done using the statistical procedure “stepwise forward selection procedure”. This is
due to the fact that the stepwise forward selection procedure uses multiple linear regression method to
score the selected set of descriptors and it is not intended to derive a robust predictive model. Again,
when used with the GLM, the combination of the descriptors in a linear way did not results in a
predictive QSAR model.

When ANN approach was used, the derived model showed good predictive performance for
the training set and good extrapolation to new and unseen molecules of the test set. In fact, several
ANN models were built by varying the size of the hidden layer by increasing the number of neurons
from 3 to 12 (Table 3). The predictive capacity of the model increased with the size of the hidden
layer and reached a plateau when the number of neurons exceeded the value of 9. The model using 9
neurons in the hidden layer presented the best fit and the best cross-validated results as judged by
the cross-validated correlation coefficient and the root mean squared error (RT

2 = 0.92, RMSET = 0.29,
Rv

2 = 0.90 and RMSEV = 0.32). This model was applied to predict the molecules in the test set (Table 4)
and resulted in a very good correlation coefficient between the experimental and predicted values of
pIC50 and root mean-squared error (RTs

2 = 0.91 and RMSETs = 0.33) (Figure 3).
The model derivation and validation step resulted in a very good QSAR model using the ANN

approach while the GLM approach was not able to derive useful models. This is explained by the
fact that the training set contains high structural molecular diversity and high nonlinear underlying
relationships between the structural variations and the biological activities of the models that only a
nonlinear approach as ANN was able to conceptualize.

Table 3. Predictive and extrapolation powers of the QSAR models derived by ANN approach.

RT
2 RMSET Rv

2 RMSEV

ANN 3-layers 0.75 0.54 0.48 0.68

ANN 4-layers 0.81 0.47 0.71 0.51

ANN 5-layers 0.76 0.53 0.64 0.56

ANN 6-layers 0.84 0.43 0.78 0.46

ANN 7-layers 0.90 0.34 0.85 0.39

ANN 8-layers 0.86 0.40 0.62 0.66

ANN 9-layers 0.92 0.29 0.90 0.32

ANN 10-layers 0.90 0.34 0.78 0.47

ANN 11-layers 0.91 0.32 0.72 0.62

ANN 12-layers 0.88 0.37 0.82 0.40

ANN 13-layers 0.86 0.40 0.74 0.51
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Table 4. Test-set values by using ANN approach.

RTs
2 RMSETs

ANN 3-layers 0.77 0.52

ANN 4-layers 0.82 0.46

ANN 5-layers 0.73 0.56

ANN 6-layers 0.79 0.50

ANN 7-layers 0.89 0.37

ANN 8-layers 0.87 0.40

ANN 9-layers 0.91 0.33

ANN 10-layers 0.89 0.36

ANN 11-layers 0.92 0.31

ANN 12-layers 0.91 0.33

ANN 13-layers 0.90 0.35Molecules 2018, 23, x FOR PEER REVIEW  10 of 15 
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3.4. Applicability Domains of QSAR Models

To define the domain of applicability of the derived and validated QSAR model, we have used the
Mahalanobis distance as a distance-based metric approach. This method calculates a distance between
each molecule to be predicted (molecules in the test set) and the closest molecule in the training set.
Any molecule above a threshold distance is considered to be unpredictable by the model or predictable
with low confidence. When applied to the training set, the most distant molecule of the rest of the
molecules is at a Mahalonbis distance of 9. When using a threshold value of 9, only seven molecules in
the test set were distant from the training set (Figure 4). This analysis showed that most of the test set
molecules can be safely predicted by the model as judged by the Mahalanobis distance.



Molecules 2018, 23, 3271 11 of 14

Molecules 2018, 23, x FOR PEER REVIEW  11 of 15 

 

most of the test set molecules can be safely predicted by the model as judged by the Mahalanobis 
distance. 

 
Figure 4. Calculated Mahalanobis distances of the molecules in the test set. 

3.5. Structure-Activity Relationship Map Derivation 

Based on our selection of the most pertinent descriptors used in the QSAR model and the 
structural analysis of the molecules in the training set Table 1), we tried to derive a SAR map that 
explains Lyn kinase inhibition and also the predctions from the selected descriptors used in the QSAR 
model (Figure 5). Indeed, most of the active molecules in the training set hold in one of their 
extrimities a planar bicyclic aromatic system that can be heterocyclic or not. This feature is 
represented by the number of double bond descriptor (b_count) correlated to aromatic planar rings 
and the number of donors and acceptors of hydrogen bonds (a_acc, lip_acc, a_don, lip_don) which 
lead to heterocyclic rings. Another common structural element in the active molecules is a central 
aromatic ring wich can again be reprensented by the number of the double bonds descriptor. This 
part of the molecule is usualy linked to the plan bicyclic system by a flexible linker. The flexibility is 
encoded in the kier_flex descriptor. A third common strutural element of the active molecules is an 
aromatic ring system localized at the other extrimity of the molecule. The three aromatic rings (planar 
heterocyle, central aromatic ring and an aromatic system being opposite of the first aromatic system) 
can be also encoded by the lipophilicity descripor (logP). With all these aromatic rings, the majority 
of active molecules present a high molecular volume that is encoded in the molar refractivity 
descripto (MR). Finnaly, the heterocyclic ring system as well as the number of donors and acceptors 
of hydrogen bonds are at the origin of the polarizability of the molecule which is encoded in the polar 
surface area descriptos (TPSA, apol and PEOPE). 

Overall, considering the common structural features and some of the selected and used 
descriptors in the QSAR model, we could suggest a SAR map for the inhibition of the Lyn kinase as 
follows: (1) a planar and heterocyclic ring system that holds hydrogen bond donnors and acceptors, 
(2) a Linker to keep the flexibility of the molecule, (3) an hydrophobic and aromatic central part, (4) 
a lipophilic and aromatic ring system. 

The derived SAR map can be found when analysing the structure of some published Lyn kinase 
inhibitiors. Indeed, a Lyn kinase inhibiotors (INNO-406, Nilotinib), with IC50 of 220 nM, was reported 
in the work of Horio et al. [42]. This compound bears a pyridinyl group as hydrogen bonding region, 
an amino group as a linker and a central substitued benzyl group as the hydrophobic region. Kim et 

0

2

4

6

8

10

12

14

16

18

20

M
ol

 1
M

ol
 3

M
ol

 5
M

ol
 7

M
ol

 9
M

ol
 1

1
M

ol
 1

3
M

ol
 1

5
M

ol
 1

7
M

ol
 1

9
M

ol
 2

1
M

ol
 2

3
M

ol
 2

5
M

ol
 2

7
M

ol
 2

9
M

ol
 3

1
M

ol
 3

3
M

ol
 3

5
M

ol
 3

7
M

ol
 3

9
M

ol
 4

1
M

ol
 4

3
M

ol
 4

5
M

ol
 4

7
M

ol
 4

9
M

ol
 5

1
M

ol
 5

3
M

ol
 5

5
M

ol
 5

7

M
ah

al
an

ob
is 

Di
st

an
ce

s 

Inhibitors

Figure 4. Calculated Mahalanobis distances of the molecules in the test set.

3.5. Structure-Activity Relationship Map Derivation

Based on our selection of the most pertinent descriptors used in the QSAR model and the structural
analysis of the molecules in the training set Table 1), we tried to derive a SAR map that explains Lyn
kinase inhibition and also the predctions from the selected descriptors used in the QSAR model
(Figure 5). Indeed, most of the active molecules in the training set hold in one of their extrimities
a planar bicyclic aromatic system that can be heterocyclic or not. This feature is represented by the
number of double bond descriptor (b_count) correlated to aromatic planar rings and the number of
donors and acceptors of hydrogen bonds (a_acc, lip_acc, a_don, lip_don) which lead to heterocyclic
rings. Another common structural element in the active molecules is a central aromatic ring wich can
again be reprensented by the number of the double bonds descriptor. This part of the molecule is
usualy linked to the plan bicyclic system by a flexible linker. The flexibility is encoded in the kier_flex
descriptor. A third common strutural element of the active molecules is an aromatic ring system
localized at the other extrimity of the molecule. The three aromatic rings (planar heterocyle, central
aromatic ring and an aromatic system being opposite of the first aromatic system) can be also encoded
by the lipophilicity descripor (logP). With all these aromatic rings, the majority of active molecules
present a high molecular volume that is encoded in the molar refractivity descripto (MR). Finnaly,
the heterocyclic ring system as well as the number of donors and acceptors of hydrogen bonds are at
the origin of the polarizability of the molecule which is encoded in the polar surface area descriptos
(TPSA, apol and PEOPE).

Overall, considering the common structural features and some of the selected and used descriptors
in the QSAR model, we could suggest a SAR map for the inhibition of the Lyn kinase as follows: (1) a
planar and heterocyclic ring system that holds hydrogen bond donnors and acceptors, (2) a Linker to
keep the flexibility of the molecule, (3) an hydrophobic and aromatic central part, (4) a lipophilic and
aromatic ring system.

The derived SAR map can be found when analysing the structure of some published Lyn kinase
inhibitiors. Indeed, a Lyn kinase inhibiotors (INNO-406, Nilotinib), with IC50 of 220 nM, was reported
in the work of Horio et al. [42]. This compound bears a pyridinyl group as hydrogen bonding region,
an amino group as a linker and a central substitued benzyl group as the hydrophobic region. Kim et al.
obtained a Lyn kinase inhibitor (PCI-32765) [43], with an IC50 of 200 nM, showing an aminopyrimidine
moity playing the role of the hydrogen bonding region, a benzyl group as the aromatic moity linked to
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another benzyl group presenting the hydrophobic region. In the work of Goldberg et al. a reported Lyn
kinase inhibitor (BDBM50218682), with an IC50 of 230 nM, presented an aminopyridin moity as the
hydrogen bonding region, an amid bond as the linker, a central aromatic fused cycle, and a substitued
benzamid part playing the role of the hydrophobic region [44].
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prediction performance. The selected descriptors involved in the ANN model as well as the structural
features of the training set were analyzed together to draw an informative SAR map that was in good
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Overall, this study demonstrates that the machine learning method combined to molecular
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