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Abstract: In this work, we study two approaches for the problem of RNA-Protein Interaction (RPI).
In the first approach, we use a feature-based technique by combining extracted features from both
sequences and secondary structures. The feature-based approach enhanced the prediction accuracy
as it included much more available information about the RNA-protein pairs. In the second approach,
we apply search algorithms and data structures to extract effective string patterns for prediction
of RPI, using both sequence information (protein and RNA sequences), and structure information
(protein and RNA secondary structures). This led to different string-based models for predicting
interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed
approaches, including comparative results against leading state-of-the-art methods.

Keywords: RNA Protein Interaction; RPI; k-mers; suffix trees; richness; protein structure;
RNA structure

1. Introduction

The interaction between proteins and RNA is known to be an important cellular process. RNA
interaction with malfunctioning proteins has been implicated in cell misregulation [1,2], leading to
serious diseases, such as cancer, cardiovascular diseases, and neurological disorders [2]. Yet, we still
lack a complete understanding of the characteristics of a protein or of an RNA that allow them to
interact. Even less is known about those characteristics that play a significant role in the formation
of new protein-RNA complexes. Various groups have thus studied interactions for specific pairs
of protein and RNA, even without knowing the general properties that facilitate or inhibit such
interactions. Starting with experimentally known interacting RNA-protein pairs, computational
methods, such as machine learning can be brought to bear on the problem, by attempting to predict
possible RNA-protein interactions based on information from the already known interacting RNAs
and proteins [3].

The protein or RNA secondary structure describes how the molecules are bound together in a
three dimensional space, and therefore can play a crucial role in characterizing the interaction process.
The RNA secondary structure describes how some nucleotides in the single stranded RNA are paired to
form potentially complicated structures, such as stems, loops, and hairpins. Some methods have been
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developed to predict RNA secondary structure based on the nucleotide sequences. Thermodynamic
methods are the most popular amongst these methods [4,5]. These mainly rely on the notion of free
energy, and building secondary structures based on the minimum free energy principle [4]. On the
other hand, protein secondary structures describe how the amino acids are positioned in a three
dimensional space. Various approaches have been used to describe the protein secondary structure.
A popular approach is by using the dihedral angles (φ and ψ) between the amino acids. Dihedral
angles define the angles of rotation between two planes, in this case, the planes are defined by the
bonds between three adjacent amino acids [6]. Ramachandran codes are derived from Ramachandran
plots (which are 2D charts describing the distribution of the dihedral angles), by reducing information
in the plot to some clusters [6–8]. Another approach is the protein blocks, which describe protein
secondary structures based on the folds formed by five consecutive amino acids and then clustering
these folds [9].

Earlier methods for RPI prediction focused on sequence data, building features based on only
sequence information for the RNA and protein individually, or combining both sequences to extract
representative features [3]. Recently, secondary structures were shown to be important in the interaction
process, and are now being included in the prediction [10]. In this work, we consider different
representations for proteins and RNAs. We consider sequence and structural information for both
protein and RNA. For the sequences, we use the traditional 4-letter alphabet for RNA (A, C, G,
U), but a 7-letter reduced alphabet for protein. For structures, we use the Ramachandran codes
for protein structure representation. These have been used in previous work on studying protein
structures [6,7]. However, this work represents the first time Ramachandran codes are being used for
protein-RNA interaction studies. RNA secondary structures have been used earlier in RNA alignment
and protein-RNA interaction prediction. In this work, we consider string-based representations for
both the RNA secondary structure, and the protein secondary structure, in addition to the traditional
protein and RNA sequences.

Armed with these representations, we build two different prediction models for RPI prediction.
The first extracts features from protein sequences and protein structures and combines these with
features extracted from RNA sequences and RNA structures. The idea is to combine all the information
about each protein and RNA individually, and then trying to use the integrated information to address
the RPI prediction problem. The second model is a string-based approach. Here, we build a feature
space based on k-grams (i.e., k-length substrings, also called k-mers in the biology literature). We
analyze the sequences of protein-RNA pairs to determine the k-mers that tend to appear in interacting
pairs, and those that are often found in non-interacting pairs. We then use these k-mer pairs as our
descriptors (feature set) for predicting RNA-protein interaction. Under the string-based approach, we
apply the k-mer description approach on both sequence-based and structure-based information, after
encoding the structural information as strings.

The remainder of this paper is organized as follows: Section 2 provides some background, and
discusses previous work on predicting RNA-protein interaction. Section 3 describes the feature-based
model, while Section 4 presents the proposed string-based approach. Section 5 presents the results,
including comparison with state-of-the-art methods. Section 6 concludes the paper.

2. Background and Related Work

The importance of RNA-protein interaction comes from the key role it plays in regulating cellular
processes. Researchers have shown interest in RNA-protein interactions primarily driven by the
need to understand how cells work, including cell localization and other fundamental processes [10].
Studies have shown that some cases of RNA-protein interaction are related to some important diseases,
such as cancer, Alzheimer’s disease, fragile X syndrome, and cardiovascular diseases [2]. Clearly, the
problem of prediction is closely related to the issue of representing the RNAs and proteins. Success in
identifying and extracting the information that is most relevant to protein-RNA interaction will no
doubt lead to improved computational prediction of such interactions.
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Methods for addressing the RNA-Protein Interaction (RPI) problem can be traced to those that
have been used to study the related problem of protein-protein interaction (PPI). The Protein-Protein
interaction problem is well studied due to the importance of proteins in all cell processes, including
coding and decoding genes. Shen et al. [11] were among the first to predict protein-protein interaction
using only sequence information. They used a simplified 7-symbol alphabet to represent protein
sequences and built a Support Vector Machine (SVM) prediction model using a high quality dataset
containing 16,443 experimentally validated entries. Based on the identified interactions, they
build a protein interaction network that shows the relationships and connections between different
proteins [11]. For other related work on protein-protein interaction see [12–14].

Muppirala et al. [3] explored RNA and protein sequences separately. They build a 599-dimensional
feature space, with 343 features extracted from protein and 256 features from RNA. Similar to
Shen et al. [11], the 343 protein features were extracted by first considering the 7-class reduced
protein alphabet, whereby the 20 amino-acids are clustered into seven groups based on their dipole
moments and their side-chain volumes. To conserve locality information, the notion of triads was used
to extend the feature space to 7 × 7 × 7 features for protein, and 4 × 4 × 4 features for RNA. Two
classification models (SVM and Random Forests (RF)) were deployed to build the prediction scheme.
The models were trained using two datasets, namely, RPI369 and RPI2241. The Random Forest model
trained with RPI2241 obtained the most accurate results among other trained models, achieving 89.6%
in accuracy, with 0.89 and 0.90 for precision and recall, respectively.

In [15], Wang et al. applied k-mer approach by finding the pairs of protein amino acids and RNA
nucleotides that tends to appear together. They worked with a reduced protein alphabet, whereby
the 20 amino acids were grouped based on their charge and polarity. The new alphabet consisted of
4 groups representing the 20 amino acids. Then, they considered protein 4-mers and RNA 3-mers.
This allowed them to preserve some locality information, which was indicated to have high impact
on the prediction process. The feature space consisted of a 4096-dimensional space (43 features for
protein, and 43 features for RNA). This high dimensional space requires relatively large datasets for
training. Thus, they selected only 500 features that showed the highest impact on the prediction,
and adopted the naive-Bayes classifier as the basic classification method. They tested the method
on different datasets, including RPI369, RPI2241 and NPInter. The accuracy achieved on these three
datasets were 75%, 74% and 77.6%, respectively.

RPI-Pred [10] was developed by Suresh et al. to predict the interaction between non-coding RNA
and proteins. They included information from both sequences and secondary structures, building a
feature-vector with 132 features. Here, they used 20 features to describe the RNA considering four
different nucleotides and five secondary structure elements including stem, hairpin, loop, and bulge.
They used 112 features to characterize proteins, following the reduced 7-class alphabet for amino acids,
and the extracted 16 protein blocks [9]. They introduced a new dataset, namely, RPI1807 and used
this for training. They tested their method using three datasets, namely, RPI369, RPI2241 and NPInter.
Using SVM as the prediction scheme, they achieved an accuracy of 92%, 84% and 86.9% using RPI369,
RPI2241 and NPInter, respectively.

Lu et al. [16] followed a different approach in predicting RNA-protein interaction. The core
difference in their work is in how they extracted their features. RNA secondary structures were
predicted using Vienna RNA package [4]. Additionally, they used hydrogen bonding information,
then using the Fourier transform they extracted a feature set for both RNA and protein to form the
feature vector for each RNA and protein. They included the first ten terms of the Fourier series for
each information type. They built a training dataset containing 649 non-redundant protein-RNA
pairs (322 of these were interacting pairs, and the remaining 327 were non-interactive pairs). They
trained a scoring matrix which gives a score for each protein-RNA pair. Based on the assigned score,
they predict the interaction between protein and RNA. The method achieved a 77% accuracy on the
NPInter dataset.
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Following recent success of convolutional neural networks in different applications, deep learning
approaches have been applied to various related problems in biomedicine. Examples here include,
in predicting the sequence specificity for DNA-RNA binding proteins (e.g., DeepBind [17] and
DeeperBind [18]), mining RNA-protein binding motifs (e.g., iDeep [19]), or in studying the functional
effects of non-coding variants (e.g., DeepSEA [20]). See [21,22] for recent reviews on the use of deep
leaning in biomedical applications. In particular, Pan et al. [23] studied the use of deep learning
on the problem of RNA-protein interaction prediction. They introduced Interaction Pattern Miner
(IPMiner), which used deep leaning models to predict potential interaction between non-coding RNA
and proteins. They focused on the use of sequence-only information, and investigated the impact of
various deep learning architectures on the prediction performance. They also introduced the RPI488
RNA-protein interaction dataset, which is distinct in that the dataset contained protein-RNA pairs
involving mainly long non-coding RNAs (lncRNAs). The problem of RNA-protein interaction has
also been considered from the viewpoint of complete structural representations. Zhang et al. [24]
developed a deep learning model to define the preferences of RNA Binding Protein (RBP) structural
representations. They used information from predicted RNA tertiary structures to study the problem
of RPI. This helped them to define a 3D representation for RPI complexes, which were then used to
describe the binding preferences.

For both RNA and protein, their sequences and secondary structures can each be expressed
in the form of strings [25,26]. In this work, we take advantage of efficient string algorithms and
data structures to extract discriminative feature sets and build prediction models that can predict
RNA-protein interaction. The other contribution is the development of a prediction model built on
Ramachandran codes for protein structures, and the use of enhanced descriptors of RNA secondary
structure elements, based on their lengths. In this work, we used both SVM and RF to explore the
influence of classification schemes on the prediction performance.

3. Feature-Based Model

In this work, we will use information from both sequences and secondary structures. This applies
to both the feature-based approach discussed in this section, and the string-based approach we will
introduce in the next section. Features are the attributes of the RNA and proteins that will be used
in the prediction. We will build our feature space based on the different elements captured from the
RNA/protein sequences and secondary structures. In this section, we will introduce our RNA and
protein representations. Then we will define our feature space, and describe the classification approach.

3.1. Representing RNAs

For RNA sequences, although a nucleotide can be any of A, U, C and G nucleotides, some RNAs
are not completely known and their sequences include special characters, such as ‘X’ at some positions
denoting that the nucleotide at this position is unknown. Thus, in this work the alphabet for RNA
sequences is extended to five characters (A, U, C, G, X). This alphabet will be used to encode RNA
sequences in this work. We also use information from the RNA secondary structure. In this work, when
the RNA structure is unknown, we will use RNAFold (part of the Vienna RNA suite of programs [4]) to
predict the structure (using RNAfold default parameters). The method implements a free energy model
to predict the secondary structure for a given RNA sequence. To describe the RNA secondary structure,
we use the RNA secondary structure elements (SSE)—see Figure 1. For simplicity, we consider only the
basic types, namely, Stem (or stack), Loop, Internal Loop, Bulges, and Others (non-classified, such as
single strands). The RNA secondary structure is thus represented as a string—sequence of basic SSEs.
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Figure 1. RNA secondary structure elements (SSEs). (A) basic types of SSE types, from [25]; (B): 
Example of a short RNA sequence with annotated SSEs: (1) Stem, (2) Loop, (3) Internal loop, (4) Bulge. 

Recent studies have also suggested that RNAs with different lengths or sizes can have different 
functional roles [27,28]. Hence, we studied the distribution of the lengths for the RNA SSEs, and thus 
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short. Figure 2 shows the probability distribution of the RNA SSE lengths using the 1078 RNA 
sequences from the RPI1807 dataset.  

Figure 1. RNA secondary structure elements (SSEs). (A) basic types of SSE types, from [25];
(B): Example of a short RNA sequence with annotated SSEs: (1) Stem, (2) Loop, (3) Internal loop,
(4) Bulge.

Recent studies have also suggested that RNAs with different lengths or sizes can have different
functional roles [27,28]. Hence, we studied the distribution of the lengths for the RNA SSEs, and
thus obtained three different length categories for each secondary structure element: long, medium
and short. Figure 2 shows the probability distribution of the RNA SSE lengths using the 1078 RNA
sequences from the RPI1807 dataset.

This provides more important information about the RNA secondary structure elements than just
considering only the secondary structure elements directly. We can observe that by considering the
lengths of different SSEs over the entire RNA sequence, we can capture different RNA configurations,
for instance, long stem, large loop; short stem, large loop; or short stem, small loop; large stem, small
loop; etc. See figures in [28] for some examples. For each type of SSE, the cutoff for length classes was
obtained by using the empirical distribution shown in Figure 2, such that each length type will have
about the same probability of being observed in the dataset. Table 1 shows the length thresholds used
for the three length classes over the different SSE types.
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Table 1. Classes for RNA secondary structure lengths.

Stem Bulge Loop Internal Loop Others (Not Classified)

Short 1–3 1–1 1–4 1–2 1–2
Medium 4–5 2–2 5–6 3–5 3–5

Long ≥6 ≥3 ≥7 ≥6 ≥6
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3.2. Representing Proteins

Given the chemical similarity between amino acids, we can partition amino acids into different
groups and use the groups, rather than the individual amino acids, to represent protein sequences.
Grouping the amino acids can be done based on various criteria. In this work, we follow [3,10], where
amino acids were classified based on their dipole moments and their side chain volumes. This way the
original 20 amino acids are classified into seven groups: I: {Ala, Gly, Val}, II: {Ile, Leu, Phe, Pro}, III:
{Tyr, Met, Thr, Ser}, IV: {His, Asn, Gln, Trp}, V: {Arg, Lys}, VI: {Asp, Glu} and VII: {Cys}. The protein
secondary structure is defined by the positions of consecutive molecules in 3D space. The positions
can be described by the dihedral angles between each three consecutive molecules, denoted omega
(ω), phi (φ) and psi (ψ). Due to the limitation in ω angle, usually only φ and ψ angles are considered
in describing the protein secondary structure. Ramachandran et al. [29] studied the relationship
between φ and ψ and presented 2D plots (now called Ramachandran plots), showing the density of
the joint occurrences of these angles. This density can be used to derive protein secondary structure
representations by clustering the values from the Ramachandran plot, then replacing the values of
(φ, ψ) pairs by their cluster representative. To represent protein structure, Suresh et al. [10] used
16-character protein blocks. In this work, we will follow the approach in [7], and thus use a 7-symbol
alphabet representing seven clusters from the Ramachandran plot. See also [6]. Hence, the protein
representation used will consist of a 7-symbol alphabet for amino acid groups (for the sequence), and
another 7-symbol alphabet from the Ramachandran codes (for the protein secondary structure).
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3.3. Feature Space and Classification

Given the representations for the sequences and secondary structures for RNA and proteins,
we can now construct our feature space. For RNA sequences, we use the 5-symbol alphabet (A, U,
C, G, X) to represent the nucleotides. Also, each nucleotide will belong to one of the 5 secondary
structure elements (SSEs) as described earlier. Then, each secondary structure element can have three
different length classes. This results in a 5 × 5 × 3 feature space, or a total of 75 features representing
an RNA. Protein sequences are reduced to seven groups resulting in a 7-symbol alphabet. Protein
secondary structures are also represented using 7 different Ramachandran code clusters for each
position. Thus, the protein representation requires a 7 × 7 feature space, or 49 features. The power
of this representation comes from the fact that it includes all the available information using a small
number of features. This is crucial in building the prediction model in reasonable time and space, and
to ensure accuracy in the prediction.

Building the feature vector and finding the best representation for the prediction model is just the
first step in RNA-protein interaction prediction. The next step is to decide what prediction scheme
should be used. The RNA-protein interaction prediction problem is to determine whether or not a
given pair of protein and RNA will interact. Essentially, this can be viewed as a supervised learning
problem, specifically, a binary classification problem. Different algorithms have been developed to
solve classification problems. However, considering the protein-RNA interaction problem, Support
Vector Machines (SVM) and Random Forest (RF) proved to be among the best classification methods
in prior work. Therefore, we will consider these two methods and compare the performance of both
classifiers using our approaches.

4. String-Based Approach

Although the feature-based approach is powerful and contains a lot of information about RNA
and protein, it does disregard important local information. This local information could be important
in the prediction process. When an RNA bonds to a protein, it is not just an amino acid and a nucleotide
that are involved, but a set of neighboring nucleotides against a set of amino acids. Furthermore, the
secondary structures should be compatible to allow RNA-protein bonding. These observations suggest
that we could consider small portions or k-grams (k-mers) of sequences and structures when building
the feature vector rather than looking for individual molecules. This will typically lead to a very large
dimensional feature space. Consider for instance, 5-mer strings under a 75-symbol alphabet (using
the RNA representation presented earlier). This means we have more than 755 ≈ 2 × 109 possible
different 5-mers to consider for RNA only, besides the 495 ≈ 2 × 108 5-mers for proteins. This is a huge
feature space that will be very difficult to handle with current computational limitations. Thus, we
need to reduce the feature space dimensionality. A quick observation is that this feature space will be
very sparse, as most combinations of the RNA and protein symbols will not occur in practice.

Reducing feature space dimensionality means we need to carefully select some k-mers and drop
the rest. Not all k-mer strings hold the same amount of information with respect to possible interaction
between the protein and RNA. Thus, to enhance prediction accuracy, we need to identify the k-mers
that have the most influence on the prediction of interacting or non-interacting RNA-protein pairs.
Hence, we look for the k-mer strings that appear mostly in the positive pairs and those that appear
mostly in the negative pairs, and then construct a feature vector based on these.

4.1. Suffix Trees for Protein and RNA Strings

The naive approach to find the most occurring substrings is to count each of them within the
dataset. The running time for this approach will be O(nk) for each k-mer, where n is the total number
of all symbols in the dataset. This means we need to hold a large dictionary of all possible substrings,
the size of this dictionary would be in O(αk), where α is the alphabet size (in our case, could have
α = 75 for RNA and α = 49 for protein). We need to find a better approach to study the distribution
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of k-mers, i.e., a memory- and time-efficient method to find the k-mers that contribute most in the
interaction process. One way will be to go over the database to first determine all the k-mers that
actually occurred, and then use standard linear-time pattern matching algorithms to determine their
respective number of occurrences. Overall, this will be O(kn2) time worst case.

A better approach will be to use suffix trees and suffix arrays [26,30,31] to provide a better tool to
find the most occurring substrings within positive pairs and negative pairs. The suffix tree requires
an O(n) time and space for construction. After construction, we can traverse the O(n) nodes of the
suffix tree to determine the occurrence counts of all substrings in O(n) time. Thus, this is the time
required to count all the k-mers in the string, independent of k. The power in using the suffix tree to
find the distribution of k-mers is that we don’t need to maintain a large dictionary. We built suffix trees
counting occurrences of each substrings of length 2 to 5 for RNA sequence and secondary structure,
and protein sequence and secondary structure. That is, we constructed four suffix trees, one for each
type of string representation we used, namely: RNA sequence, RNA secondary structure elements
represented as strings, protein sequence, and protein secondary structure represented as a sequence of
Ramachandran codes.

4.2. Richness for Protein and RNA Substrings

In general, the k-mers that tend to occur more in positive pairs (i.e., interacting RNA-protein
pairs) would provide more information in deciding on a positive pair than other k-mers that appeared
equally in both positive and negative pairs. Similarly for k-mers that appeared more in negative pairs.
With this observation, we should look for more than just occurrence counts. The richness could be a
better measure of the contribution of a k-mer to the interaction between RNA-protein pairs. Given a
k-mer, say β, let γ(β) = #occurrences of β in the positive pairs, and let λ(β) = #occurrences of β in the
negative pairs. The k-mer richness is simply defined as:

R(β) =
γ(β) + 1
λ(β) + 1

Thus, k-mers with richness greater than 1 appear more in positive pairs (positive k-mers), while
a richness value near zero means the k-mer appeared mostly in the negative pairs (negative k-mer).
Richness values close to 1 are associated with k-mers that appear equally in both positive and negative
pairs, hence they provide less discrimination ability between interacting and non-interacting pairs.

Given the foregoing, we now construct four suffix trees for positive pairs in the dataset, and
another four suffix trees for the negative pairs. We extracted pairs that appeared only in positive
pairs or only in negative pairs as they hold the most discriminative information for interaction
prediction. To provide some perspective on the feature space generated, we used the RPI1807 dataset
(see Section 5.1 on datasets), to build suffix trees of depth five and computed the distributions for
k-mers up to length 5. RNA 4-mers appeared for as many as 18,020 times in positive pairs and
16,894 in negative pairs, while for 5-mers, the number drops to 3700 appearances in positive pairs
and 3494 negative pairs. Obviously, the numbers drop as the k-mer length increases. Protein 4-mers
occurred about 1134 times in positive pairs, and 443 times in negative pairs. As mentioned, the direct
k-mer count distribution may not be the best way to capture the information carried by the k-mers.
Thus, we considered the richness as the main factor to compare k-mers and build the feature vector.
Figure 3 shows the k-mer richness (log scale) for RNA sequences, using the RPI1807 dataset above.
In this chart, positive log values imply k-mers that appear more in the positive pairs, while negative
values correspond to those that appear more in the negative pairs. Thus, a simple threshold can be used
to select the positive k-mers and the negative k-mers, while avoiding those that are less discriminative
(those close to 0). Figure 4 shows the corresponding k-mer richness plot for protein sequences.
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Figure 4. Protein sequence k-mer richness (log values) using the RPI1807 dataset. Protein sequence
symbols are taken from the 7-symbol alphabet (A, I, Y, H, R, D, C). Not all k-mers are shown.

4.3. String-Based Models

Based on the foregoing, we then consider string-based prediction models that combine the
extracted RNA and protein k-mers. Our models consider different combinations of the identified
k-mers that pass the richness threshold. We consider five models based on these combinations, viz:
QQ: RNA sequence k-mers in combination with protein sequence k-mers; SS: RNA secondary structure
k-mers and protein secondary structure k-mers, QS: RNA sequence k-mers and protein secondary
structure k-mers, and SQ: RNA secondary structure k-mers and protein sequence k-mers. The final
model (QSQS) combines k-mers from the first four models, thus exploiting info from RNA sequence,
and RNA structure, protein sequence, and protein structure. We have included the Top-100 richness
k-mers for each of the four string-based models as Supplementary Materials.
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5. Experiments and Results

5.1. Datasets and Setup

The Protein Data Bank (PDB), Nucleic Acid Database (NDB) and Protein-RNA Interface Database
(PRIDB) [32] are widely known databases that provide Protein-RNA complexes which can be parsed
to obtain a dataset with positive pairs, and negative pairs. Suresh et al. [10] parsed NDB and PDB to
build their dataset, based on atomic interaction between Protein and RNA pairs. That is, they used the
atomic distance between RNA and protein sequences extracted from RNA-protein complexes. Using a
threshold on the atomic distance, they were able to separate strongly interacting pairs from weakly
interacting pairs. Thus, RNA-protein pairs with strong interaction are considered positive pairs, and
pairs with weak interaction are considered negative pairs. The dataset they obtained was used to
build classifiers which performed very well on other datasets. We call this dataset RPI1807. It has
1807 positive pairs and 1436 negative pairs, for a total of 3243 RNA-protein pairs. RPI369 and RPI2241
are two non-redundant RNA-protein interaction datasets [3]. RPI369 contains 369 RNA-protein pairs,
while RPI2241 contains 2241 RNA-protein pairs. Muppirala et al. [3]. extracted RPI369 and RPI2241
from PRIDB. PRIDB is a database that contains RNA-protein complexes extracted from PDB [32].
RPI2241 contains rRNA, ncRNA or mRNA. RPI369 was extracted from RPI2241. It contains only
non-ribosomal complexes [3].

In this work, we used the RPI1807 dataset [10] to train our learning models, and to tune parameters.
The dataset has 1807 positive pairs (1807 protein and 1078 RNA chains), and 1436 negative pairs
(including 1436 protein and 493 RNA chains). Then, we test our methods on other datasets, and
compare our results against previous work. Classification was performed using both SVM [33] and
RF [34], using Weka [35], version 3.6.13. We used the RPI1807 dataset from [10] to construct our
models, and set parameters. We set the parameters for the classification schemes based on empirical
observations using the training dataset. SVM parameters were set as C = 25, γ = 2−7 for the string-based
models, and as C = 27, γ = 2−11 for the feature-based model. For RF, the number of decision trees was set
to 200, for both string-based and feature-based models. Then, we evaluated the models on the RPI369
and RPI2241 datasets reported in [3]. Both were obtained from the PRIDB dataset of RNA-protein
complexes [32] extracted from the protein databank (PDB). RPI2241 includes complexes with rRNA,
ncRNA and mRNA, and this is more challenging. We also tested on RPI488, the lncRNA-protein
interaction dataset recently introduced in [23].

5.2. Performance Measurement

We evaluated our approaches using 10-fold cross-validation. To measure the performance, we
used precision (PRE), recall (REC), accuracy (ACC), and F-measure (FSC), viz: PRE = TP/(TP + FP),
REC = TP/(TP + FN), ACC = (TP + TN)/(TP + TN + FP + FN), FSC = 2 × (PRE × REC)/(PRE + REC),
where, TP is true positive (the count of correctly classified positive pairs), FP is false positive (the count
of wrongly classified positive pairs), TN is true negative (count of correctly classified negative pairs),
and FN is false negative (count of wrongly classified negative pairs). We also computed the area under
the curve (AUC) (with values in [0 1], with 1 indicating perfect prediction).

5.3. Results

We tested our methods against different datasets from previous studies to compare our results
with previous work. We tested on RPI369 and RPI2241 extracted by Muppirala et al. [3], and also on
RPI488 dataset introduced by Pan et al. [23]. We applied two different prediction methods, SVM and
RF. In previous work, SVM was reported to perform better than RF (e.g., RPI-Pred [10]), while in some
others RF outperformed SVM. (e.g., [3]). Thus, we applied both schemes to see their performance
under our framework.

Table 2 shows the results of our proposed feature-based and string-based methods on the RPI1807
dataset, using both SVM and RF prediction schemes. For the feature-based method, RF outperformed



Molecules 2018, 23, 697 11 of 17

SVM, scoring 94.68% in accuracy and 0.94 in precision, recall and F-measure. The difference between
SVM and RF was even more significant using the string-based approach, with RF doing much better
with accuracy of 93.35%, and 0.93 in precision, recall and F-measure. Thus, subsequent results are
reported for RF classification method.

Table 2. Performance for proposed methods using the RPI1807 dataset.

Metric
Feature-Based String-Based

SVM RF SVM RF

AUC 0.92 0.98 0.75 0.98
PRE 0.93 0.94 0.79 0.93
REC 0.92 0.94 0.74 0.93
FSC 0.92 0.94 0.73 0.93
ACC 92.94 94.68 74.00 93.35

The string-based approach used a different approach from the feature-based approach, especially
with respect to feature vector extraction and representation. We tested k-mers extracted from different
combinations of RNA sequence, secondary structure, and protein sequence and secondary structures.
Table 3 shows the results of our proposed string-based models. Columns 2 and 3 show results for the
QSQS model, using both SVM and RF. Clearly, RF is doing much better than SVM using our approach.
Thus, subsequent results in this work are reported only for the Random Forest classifier.

As expected, the QSQS model achieved the best result. This is due to its use of more detailed
information from both structure and sequence. The results of using only sequences (QQ model)
were very close to using all available info. This could be due to the fact that secondary structure is
determined by the sequence. Interestingly, using k-mers from only the secondary structures (SS model)
led to a significant performance drop (ACC = 66.98%). The table shows that sequences provide a key
information for RPI prediction. Though secondary structures can help when combined with sequences,
they lack precision when used independently.

Table 3. Results for the proposed string-based models using the RPI1807 dataset.

Metric QSQS (SVM) QSQS (RF) QQ SS QS SQ

#k-mers 7030 7030 4680 2350 3255 2955
AUC 0.75 0.98 0.93 0.66 0.64 0.95
PRE 0.79 0.93 0.93 0.79 0.78 0.91
REC 0.74 0.93 0.93 0.67 0.65 0.89
FSC 0.73 0.93 0.98 0.61 0.58 0.89

ACC (%) 74.00 93.35 93.19 66.98 65.15 89.29

5.4. Impact of Sequence Lengths and SSE Lengths

Given the use of SSE lengths in our approach, we decided to investigate the impact of sequence
lengths and SSE sizes on RNA-protein interaction. This can be investigated on three perspectives:
(1) impact of the size/length of different SSEs on interaction between a given RNA-protein pair;
(2) impact of protein sequence and RNA sequence lengths on their potential to interact; and (3) impact
of sequence lengths on the predictability or otherwise of RPI, if any. For the first view, using the RPI807
dataset we analyzed the potential impact of SSE lengths on the ability of a given RNA-protein pair to
interact. Table 4 shows the potential influence of SSE types and SSE lengths on the interaction ability
for a given RNA-protein sequence pair. The rows in red color show the RNA SSE types (as defined
by the specific type of SSE and its length) that tend to appear more in the RNA sequences found in
the negative RNA-protein pairs (i.e., those that do not interact), while the green rows show RNA
SSE types that tend to appear more on RNA sequences involved in the positive pairs. The column
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labeled “Dominant” indicates which type of RNA-protein pair where the given RNA SSE type tends
to occur most. The table shows that each of the basic RNA SSE types (Stem, Loop, Internal Loop of
Bulge) can appear in either the positive or negative RNA-protein pairs. However, when we consider
their sizes, we can more easily see those that tend to dominate in positive (interacting) or negative
(non-interacting) RNA-protein pairs.

For the last two perspectives, we focus on our proposed RPI prediction method, and thus
essentially investigate whether the sequence lengths (protein and/or RNA) have any impact on
(1) the ability of the RNA-protein pairs to interact, and (2) on the performance of our proposed RPI
prediction methods. Since the QQ string-based model shows a similar performance with the QSQS
model, for simplicity, we only used the QQ model for this experiment. Further, the sequence length
experiments are performed only on the RPI488 dataset, since this dataset was the most challenging for
the string-based models, resulting in more prediction errors when compared with the other datasets
(see the result tables in this section). Figure 5 shows a plot of the RPI prediction performance against
protein sequence lengths and RNA sequence lengths. A quick observation shows that, most of the
positive interaction pairs (Y’s and E’s) in the plots tended to occur at RNA lengths greater 200 nts,
while most of the negative interaction pairs (N’s and F’s) seemed to occur mainly at RNA lengths
below 200 nts. We could not discern any similar pattern for the impact of protein sequence lengths.
However, in terms of the ability of our proposed string-based model to predict RPI, for RNA sequences
greater than 200 nts, most of the prediction errors (red letters E or F) occurred at protein sequences
less than 175 amino acids in length. For RNA sequences with lengths less than 200 nts, the protein
sequence length did not seem to impact the ability of the method to predict the RPI. Since most of
the positive pairs in the RPI488 dataset tend to have RNA sequence lengths above 200 nts, then best
performance will be observed for protein sequence lengths above 175 amino acids.
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Figure 5. Impact of RNA and protein sequence lengths on potential for RNA protein interaction, and
on the ability of an RPI prediction method. Results are shown for the RPI488 dataset. Left: all sequence
lengths in the dataset; Right: zooming in on RNA sequences of length 200 nts or less on the Left
panel. Legend: Y: interacting pair, correctly predicted; N: non-interacting pair correctly predicted as
non-interacting; E: Interacting pair incorrectly classified; F: non-interacting pair incorrectly classified as
interacting. Results are based on the QQ string-based model, proposed in this work.
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Table 4. Potential influence of RNA SSE lengths on possible interaction between RNA-protein sequence pairs. Results are based on the RPI1807 dataset, using only the
QQ string-based model. Red denotes RNA SSE types that are found mostly in negative pairs; Green denotes those that are found mostly in positive pairs; White
denotes those with no specific dominance.

RNA SSE Type Occurrences Within All Sequences In Top 100 kmer Pairs (SS model) In Top 100 kmer Pairs (QS model)
Dominant

(Based on Type, Length) Code PosPair NegPair Ratio LogRatio PosPair NegPair Ratio LogRatio PosPair NegPair Ratio LogRatio

Short Stem (SS) A 333,596 331,862 1.005 0.008 77 161 0.481 −1.054 73 113 0.649 −0.623 Neg
Medium Stem (MS) B 545,832 557,346 0.979 −0.030 129 69 1.857 0.893 106 67 1.574 0.654 Pos
Large Stem (LS) C 702,214 735,912 0.954 −0.068 137 74 1.840 0.880 117 105 1.113 0.155 Pos
Short Loop (SL) D 110,548 114,307 0.967 −0.048 22 10 2.091 1.064 0 5 0.167 −2.585
Medium Loop (ML) E 79,886 80,783 0.989 −0.016 16 5 2.833 1.503 19 5 3.333 1.737 Pos
Large Loop (LL) F 68,838 68,450 1.006 0.008 5 3 1.500 0.585 5 36 0.162 −2.624 Neg
Small Internal Loop (SI) G 197,645 197,748 0.999 −0.001 30 45 0.674 −0.569 34 48 0.714 −0.485 Neg
Medium Internal Loop (MI) H 208,020 211,535 0.983 −0.024 22 30 0.742 −0.431 39 32 1.212 0.278
Large Internal Loop (LI) I 100,781 112,329 0.897 −0.157 20 17 1.167 0.222 35 10 3.273 1.710 Pos
Small Bulge (SB) J 25,939 26,933 0.963 −0.054 10 14 0.733 −0.447 5 18 0.316 −1.663 Neg
Medium Bulge (MB) K 20,190 20,984 0.962 −0.056 5 12 0.462 −1.115 12 19 0.650 −0.621 Neg
Large Bulge (LB) L 95,362 99,365 0.960 −0.059 17 8 2.000 1.000 55 23 2.333 1.222 Pos
Small Others (SX) M 2707 3007 0.900 −0.152 6 35 0.194 −2.363 0 0 1.000 0.000
Medium Others (MX) N 2679 2044 1.311 0.390 0 0 1.000 0.000 0 0 1.000 0.000
Large Others (LX) O 5866 6257 0.938 −0.093 4 0 5.000 2.322 0 0 1.000 0.000

Totals 2,500,103 2,568,862 500 483 500 481
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5.5. Comparison with State-of-the-Art Methods

In order to evaluate our new models, we compared our work with three recent approaches
reported in [3,10,16,23]. RPI-Pred [10] used sequences and secondary structures to build its method.
It used both RNA sequence and secondary structure elements. It also used protein sequence and
protein block as secondary structure representative. The other method is Muppirala et al. [3] which
used only sequence information but they applied two different prediction methods: SVM and random
forest. We will denote Muppirala et al.’s SVM method as RPISeq-SVM and their RF method as
RPISeq-RF. IPMiner [23] used deep learning models, but only considered sequence information from
the protein or RNA pairs, without using information about their secondary structures.

First we compared the results using RPI2241 dataset—see Table 5. Our feature-based method had
an accuracy of 88.97%, performing better than RPI-Pred (84%) and RPISeq-SVM (87.1). The accuracy
was very close to RPISeq-RF which performed the best, with an accuracy of 89.6%. Other performance
measures followed the same pattern with RPISeq-RF performing better than other methods, followed
closely by our feature-based method. Precision, recall and F-measure scores were as described in
the table below. Interestingly enough, our feature-based method scored a better AUC (0.94) than
RPISeq-RF (0.92), second to RPI-Seq-SVM (0.97). String-based method performed less than feature
based method. Accuracy, precision, recall and F-measure were all very close to RPISeq-SVM and
outperformed RPI-Pred as described below.

Table 5. Comparative analysis of proposed string-based and feature-based models on RPI2241 dataset.

Metric
RPI2241

Feature-Based String-Based RPI-Pred [10] RPISeq-SVM [3] RPISeq-RF [3] IPMiner [23]

AUC 0.94 0.92 0.89 0.97 0.92 0.91
PRE 0.89 0.86 0.88 0.87 0.89 0.84
REC 0.89 0.86 0.78 0.88 0.90 0.83
FSC 0.88 0.86 0.83 0.87 0.90 0.84
ACC 88.97 86.52 84.0 87.1 89.6 82.4

On the other hand, when testing against RPI369 dataset, the performance of both RPISeq-RF and
RPISeq-SVM dropped to an accuracy of 76.2% and 72.8% respectively. RPI-Pred on the other hand,
performed better, reporting accuracy of 92.0%. Both our feature-based and string-based methods
outperformed all three methods, reporting an accuracy of 97.88% and 96.38% respectively. All other
measures for our methods scored 0.95 or higher, better than all three methods. Table 6 compares the
results when using RPI369 dataset.

Table 6. Comparative analysis of proposed string-based and feature-based models on RPI369 dataset.

Metric
RPI369

Feature-Based String-Based RPI-Pred [10] RPISeq-SVM [3] RPISeq-RF [3] IPMiner [23]

AUC 0.99 0.98 0.95 0.81 0.81 0.77
PRE 0.97 0.96 0.89 0.73 0.75 0.71
REC 0.97 0.96 0.89 0.73 0.78 0.74
FSC 0.97 0.96 0.89 0.73 0.77 0.73
ACC 97.88 96.38 92.0 72.8 76.2 75.2

To test the performance of the proposed approach on protein interaction with long non-coding
RNAs (lncRNAs), we used the new dataset RPI488 reported in [23]. The dataset contains 243 interacting
protein-lncRNA pairs, and 245 non-interacting pairs, for a total of 488 protein-lncRNA pairs. As
indicated during our earlier analysis on impact of sequence lengths, this dataset was the most
challenging of the four datasets evaluated in this work. Table 7 shows the results of our string-based
approach (the QQ model) on this dataset, along with the results from other reported methods (taken
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from [23]). For this test, we used 10-fold cross validation, based on the top ranking k-mers with
high richness values as generated from the RPI1807 dataset. We have reported the average result
over the 10 folds. Accuracy ranged from 0.76 to 0.88, with an average of 0.82 over the 10 folds. As
the table shows, the QQ string-based model did not perform as well as the other methods on this
dataset. However, the results are still competitive, especially for accuracy. We have used richness
k-mers, learned from RPI1807 dataset. Obviously, extracting the k-mers directly from the RPI488 would
improve the performance. Also, we expect that the use of the full string-based models incorporating
structure based information and the addition of the feature-based approach will lead to improved
results on this dataset.

Table 7. Comparative analysis of our proposed string-based QQ model on RPI488 protein-lncRNA dataset.

Metric
RPI488

QQ-Model RPISeq-RF [3] lncPro [16] IPMiner [23]

PRE 0.77 0.93 0.91 0.89
REC 0.86 0.93 0.90 0.89
FSC 0.81 0.93 0.91 0.89
ACC 0.82 0.88 0.87 0.87

Compared to other related work, we showed better consistency when using other datasets, such
as RPI369, and RPI2241. Our string-based approach scored accuracy of at least 82% over different
datasets. While feature-based method scored at least 88.97% when testing on RPI1807, RPI369, or
RPI2441. We built our methods trying to cover as much RNA-protein pairs as possible. Results showed
that our proposed approach can be reliable and used with different datasets without updating or
changing the models or the selected features.

6. Conclusions

The RNA-protein interaction (RPI) problem is an important problem in the analysis of molecular
and cellular functions, since RNA-protein interaction has been implicated in many important cellular
processes. The last few years have seen the discovery of more RNA and protein complexes, thus there
is an increasing need for methods that can help us to determine the functions of such complexes, and
the potential interaction between the entities involved. Given constraints due to cost and labor, and
the increasingly large amounts of data involved, wet-lab experiments to determine RPI now require
efficient and effective computational methods to help in the process.

In this work, we introduce two different approaches to predict RPI. We exploited the size of
RNA secondary structure elements as a significant descriptor for RNA secondary structures, and
used the Ramachandran codes to represent protein secondary structures. This is the first attempt at
using these two features for the RPI prediction problem. Further, we developed an innovative k-mer
approach deploying powerful string data structures and algorithms on the problem of RPI prediction.
The string-based approach maintained locality information which plays a crucial role in interaction
between RNA and protein. Our results improved on previous approaches to RPI prediction, showing
more consistency over different datasets and different types of RNA and protein.

Further improvement could be obtained by finding better ways to integrate the sequence and
structure information, and for intelligent fusion of the feature-based and string-based approaches. The
string-based approach can also explore longer substrings (the k-mers), or perhaps inexact k-mers for
possible performance improvement. Another approach could be in finding features from combined
sequence and secondary structure data: we extracted k-mers from RNA sequences against protein
sequences, and RNA secondary structures against protein secondary structures. Combining RNA
sequence with secondary structure information and protein sequence with secondary structure
information and then extracting k-mers could enhance the performance as it will be considering
all available information jointly, rather than considering each one on its own.
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Supplementary Materials: The following are available online: Tables for Top 100 k-mers for the four proposed
string-based models. The following alphabets are used:

Protein Sequence: {A, I, Y, H, R, D, C}
Protein Structure: {A, B, C, D, E, F, G}
RNA Sequence: {A, U, C, G, X}
RNA Structure: {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O}
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