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Abstract: Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are
used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve
the brain, memory, and nervous system. To apply ancient knowledge to modern science, some
major natural therapeutic compounds in herbs were extracted and evaluated in recent decades.
Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate
neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect
against neurodegenerative diseases, we summarize studies that discovered neuroprotection by
herbal compounds and compound-related mechanisms in neurodegenerative disease models.
Those compounds discussed herein show neuroprotection through different mechanisms, such
as cytokine regulation, autophagy, endoplasmic reticulum (ER) stress, glucose metabolism, and
synaptic function. The interleukin (IL)-1β and tumor necrosis factor (TNF)-α signaling pathways
are inhibited by some compounds, thus attenuating the inflammatory response and protecting
neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory
effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent
neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against
neuronal death by affecting glucose metabolism and synaptic function. Since the progression of
neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection
differ, therapeutic strategies may need to involve multiple compounds and consider the type and
stage of neurodegenerative diseases.

Keywords: traditional Chinese medicine; herbal compounds; neuroprotection agent; neurodegenerative
disease; cytokine regulation; autophagy; ER stress; glucose metabolism; synaptic function
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1. Introduction

Neurodegenerative diseases result in the progressive degeneration or death of neurons,
which cannot regenerate. The loss of neurons can cause behavioral or cognitive deficits, or
both. Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), and spinocerebellar atrophy (SCA), are closely related to protein
aggregations [1]. There are two major types of protein aggregates in AD: the β-amyloid (Aβ) peptide
derived from the amyloid precursor protein (APP), and tau protein aggregates, both of which can
lead to death of neurons [2]. PD is characterized by misfolded protein aggregates. The abnormal
α-synuclein protein that forms Lewy body aggregates is broadly distributed in brain regions [3,4].
ALS is caused by motor neuron degeneration in the spinal cord and cortex. Some evidence has shown
that ubiquitinated proteins can accumulate in motor neurons leading to cell death [5]. SCA is a kind of
polyglutamine (polyQ) disorder disease, and polyQ aggregates can cause transcriptional dysregulation
leading to cellular toxicity [6].

Traditional Chinese medicine (TCM) has been practiced for centuries in East Asia. Herbs and
herbal preparations are used to maintain health and cure disease. In the past few years, Chinese herbal
medicines have been studied in different fields. Some Chinese herbs are known to protect and improve
the brain, memory, and nervous system. However, the ingredients in various herbs are complex, and
the active components in herbs must be identified to apply ancient knowledge to modern science.
The extraction and analysis of components in herbs have increased in recent years [7], and many major
natural therapeutic compounds in herbs have been discovered, extracted, and analyzed in recent
decades [8]. Several Chinese herbs have been used to attenuate the progression of neurodegenerative
diseases, and some of their active components have been identified [9,10]. After discovering an active
herbal compound, the actual mechanism of the active components must be investigated.

To understand how herbal compounds attenuate neurodegenerative diseases, we summarized
studies that investigated the role of herbal compounds in various neurodegenerative disease models.
We categorized the compound-related mechanisms into various categories, including regulation of
cytokines, autophagy, endoplasmic reticulum (ER) stress, glucose metabolism, and synaptic function.

2. Chinese Herbal Drugs for Neuroprotection via Cytokine Regulation

2.1. Neuroinflammation in the Nervous System

Neuroinflammation is usually induced by cytokines and can lead to neuronal death. In the central
nervous system (CNS), microglial cells are the source of inflammatory cytokines. Proinflammatory
cytokines, including interleukins (ILs), transforming growth factor (TGF)-β1, and tumor necrosis factor
(TNF)-α usually make neurodegenerative disease worse. IL-1β induce neuronal injury not only by
producing reactive oxygen species (ROS), but also by activating the microglial cell. It can also induce
increased glycogen consumption in astrocytes, leading to elevated levels of toxic substances, thereby
affecting cellular metabolism [11,12]. In addition, IL-1β and TNF-α induce neurotoxicity through
glutamate production [13].

2.2. Cytokines and Neuronal Diseases

Neurodegenerative diseases, including AD and PD, are associated with chronic inflammatory
responses [14]. Analysis of cerebrospinal fluid from patients with AD suggested that the IL-12 and IL-23
signaling pathways are activated [15]. A recent study showed that the gut microbiota regulates motor
deficits and neuroinflammation in a PD model, and expressions of two proinflammatory cytokines
increased in the presence of host microbiota [16]. A meta-analysis also showed higher peripheral levels
of ILs in PD patients [17]. In animal study, NLRP3 (an inflammasome sensor)-deficient APP/PS1 AD
mice showed improved Aβ clearance by microglia, lower Aβ-induced IL-1β formation in the brain,
and decreased the Aβ-induced suppression of synaptic plasticity [18]. Furthermore, ILs can modulate
the size of ischemic damage in a rodent stroke model as also found in neurodegenerative diseases [19].
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IL-1, IL-6, TNF-α, and C-reactive protein (CRP) are potential targets of stroke therapy. Studies have
reported that these cytokines are associated with depression [20–22]. According to these evidences,
regulating inflammatory cytokines could be a strategy to treat neurodegenerative diseases, stroke, and
mental illness. Therefore, we list some herbs that attenuate the progression of neurological disease
progression through cytokine regulation.

2.3. Chinese Herbaldrugs that Benefit Neuronal Diseases via Cytokine Regulation

Isobavachalcone and paeonol are the main components of the herbs Psoralea corylifolia and
Cortex Moutan, which were applied for PD therapy. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced model, both isobavachalcone and paeonol inhibited the overactivation of microglia,
and decreased expressions of ILs and also prolonged the residence time of mice on a Rota-rod and
alleviated neuronal necrosis [23,24].

Icariin was an anti-inflammation compound extracted from Chinese herb Epimedium segittatum
and worked on several neuronal diseases involved in inflammatory response. In an AD animal model,
icariin significantly attenuated Aβ deposition, microglial activation, and TGF-β1 immunoreactivity at
amyloid plaques and restored impaired nesting ability [25]. Icariside (ICS) II, a novel phosphodiesterase
5 inhibitor derived from the herb Epimedium brevicornum, and tetrandrine, a bisbenzylisoquinoline
alkaloid isolated from the herbal radix Stephania tetrandra, both inhibit inflammatory factors and
improve cognitive deficits in AD animal models [26,27]. ICS II decreased levels of Aβ1-40 and Aβ1-42
and inhibited inflammatory factors, including IL-1β, TNF-α, cyclooxygenase (COX)-2, and TGF-β1, in
AD. Tetrandrine treatment inhibit nuclear factor kappaB (NF-κB) activity and downregulate IL-1β and
TNF-α expression.

Stroke is highly correlated with post infarction inflammation. For anti-inflammation, icariin
was not only applied to AD but also stroke therapy. In an animal stroke model, icariin pretreatment
reduced cytokine levels (IL-1β and TGF-β1), decreased a neurological deficit score, and reduced
the infarct volume [28]. Ampelopsin (AMP), extracted from Ampelopsis grossedentata, attenuated
neurological deficits and reduced infarct volumes, brain edema, immunoglobulin G (IgG) exudation,
and neuron degeneration by inhibition of the middle cerebral arterial occlusion-induced IL-1β and
TNF-α release in animal model [29]. Eriodictyol extracted from the herb Dracocephalum rupestre
reduced TNF-α, inducible nitric oxide (NO) synthase (iNOS), and glial fibrillary acidic protein
(GFAP) expressions, as well as prevented neuronal death, reduced the infarct area, and ameliorated
neurological and memory deficits [30]. Ruscogenin isolated from the herb Ophiopogon japonicas
decreased the infarct size and improved neurological deficits by NF-κB inhibition that suppresses
iNOS, COX-2, TNF-α, and IL-1β [31]. The 6-hydroxycleroda-3,13-dien-15,16-olide (PL3) has been
extracted from Polyalthia longifolia var. pendula and was reported to inhibits microglia-mediated
inflammation and inflammation-related neuronal cell death by inhibition of the NF-κB signaling
pathway [32].

For mental illness, berberine, a major constituent alkaloid isolated from Coptis chinensis, prevents
depressive-like behaviors in mice by suppressing IL-1β, IL-6, and TNF-α expression levels, as well as
microglial activation [33]. Icariin also exerts antidepressant-like effects in rats with mild chronic stress,
which may be mediated by an enhanced anti-inflammatory effects by inhibition of NF-κB signaling
and the NLRP3-inflammasome/caspase-1/IL-1β axis [34].

2.4. Brief Summary of Chinese Herbal Compounds on Neuroinflammation

In summary, Chinese herbs that regulate the NF-κB signaling pathway and its downstream targets,
such as IL-1β and TNF-α, usually attenuate inflammatory responses and protect against neuronal
death (Figure 1), suggesting that treatment with these herbs may provide potential therapies for
neurodegenerative diseases.
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Figure 1. Chinese herbal compound decrease NF-κB activation and cytokines release after ischemia injury.

3. Chinese Herbal Drugs for Neuroprotection via Autophagy

3.1. The Importance of Regulating Autophagy in the Nervous System

Autophagy, which has garnered much attention in the past few years, is an intracellular recycling
and metabolic process that is critical in different areas of cell physiology. Cytosolic components can be
engulfed by the cell membrane and sequestered. After formation of autophagosome, the sequestered
organelles and cell debris are delivered to a lysosome; then, the outer membrane of the autophagosome
fuses with the lysosome to maintain homeostasis by lysosomal hydrolase [35]. This ensures a dynamic
balance between the production and degradation of molecules and cell flow, and any damage to
this important intracellular route results in a variety of different diseases such as neurodegenerative
diseases [36–38], metabolic-related disorders [39], cancer [40], and cardiovascular and pulmonary
diseases [41,42].

3.2. Autophagy Dysregulation and Neurodegenerative Diseases

It is well-known that many neurodegenerative diseases involve protein aggregation and
deposition, such as AD, PD, ALS, and polyQ diseases [43]. Clearance of these abnormal proteins
may be the key point to slow down disease progress. Therefore, regulation of autophagy can be
a strategy to improve the pathology of neurodegenerative diseases by intracellular cleaning and
inhibiting the accumulation of misfolded proteins. Although autophagy plays an important role in
neurodegenerative diseases, the detailed mechanism remains unclear.

3.3. Chinese Herbal Compounds Promote the Regulation of Autophagy and Improve
Neurodegenerative Diseases

Wang et al. summarized autophagy modulators from Chinese herbs for neurodegenerative
diseases in the Journal of Ethnopharmacology [44]. The study’s authors collected literature from scholarly
databases published during a nine-year period (2007–2015) and investigated the effects of Chinese
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herbal compounds or their natural extracts on regulation of autophagy. We summarize some autophagy
regulators from Chinese herbs in terms of the therapeutic effects on neurodegenerative disease, and it
can provide new pharmacological applications for drug development.

Overall, a number of articles have been published on modulation of autophagy by Chinese
herbal medicine in the past five years. The dual roles of up- or downregulation of autophagy by
natural compounds for neuroprotection have been revealed. The impairment of autophagolysosome
formation and maturation may contribute to the gradual accumulation of Aβ and phosphorylated
tau proteins in AD. It has been reported that resveratrol, luteolin, berberine, Thamnolia vermicularis
extract, carnosic acid, and ginsenoside compound K derived from different Chinese herbs promote
clearance of Aβ accumulations [45–50], inhibit the production of hyperphosphorylated tau, and
improve the behavioral performance via the adenosine monophosphate-activated protein kinase
(AMPK)-dependent, phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin
(mTOR), and AMPK/raptor/mTOR signaling pathways. In contrast, autophagy has been shown to be
necessary for apoptotic cell death, placing it upstream of apoptosis, which means that autophagy can
induce apoptosis, leading to cell death. In this way, it was reported that triptolide significantly reduces
cytotoxicity and apoptosis by inhibiting the autophagic pathway in PC12 cells [51].

Studies have demonstrated that autophagy is also involved in the pathogenesis of PD. Baicalein,
hederagenin, carnosic acid, sulforaphane, piperine, triptolide, conophylline, and resveratrol [52–60]
significantly upregulate autophagy to prevent behavioral deficits, attenuate dopaminergic neuronal
loss, neuronal apoptosis, and mitochondrial dysfunction, suppress oligomerized α-synuclein, and
restore the interactions of parkin and beclin-1 via the AMPK-mTOR signaling cascade and heme
oxygenase-1, LC3II, and p62 signaling. In contrast, oleuropein, baicalein, and cucurbitacin E decreased
neuronal death and autophagic flux by inhibiting autophagic initiation in 6-OHDA or MPP+-infused
substantia nigra (SN) PD models [53,61,62].

In ALS, Berberine upregulated the deregulated mTOR/p70S6K signal and activated an autophagic
degradation pathway to promote clearance of TDP-43 [63]. On the other hand, n-butylidenephthalide
(Bdph) downregulated autophagy by enhancing p-mTOR, decreasing LC3II to prolong the lifespan,
and attenuating motor neuron loss in ALS mice [64,65].

The roles of Chinese herbal medicines in other neurodegenerative diseases were published in the
past three years. Sulforaphane, neferine, conophylline, and resveratrol eliminated mutant Huntingtin
(Htt) aggregates [58,66–68], and cleared Htt protein and inclusions against mutant Htt or CAG repeats
by activating AMPK-mTOR signaling. Both breviscapine and ginsenoside Rb1 extracted from Chinese
herbs played neuroprotective roles by downregulating autophagy. Breviscapine reduced infarct
volumes and neuro-functional deficiencies in a cerebral ischemic rat model [69], and ginsenoside
Rb1 decreased the loss of motor neurons and promoted functional recovery in a spinal cord injury
model [70]. AMP inhibited D-gal-induced apoptosis and rescued impaired autophagy of neurons by
upregulating SIRT1 and downregulating the mTOR signal pathways [71].

3.4. Brief Summary of Chinese Herbal Compounds Involved in Regulating Autophagy

Many studies have investigated the regulation of autophagy by extracts of Chinese herbal
medicines. Results suggest that herbal compounds derived from Chinese herbal medicines are able to
protect the functions of neurons against mutant proteins and protein aggregates. These extracts may
regulate autophagy via various pathways, especially the PI3K/AKT/mTOR pathway. The mTOR is
an important key for autophagy, and most studies reported that those extracts from Chinese herbal
medicines may regulate autophagy via mTOR signaling (Figure 2). Results indicated that herbal
compounds extracted from plants hold great potential for treating neurodegenerative diseases, and
targeting the modulation of autophagy for therapeutic effects is a great strategy for neuroprotection.
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4. Chinese Herbal Drugs for Neuroprotection via Reduced ER Stress

4.1. ER Function and Maintenance of Neurons

The ER is a multifunctional organelle, involved in lipid and sterol synthesis, protein
post-translational modifications, and protein transport [72]. The neuronal ER also mediates the
Ca2+ intracellular signal, producing local or global cytosolic calcium in neurons [73]. Neurons are
highly bipolar cells with very long dendrites and axons. The shape of the ER in neurons is between
those of dendrites and axons. ER tubules extend along microtubules to build up the transport
network [74]. The neuronal ER network is dynamically remodeled during neuronal development.
During dendrite and axon developmental processes, the ER rapidly extends bidirectionally and retains
protein trafficking from the soma [75]. The neuronal ER in soma and dendrites has an abundant
ribosomal distribution [76]. The dendritic ER structure is modulated by external cellular signals, when
type I metabotropic glutamate receptors are activated [77], and the axonal ER is rich in Ca2+ ATPase
and IP3R [78]. Thus, the ER is a very important organelle during neuron development.

4.2. The Role of ER Stress in Neuronal Diseases

Most neurodegenerative diseases are caused by misfolded protein accumulation. Proteins that
accumulate abnormally in the ER generate stressful conditions termed ER stress. When a cell faces
this situation, it activates the unfolded protein response (UPR) [79]. In the initial stage, the UPR
is regulated by three ER stress sensors: inositol-requiring protein-1 (IRE1), activating transcription
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factor-6 (ATF6), and protein kinase RNA (PKR)-like ER kinase (PERK). When the UPR is activated,
neurons downregulate protein translation, enhance translation of chaperone protein, and begin to
produce chaperones and other components for the accurate folding of proteins [80,81]. However,
when facing prolonged ER stress, the cell activates the UPR-apoptosis process. C/EBP homologous
protein (CHOP) and caspase-12 are induced by ATF4 and X box-binding protein-1 (XBP-1) [82]. In AD,
overexpressed Aβ forms oligomers, which accumulate in the ER lumen and activate the proapoptotic
ER stress response. Brains of AD show high expressions of UPR markers, such as GRP78 and p-PERK,
in the cortex and hippocampal region [83–86]. Similarly, α-synuclein accumulates in the ER then
disrupts protein transport from ER to Golgi in PD [87,88]. In ALS, mutant SOD1 was observed in the
ER and was found to be associated with motor neuron death [89–92]. According to those studies, UPR
signaling plays an important role in neuroprotection (Figure 3). Thus, discovering new compounds to
reduce ER stress and restore ER function is very important.
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4.3. Chinese Herbal Drugs Reduce ER Stress and Benefit Nervous System

Astragaloside IV has been extracted from the roots of Astragalus membranaceus, and was found to
inhibit the ER stress apoptosis pathway [93]. Astragaloside IV also promoted neurite outgrowth and
increased survival of dopaminergic neurons in a PD model [94]. Baicalein, which is isolated from roots
of Scutellaria baicalensis and S. lateriflora, were previously introduced in the autophagy section, also
have potential to apply for the treatment of PD via ER stress regulation. It inhibits CHOP expression
in the HT-22 cell line and rotenone-induced apoptosis in dopaminergic SH-SY5Y cells by inhibiting
brefeldin A (BFA)-induced CHOP, GRP78, ATF6, and p-eIFα expressions, and reducing apoptotic
caspase-3 and caspase-12 splicing [95,96]. Crocin, isolated from saffron, has been used in TCM for
decades. Crocin attenuates MPP(+)-induced cell apoptosis by inhibiting CHOP expression and the
Wnt signaling pathway in PC12 PD cell model [97]. Crocin also inhibited the effect of tau protein
aggregation in AD in an in vitro model [98]. Interestingly, heroin-addicted rats showed significant
downregulation of PERK, eIF2a, and CHOP expressions and a reduction in neuron apoptosis [99].
Taken together, ER stress in neural diseases is well connected with herbal compound treatment.
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4.4. Brief Summary of Chinese Herbal Drugs Involved in ER Stress

Unfolded protein response pathway is highly involved in the first step of neurodegenerative
diseases, especially in amyloid triggered diseases including AD, PD, ALS, and Huntington disease
(HD). According to these evidences, there are two candidate pathways for treating neurodegenerative
diseases. One is to inhibit the ER stress-activated apoptotic pathway, and the other one is to enhance
chaperone protein translation. However, there are still few Chinese herbs derived pure compounds
were identified to improve ER function in neurodegenerative models. Only astragaloside IV, baicalein,
and crocin were demonstrated to reduce ER stress or ER-stress-induced apoptosis directly and benefit
neuron survival. Therefore, there is still great potential to study the herb-derived compound on ER
stress regulation.

5. Chinese Herbal Drugs for Neuroprotection via Glucose Metabolism

5.1. Effects of Glucose Metabolism on Neurophysiology

The energy requirements of the brain are relatively higher than other parts of the body, particularly
in humans. About 20% of the body’s energy consumption occurs in less than 2% of a person’s
weight [100]. The brain has specialized glial cells, astrocytes, which are responsible for the delivery,
production, storage of brain energy, and metabolism of neurons [101]. That is, neurons rely on glia cells
and astrocytes to supply their extreme energy costs and maintain functions. The glucose metabolism
pathway and the glucose level in the brain have potential to alter neuron function and survival.
Moreover, glucose metabolism is also interconnected with the production of major neurotransmitters
as discussed below. Maintaining the balances of glucose uptake maybe one key factor to keep brain
neurons healthy.

5.2. Dysregulation of Glucose Metabolism in Neurodegenerative Diseases

The correlation of diabetes (one major glucose metabolism disease) and neurodegenerative
disease, especially dementia and AD, were reported recently. People with diabetes or metabolism
diseases have higher risk of neurodegenerative diseases [102,103]. To emphasize the importance
of metabolism dysregulation on neurodegenerative diseases, AD was also suggested as “Type 3
diabetes” [104]. Looking into the mechanisms, the dysregulation of systemic glucose metabolism, such
as insulin deficiency or insulin resistance, may also influence the uptake of glucose in human brain.
Many studies showed a reduction in insulin production and glucose uptake in the aged, dementia
brains [105], and even in patients with diabetes [106]. Dysregulation of glucose metabolism can lead
to reduce the energy source, increase oxidative stress and inflammatory response, then damage the
brain neurons in AD [107]. In addition, use of fluorodeoxyglucose uptake by PET scans exhibited a
reduction of glucose in Aβ damaged brains [108]. These results reveal correlations between glucose
metabolism and neurodegenerative diseases.

5.3. Potential of Chinese Herbal Drugs to Improve Neural Metabolism

A triterpenoid compound, maslinic acid (2-α, 3-β-dihydroxyolean-12-en-28-oic acid), isolated from
the wax skin of Olea europaea, can increase glycogen synthesis and prevent norepinephrine-induced
glycogenolysis in cortical astrocytes [109]. Qian et al. demonstrated that maslinic acid ameliorates
neuron injury and apoptosis which accompanied the inhibition of oxygen-glucose deprivation-induced
NO production and iNOS expression [110]. The effect of baicalein on preventing neuronal death
induced by glutamate and glucose deprivation was also examined [111]. These compounds may have
potential for neuronal diseases treatment. Resveratrol has been studied for decades. Its neuroprotective
mechanism varies, such as its effects not only on oxidative damage and chronic inflammation,
but especially on activating expression of sirtuins, a protein involved in glucose metabolism [112].
Supplementation with resveratrol for 26 weeks (at 200 mg/day) enhanced memory performance
in healthy older adults [113]. Moreover, the above double-blind study showed that resveratrol
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intake significantly reduced serum glycated hemoglobin (HbA1c) compared to a placebo group,
and the decreased HbA1c was significantly correlated with an individual’s functional connectivity.
There indeed is an effect of glucose metabolism on neural function. This is a great potential to benefit
neurodegenerative diseases via metabolism regulation with Chinese herb drugs. Although there are
still few herb drugs targeting on systemic and nerve system metabolism, a more-detailed assessment is
forthcoming to clarify this issue.

6. Chinese Herbal Drugs for Neuroprotection via Neurotransmitters and Synaptic Function

6.1. Neurotransmitters on Synapse and Neural Function

Synapse is the basic component for neural communication and neural information flow in
nervous system. Stimulations of neurons benefit the maintenance of neuronal function and survival.
Neurotransmitters play the major role on synaptic function. The life cycle of neurotransmitter including
the production, packaging, release, recycling, and postsynaptic uptake [114]. Glutamate, acetylcholine
(ACh), and γ-aminobutyric acid (GABA) are common neurotransmitters in CNS. Glutamate
and ACh are excitatory neurotransmitters [115], and GABA is inhibitory neurotransmitter [116].
The tricarboxylic acid (TCA) cycle is further extended to produce glutamate and GABA in the
CNS, called “the GABA shunt” [117]. Pyruvate is oxidized to acetyl-CoA in mitochondria, and
acetyl-CoA and choline are the material of ACh that synthesized by choline acetyltransferase [118].
Released neurotransmitters can be recycled or re-uptake by nearby astrocytes or pre-/post-synaptic
terminals. The released glutamates from presynaptic neurons were recycled by astrocytes via the
glutamate–glutamine cycle. Glutamate is converted into glutamine by glutamine synthetase in
astrocytes then shuttled to neurons [101]. Released GABA was uptake by GABA transporter in
presynaptic terminal. In the synapse cleft, released ACh is broken down into choline and acetate by
acetylcholinesterase, and choline is transported into the axon terminal as the recycled material of
ACh. Overall, the pre-synapse axons, post-synapse dendrites, and astrocytes can re-uptake released
neurotransmitter with re-uptake pump to recycle the neurotransmitter around the synapse as materials
to synthesis new neurotransmitter.

6.2. Neurotransmitters and Synaptic Function in Neurodegenerative Diseases

Many reports demonstrated the misfolded amyloids would accumulate around the synapses
and block the releasing and recycling of neurotransmitter [119–121]. The dysregulation of
neurotransmitter also causes the abnormality of post-synapse stimulation, including hyper-activation
and hypo-activation, and causes neuron disfunction or death [122,123]. It was revealed decades ago
that inhibiting NMDA receptors prolongs survival in patients with ALS [124]. A previous study also
showed that Aβ is correlated with extracellular GABA levels [125], which raised the theory of the
involvement of GABA in the physiopathology of AD [126]. Pimlott et al. demonstrated the reduction
of nicotinic ACh receptor (nAchR) in AD, PD, and dementia with Lewy bodies [127].

6.3. Chinese Herbal Drugs Improve Neurotransmitter Production and Synaptic Function

Our recent data revealed that a small molecule from the root of Angelica sinensis has therapeutic
potential in SCA3. This small molecule, Bdph, regulates tryptophan metabolism and decreases the
downstream neurotoxic product, quinolinic acid (QA, a NMDA receptor agonist) [128]. Moreover,
Bdph reduces Aβ40 secretion and attenuates AD-like cytopathy in AD models [129]. Huperzine
A has been extracted from the firmoss Huperzia serrata and competes with the NMDA receptor
on polyamine-binding sites [130]. Huperzine A has treatment potential for AD and vascular
dementia [131]. The type A GABA receptor is a postulated target in age- and AD-related neuronal
degeneration [125]. The neuroprotective effect of kava, a modulator of the GABA receptor, has been
reviewed for the detailed mechanism of its antianxiety and sleep-inducing abilities [132]. Some other
herb extracts were reported to improve neurotransmitter and synapse function. However, the major
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functional compounds are still unclear and need further identification [133]. Moreover, the Chinese
herbal drugs that benefit neurons mentioned in the above sections may also have potential to work on
synaptic plasticity. Further studies of herbal drugs on synapse and neurotransmitter would provide
new direction of herbal drugs in neurodegenerative diseases.

7. Discussion

The evidence suggests that Chinese herbal drugs have neuroprotective abilities in various
neurodegenerative disease models in different ways (Table 1). One is to attenuate the inflammatory
response through cytokine regulation, and several previous experiments showed that the IL-1β
and TNF-α signaling pathways could be inhibited to benefit neurons in neurodegenerative diseases.
Regulating the mTOR signaling pathway in autophagy is also a neuroprotective strategy, and herbal
compounds from Chinese herbs have different effects on this signaling pathway. Due to opposite
roles of the mTOR pathway in neurons being still largely unknown, the detailed mechanisms of
autophagy on neurodegenerative diseases are still in need of further study. Several neurodegenerative
diseases have unusual protein misfolding and accumulation in the ER, and herbal compounds
inhibit UPR-related apoptosis, which prevents neurons undergoing ER stress from dying. Due to the
correlation between metabolic abnormalities and neurodegenerative diseases, such as AD, revealed
recently, there is a large potential to apply herb compounds to maintain metabolism balance to
combat neurodegenerative diseases. Besides the glucose metabolism, there are also some mechanisms
and metabolic pathways related to neuroprotection not mentioned above. As neurons can die due
to aberrant protein accumulation, the efficiency of waste clearance and improving brain blood
flow are important. Furthermore, nutrient support from glial cells to neurons is also important.
Although herbal compounds have neuroprotective abilities, the off-target effect of herbal compounds
remains a concern. Some of the herbal compounds involved more than one mechanism, such as AMP,
baicalein, berberine, Bdph, and resveratrol, and the neuroprotective specificity by these compounds
still need to be confirmed. Moreover, herbal compounds show opposite impact on the mTOR pathway
for neuroprotection in neurodegenerative disease models. This indicates that autophagy is complex in
neurodegenerative diseases and the regulation of autophagy for neuroprotection may vary with the
disease type and stage. Inhibiting UPR-related apoptosis prevents neurons undergoing ER stress from
dying, but the ER stress is still high in neurons. The way to inhibit ER-stress-induced cell death may be
insufficient to cure neurodegenerative diseases, and releasing ER stress may be needed. As the progress
of neurodegenerative diseases is complicated and the herbal compounds have different impacts on the
nervous system, combinations of compounds may be needed. In addition, therapeutic strategies may
vary with the type and progression of disease.

Table 1. Chinese herbal compounds have neuroprotection ability to various neurological disorders
through different mechanisms and metabolisms.

Herbal Drugs Plant Sources Structure Involved
Mechanism (s) Treated Model Main Citations

6-hydroxycleroda-
3,13-dien-15,16- olide

(PL3)

Polyalthia longifolia
var. pendula
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