## SUPPLEMENTARY MATERIAL

## Persicaline, a new antioxidant sulphur-containing imidazoline alkaloid from *Salvadora persica* roots

Mohamed F. Abd El Halim<sup>a</sup>, Wael M Abdel-Mageed<sup>a,b,\*</sup>, Omer A. Basudan<sup>a</sup> and Ali A. El-Gamal<sup>a,c,\*</sup>

<sup>a</sup>Pharmacognosy Department, King Saud University, College of Pharmacy, , P.O. Box 2457, Riyadh 11451, Saudi Arabia e-mails: <u>wabdelmageed@ksu.edu.sa</u>, & <u>aelgamal00@yahoo.com</u>

<sup>b</sup> Pharmacognosy Department, Assiut University, Faculty of Pharmacy, , Assiut P.O. Box 71526, Egypt

<sup>c</sup>Pharmacognosy Department, Mansoura University, Faculty of Pharmacy, , Mansoura P.O. Box 35516, Egypt

## Abstract

Salvadora persica L. is a popular chewing stick commonly known as 'miswak'. During our ongoing research activities on the chemical constituents of Salvadora persica roots, a new sulphur-containing imidazoline alkaloid 1,3-Dibenzyl-4-(1,2,3,4-tetrahydroxy-butyl)-1,3-dihydro-imidazole-2-thione, persicaline, (1) along with five known compounds (2-6) are identified. Compounds (2-3) were reported for the first time from the family Salvadoraeceae. The structure of the new compound was established by extensive spectroscopic data and HR-MS. The antioxidant activities of the fractions and isolates were evaluated using different *in vitro* methods such as DPPH, superoxide anion and nitric oxide radicals scavenging assays. Compound (1) showed a promising antioxidant activity with IC<sub>50</sub> 0.1, 0.08 and 0.09  $\mu$ M in the three assays respectively comparable to ascorbic acid.

**Keywords:** *Salvadora persica; Persicaline;* Imidazoline Alkaloids; Sulphurcontaining compounds; Radical Scavenging Activity.

## Content

**Table S1** <sup>1</sup>H NMR and <sup>13</sup>C NMR spectroscopic data of compounds 2**Table S2** <sup>1</sup>H NMR and <sup>13</sup>C NMR spectroscopic data of compounds 3

Figure S1. <sup>1</sup>H NMR spectrum of compound (1) (700 MHz, DMSO- $d_6$ )

**Figure S2.** <sup>13</sup>C NMR spectrum of compound (1) (175 MHz, DMSO- $d_6$ )

Figure S3. DEPT 135 spectrum of compound (1) (175 MHz, DMSO- $d_6$ )

**Figure S4.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound (1) (700 MHz, DMSO- $d_6$ )

**Figure S5.** <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of compound (1) (700 MHz, DMSO- $d_6$ )

**Figure S6.** <sup>1</sup>H-<sup>13</sup>C HMBC spectrum of compound (1) (700 MHz, DMSO- $d_6$ )

**Figure S7.** <sup>1</sup>H-<sup>1</sup>H NOESY spectrum of compound (1) (700 MHz, DMSO- $d_6$ )

**Figure S8.** Key NOESY ( $\rightarrow$ , black) correlations and global energy minimum of **1** 



Benzyl-thiocarbamic acid O-ethyl ester

**Table S1** <sup>1</sup>H (500 MHz) of compound **2** and <sup>13</sup>C (125 MHz) NMR spectral data of compounds **2** in CDCl<sub>3</sub>

| Position | H <sup>1</sup> NMR data                                      | C <sup>13</sup> NMR data |
|----------|--------------------------------------------------------------|--------------------------|
|          | $\delta_{\rm H}$ (ppm) ( <i>J</i> in Hz)                     | $\delta_{\rm C}$ (ppm)   |
| 1        | -                                                            | 190 (Z)                  |
|          |                                                              | 190.73 ( <i>E</i> )      |
| 2        | 6.5 br. ( <i>Z</i> )                                         | -                        |
|          | 6.9 br. ( <i>E</i> )                                         |                          |
| 3        | 4.46 (2H, d, <i>J</i> = 5.8 Hz, CH <sub>2</sub> , <i>Z</i> ) | 47.27 (Z)                |
|          | 4.78 (2H, d, <i>J</i> = 5.7 Hz, CH <sub>2</sub> , <i>E</i> ) | 49.31 ( <i>E</i> )       |
| 4        | -                                                            | 136.63                   |
|          |                                                              | 136.96                   |
| 5        | 7.36 (1H, d, <i>J</i> =7.5Hz)                                | 128.92                   |
| 6        | 7.33(1H, d, <i>J</i> =7.5Hz)                                 | 127.98                   |
| 7        | 7.31(1H, m)                                                  | 127.79                   |
| 8        | 7.33(1H, d, <i>J</i> =7.5Hz)                                 | 127.98                   |
| 9        | 7.36 (1H, d, <i>J</i> =7.5Hz)                                | 128.92                   |
| 1'       | 4.58 (2H, q, <i>J</i> = 7.2 Hz, <i>Z</i> )                   | 66.69(Z)                 |
|          | 4.53 (2H, q, <i>J</i> = 7.2 Hz, <i>E</i> ),                  | 68.17 ( <i>E</i> )       |
| 2'       | 1.37 (3H, t, <i>J</i> = 7.2 Hz, <i>Z</i> )                   | 14.32 (Z)                |
|          | 1.33 (3H, t, <i>J</i> = 7.2 Hz, <i>E</i> )                   | 14.38 (E)                |



Table S2  $^{1}$ H (500 MHz) of compound 2 and  $^{13}$ C (125 MHz) NMR spectral data of compounds 3 in CDCl<sub>3</sub>

| Position | H <sup>1</sup> NMR data                            | C <sup>13</sup> NMR data      |
|----------|----------------------------------------------------|-------------------------------|
|          | $\delta_{\rm H}~({\rm ppm})~(J~{\rm in}~{\rm Hz})$ | δ <sub>C</sub> ( <b>ppm</b> ) |
| 1        | -                                                  | 173.0                         |
| 2        | 2.20 (t)                                           | 36.88                         |
| 3        | 1.65 (m)                                           | 22.72 to 31.95                |
| 4        | 1.16-1.29                                          | 22.72 to 31.95                |
| 5        | 1.16-1.29                                          | 22.72 to 31.95                |
| 6        | 1.16-1.29                                          | 22.72 to 31.95                |
| 7        | 1.16-1.29                                          | 22.72 to 31.95                |
| 8        | 1.16-1.29                                          | 22.72 to 31.95                |
| 9        | 1.16-1.29                                          | 22.72 to 31.95                |
| 10       | 1.16-1.29                                          | 22.72 to 31.95                |
| 11       | 1.16-1.29                                          | 22.72 to 31.95                |
| 12       | 1.16-1.29                                          | 22.72 to 31.95                |
| 13       | 1.16-1.29                                          | 22.72 to 31.95                |
| 14       | 1.16-1.29                                          | 22.72 to 31.95                |
| 15       | 1.16-1.29                                          | 22.72                         |
| 16       | 0.88                                               | 14.16.                        |
| 1'       | 4.45 (d)                                           | 43.62                         |
| 2'       | -                                                  | 138.40                        |
| 3'       | 7.17 (1H, d, <i>J</i> = 8.0 Hz)                    | 127.9                         |
| 4'       | 7.33(1H, m, overlapped)                            | 128.8                         |
| 5'       | 7.33(1H, m, overlapped)                            | 127.55                        |
| 6'       | 7.33(1H, m, overlapped)                            | 128.8                         |
| 7'       | 7.17 (1H, d, <i>J</i> = 8.0 Hz)                    | 127.9                         |







**Figure S4.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound (1) (700 MHz, DMSO- $d_6$ )



**Figure S5.**  ${}^{1}\text{H}{}^{-13}\text{C}$  HSQC spectrum of compound (1) (700 MHz, DMSO- $d_6$ )



**Figure S6.** <sup>1</sup>H-<sup>13</sup>C HMBC spectrum of compound (1) (700 MHz, DMSO- $d_6$ )



**Figure S7.** <sup>1</sup>H-<sup>1</sup>H NOESY spectrum of compound (1) (700 MHz, DMSO-d<sub>6</sub>)



**Figure S8.** Key NOESY ( $\rightarrow$ , black) correlations and global energy minimum of **1**.