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Abstract: Talarodiolide, a new 12-membered macrodiolide, was isolated and characterized from the
culture filtrate of strain LT6 of Talaromyces pinophilus. The structure of (Z)-4,10-dimethyl-1,7-dioxa-
cyclododeca-3,9-diene-2,8-dione was assigned essentially based on NMR and MS data. Furthermore,
several known compounds were isolated and identified in the crude extract of the culture filtrate
and mycelium of this strain. EI mass spectrum at 70 eV of all isolated metabolites was acquired and
compiled in a custom GC/MS library to be employed to detect metabolites in the crude extracts.
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1. Introduction

With a widespread occurrence in very diverse environmental contexts, from the soil to the
sea [1–3], the species Talaromyces pinophilus (=Penicillium pinophilum) (Eurotiales: Trichocomaceae) has
received increasing attention in mycological research for its ability to act as a fungal antagonist and
plant-growth promoter [1,4,5], and for possible biotechnological applications based on the production
of enzymes [6,7] and bioactive metabolites [8–10].

Two strains (LT4 and LT6), possibly deriving from the same wild clone since they were both
recovered from the rhizosphere of a tobacco plant cropped near Lecce (Apulia, Southern Italy), have
been particularly studied in our laboratories after they were shown to produce a novel fungitoxic
and cytostatic compound named 3-O-methylfunicone (OMF) [1,11]. OMF is part of a homogeneous
family comprising about 20 structurally related secondary metabolites which have been mainly
characterized from cultures of Talaromyces strains [12]. It has notable antitumor properties based
on several biomolecular mechanisms of action resulting from a series of preclinical assays [13–17].
Although it represents the main extrolite produced by our strains, other funicone variants have been
occasionally extracted [18,19], indicating that some factors act during the culturing cycle which may
lead to the accumulation of intermediate or side products. Within our recent activity aiming at the
standardization of OMF production, additional compounds were detected from cultures of strain LT6.
Among them, a new product with an unusual structure for a natural compound, namely talarodiolide,
was purified from its culture filtrates. Furthermore, the present paper reports findings from the
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first GC/MS-based investigation on secondary metabolites in culture filtrate and mycelial extracts of
T. pinophilus.

2. Results

2.1. Isolation and Identification of Metabolites

The crude CHCl3 extract from the culture filtrates of T. pinophilus strain LT6 was purified
by combined column (CC) and thin layer chromatography (TLC), leading to isolation of one
new (1, Figure 1) and four known compounds (2–5, Figure 1). Structures of known compounds
were confirmed by comparison of data obtained from OR, 1H and 13C-NMR , and ESI-TOF MS
with those reported in the literature for OMF [11], cyclo-(S-Pro-R-Leu), cyclo-(S-Pro-S-Ile) [20], and
cyclo-(S-Pro-S-Phe) [21] (2–5).
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Figure 1. Structures of talarodiolide, 3-O-methylfunicone, cyclo-(S-Pro-R-Leu), 

cyclo-(S-Pro-S-Ile), cyclo-(S-Pro-S-Phe), vermistatin, penisimplicissin, penicillide, and 

1-glycerol-linoleate (1–9), compounds produced by Talaromyces pinophilus LT6, isolated by 

preparative chromatographic methods and identified by spectroscopic and MS techniques. 

Compound 1, isolated as amorphous solid, has a molecular weight of 224 m/z accounting for a 

molecular formula of C12H16O4 and the index of hydrogen deficiency is five as deduced from 

ESI-TOF MS. The 1H-NMR spectrum (Table 1 and Figure S1) revealed one broad singlet methyl, one 

broad triplet and one triplet in aliphatic region, and a broad singlet of olefinic signals. In the 
13C-NMR spectrum (Table 1 and Figure S5), only six carbon signals were present indicating a highly 

symmetric molecule. The 1H and 13C resonances of 1 were assigned by combination of COSY and 

HSQC experiments. The COSY experiment showed homocorrelations among the olefinic proton at δ 

5.84 with the methyl at δ 2.03 and methylene at δ 2.40, the latter of which was also correlated with 

methylene at δ 4.40. The HSQC (Figure S3) spectrum showed correlations of methyl at δ 2.03 with 
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one methine at δ 5.84 with carbon 116.8. The carbons at δ 164.6 and 157.7 were assigned to a carboxyl 

Figure 1. Structures of talarodiolide, 3-O-methylfunicone, cyclo-(S-Pro-R-Leu), cyclo-(S-Pro-S-Ile),
cyclo-(S-Pro-S-Phe), vermistatin, penisimplicissin, penicillide, and 1-glycerol-linoleate (1–9),
compounds produced by Talaromyces pinophilus LT6, isolated by preparative chromatographic methods
and identified by spectroscopic and MS techniques.

Compound 1, isolated as amorphous solid, has a molecular weight of 224 m/z accounting for a
molecular formula of C12H16O4 and the index of hydrogen deficiency is five as deduced from ESI-TOF
MS. The 1H-NMR spectrum (Table 1 and Figure S1) revealed one broad singlet methyl, one broad triplet
and one triplet in aliphatic region, and a broad singlet of olefinic signals. In the 13C-NMR spectrum
(Table 1 and Figure S5), only six carbon signals were present indicating a highly symmetric molecule.
The 1H and 13C resonances of 1 were assigned by combination of COSY and HSQC experiments.
The COSY experiment showed homocorrelations among the olefinic proton at δ 5.84 with the methyl
at δ 2.03 and methylene at δ 2.40, the latter of which was also correlated with methylene at δ 4.40.
The HSQC (Figure S3) spectrum showed correlations of methyl at δ 2.03 with carbon at δ 22.4, two
methylenes at δ 2.40 and 4.40 with carbons at δ 29.2 and 65.8, respectively, and one methine at δ 5.84
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with carbon 116.8. The carbons at δ 164.6 and 157.7 were assigned to a carboxyl group and substituted
sp2 carbon, respectively. According to the structure in the HMBC (Figure S4) spectrum, the H2-6/H2-12
protons were correlated to the C-8/C-2 at 164.4, C-4/C-10 at 157.7 and C-5/C-11 at 29.2. Furthermore,
the H3-13/H3-14 protons were correlated to C-3/C-9, C-4/C-10 and C-5/C-11 carbons. The analysis of
NOESY (Figure S6) spectrum evidenced NOE of the methyl at δ 2.03 and olefinic H-3 proton indicating
a Z configuration at double bond.

Table 1. NMR data and HMBC correlations for talarodiolide (1) recorded in CDCl3.

Position δC δH (J in Hz) HMBC

2, 8 164.6 C -
3, 9 116.8 CH 5.84, brs
4,10 157.7 C -
5, 11 29.2 CH2 2.40, brt, 6.3
6, 12 65.8 CH2 4.40, t, 6.3 C-8/C-2,C-4/C-10, C-5/C-11

13, 14 22.4 CH3 2.03, brs C-3/C-9, C-4/C-10, C-5/C-11

These results and the molecular formula of C12H16O4 suggest that 1 is a symmetrical
macrodiolides, (Z)-4,10-dimethyl-1,7-dioxa-cyclododeca-3,9-diene-2,8-dione. This structure was
confirmed by data from ESI-TOF MS recorded in positive mode. The spectrum showed the sodiated
dimeric, dimeric, sodiated and pseudomolecular ions [2M + Na]+, [2M + H]+, [M + Na]+, and [M + H]+

at m/z 471, 449, 247, and 225, respectively.
Symmetric macrodiolides have been reported from many natural sources, and displayed some

interesting effects, such as antibacterial, antifungal and cytotoxic activities ([22] and literature therein).
However, in the light of the current knowledge, no 12-membered macrodiolide has been isolated from
natural sources so far.

In addition, the production of secondary metabolites by T. pinophilus LT6 was investigated
after extraction of mycelium. Extraction and purification procedures (CC and TLC) afforded the
isolation of OMF (2), and other known compounds identified as vermistatin (6) [23], penisimplicissin
(7) [24], penicillide (8) [25], and 1-glycerol-linoleate (9) (Figure 1). In the case of 9, preliminary NMR
investigation showed typical signals of monoglycerides of polyunsaturated fatty acids [26]. GC/MS
measurements confirmed NMR data and unequivocally revealed the presence of this monoglyceride
by comparing its mass spectrum with the reference mass spectra gathered in NIST 14 Mass Spectral
library (2014) [27].

2.2. GC/MS Analysis

In this study, an EI mass spectrum at 70 eV of all isolated metabolites was acquired and compiled
in a custom MS target library to be employed to detect metabolites separated in the crude extracts.
GC/MS measurements served several purposes within our strategy. First, when the mass spectrum
of the metabolite could be retrieved from a MS database, the acquired mass spectrum provided a
definitive proof of its identity, as in the case of cyclo-(S-Pro-R-Leu).

When no mass spectrum satisfactorily matches the acquired mass spectrum could be inferred
from a database, the unknown metabolite had to be otherwise identified (e.g., via ESI-TOF MS and
1H/13C-NMR mono- and bi-dimensional), but interpretation of the acquired mass spectrum served as
a guide in the identification process by setting restrictions on possible structures.

In all cases, the acquired mass spectrum was incorporated into the custom MS library to be used
for interpreting GC/MS measurements to be performed directly on samples of mycelium and culture
filtrates extracts obtained. Table 2 shows data collected via GC/MS of the identified metabolites.
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Table 2. GC/MS analysis of the crude extract of culture filtrate (A) and mycelium (B) of T. pinophilus LT6.

Metabolite Code Diagnostic Ions m/z (Abundance) RI A% of Total
Ion Current

B% of Total
Ion Current

Talarodiolide 1
224 [M]•+ (5), 209 [M − Me]+ (4), 194 [M −

2Me]+ (35), 149 [M − 2Me − CO2 − O]+

(60), 70 [M − C8H9O3]+ (100)
2064 3.55

3-O-Methylfunicone 2
388 [M]•+ (40), 373 [M − Me]+ (15), 357 [M
− 2Me]+, 223 [M − C9O3H9]+ (65), 192 [M

− 2Me − C9O3H9]+ (100)
3006 15.26 38.12

Cyclo-(Pro-Leu) 3
195 [M − Me]+ (5), 154 [M − C4H9]+ (100),
125 [M − C6H13]+ (15), 111 [M − C7H15]+

(3), 70 [M − C7NO2H11]+ (75)
2068 11.06

Cyclo-(Pro-Ile) 4
154 [M − C4H9]+ (100), 125 [M − C6H13]+

(120), 111 [M − C7H15]+ (5), 70 [M −
C7NO2H11]+ (65)

2039 6.90

Cyclo-(Pro-Phe) 5
244 [M]•+ (34), 215 [M − C2H4]+ (3), 153

[M − C6H5 − CH2] (28), 125 [M − C3H6 −
C6H5] (100)

2443 2.93

Vermistatin 6
328 [M]•+ (100), 313 [M − Me]+ (10), 285

[M − Me − C2H4]+ (48), 165 [M − C2H4 −
C8O2H8]+ (43)

3105 0.424 1.124

Penisimplicissin 7
302 [M]•+ (100), 287 [M − Me]+, 273 [M −
2Me]+ (17), 175 [M − Me − C6H7O2] (14),

165 [M − C8O2H8]+ (47)
2835 1.328 0.39

Penicillide 8
372 [M − Me]+ (16), 269 [M − 2Me −

C5OH10] (100), 253 [M − Me − OCH3 −
C5OH10] (20)

3103 3.64 6.71

1-glycerol-linoleate 9 354 [M]•+ (4), 336 [M − OH]+, 262 [M −
C3O3H7]+ (63), 234 [M − C4O4H7]+ (12) 2076 4.19

Methyl ester of
palmitic acid 10 [27] 2020 5.73

Methyl ester of
linoleic acid 11 [27] 2146 17.211

Methyl ester of
stearic acid 12 [27] 2158 1.76

Linoleic acid 13 [27] 2169 6.64

Figure 2a,b shows the total ion chromatograms (TICs) of the extracts of culture filtrate and
mycelium, respectively.
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Figure 2. Annotated total ion chromatograms (TICs) acquired by: culture filtrate extract (a); and
mycelial extract (b) of T. pinophylus.

Apart from the isolated metabolites, Figure 2b shows the presence of some fatty acids and their
methyl esters in the mycelial extract. In fact, due to the high sensitivity of this technique, GC/MS was
able to detect them, combining the retention indices and the reference mass spectra gathered in NIST
14 Mass Spectral library (2014) [27].

Within the framework of the overall strategy, a very important outcome of the procedures arises
from the fact that crude extracts were analyzed by GC/MS to check the presence of the isolated
metabolites. Notwithstanding some metabolites were not isolated from the culture filtrate, AMDIS
attributes peaks in the TIC, as in the case of penicillide, vermistatin and penisimplicissin. Hence,
GC/MS analysis is very useful in assessing the possible diversity in the pattern of metabolites
extracted from the different sources. With exception of talarodiolide, 1-glycerol-linoleate and the
diketopiperazines, all metabolites were detected in both crude extracts, while fatty acids and their
esters (10–13) are present in the mycelial extract only. This is in line with the reported occurrence of
the latter compounds in the cell membrane of fungi [28].

3. Materials and Methods

3.1. General Experimental Procedures

Optical rotations were measured in CHCl3, CH3OH, and C2H5OH on a Jasco P-1010 digital
polarimeter; 1H and 13C-NMR spectra were recorded at 400/100 MHz in CDCl3 or in CD3OD on
Bruker (Bremen, Germany) spectrometers. The same solvent was used as internal standard. 2D NMR
experiments were performed using Bruker microprograms. ESI-TOF mass spectra have been measured
on an Agilent Technologies QTOF 6230 in the positive ion mode (Milan, Italy).

Analytical and preparative TLC were performed on silica gel plates (Kieselgel 60, F254, 0.25 and
0.5 mm, respectively) (Merck, Darmstadt, Germany). The spots were visualized by exposure to UV
radiation (253), or by spraying first with 10% H2SO4 in MeOH followed by heating at 110 ◦C for 10 min.
Column chromatography was performed on silica gel column (Merck, Kieselgel 60, 0.063–0.200 mm).

GC/MS measurements were performed with an Agilent 6850 GC equipped with an HP-5MS
capillary column (5% phenyl methyl polysiloxane stationary phase) and the Agilent 5973 Inert MS
detector (used in the scan mode). Helium was employed as the carrier gas, at a flow rate of 1 mL/min.
The injector temperature was 250 ◦C and during the run a temperature ramp raised the column
temperature from 70 ◦C to 280 ◦C: 70 ◦C for 1 min; 10 ◦C min−1 until reaching 170 ◦C; and 30 ◦C min−1
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until reaching 280 ◦C. Then it was held at 280 ◦C for 5 min. The electron impact (EI) ion source was
operated at 70 eV and at 200 ◦C. The quadrupole mass filter was kept at 250 ◦C and was programmed
to scan the range 45–550 m/z at a frequency of 3.9 Hz.

3.2. Culture Filtrate Preparation

Liquid cultures were prepared by inoculating mycelial plugs from actively growing cultures of
strain LT6 in 1 L-Erlenmayer flasks containing 500 mL potato–dextrose broth (PDB, Himedia) which
were kept in darkness on stationary phase at 25 ◦C. After 21 days, cultures were filtered at 0.45 µm, and
the culture filtrates were concentrated in a lyophilizer until reduction to 1/10 of the starting volume.
The mycelial cake floating on the broth was collected separately and stored at −20 ◦C.

3.3. Extraction and Isolation of Metabolites from Liquid Cultures

The freeze-dried culture filtrates (6 L) were dissolved in 600 mL of pure water (pH 4) and extracted
with same volume of CHCl3 for three times. The organic extracts were combined, dried on Na2SO4,
and evaporated under reduced pressure to give a yellowish oil residue (75.3 mg).

The residue was submitted to fractionation on silica gel column (1.5 × 30 cm i. d.), eluted
with CHCl3/iso-PrOH (98:2, v/v). Seven homogeneous fraction groups were collected (A 0.7 mg,
B 2.7 mg, C 9.5 mg, D 0.8 mg, E 3.4 mg, F 9.3 mg, G 8.2 mg).The residue of fraction C was purified by
TLC on silica gel eluted with n-hexane-acetone (6:4, v/v) yielding an amorphous solid, talarodiolide
(1, 1.5 mg, Rf 0.41 on TLC on silica gel eluent n-hexane-acetone (6:4, v/v)), and a crystalline solid,
OMF (2, 3.5 mg, Rf 0.47 on TLC on silica gel eluent n-hexane-acetone (6:4, v/v)).The residue of the
fraction F was further purified by TLC on silica gel eluted with CHCl3/iso-PrOH (95:5, v/v) giving as
amorphous solids: cyclo-(S-Pro-R-Leu) (3, 1.0 mg, Rf 0.49 on TLC on silica gel eluent CHCl3-i-PrOH
(95:5, v/v)), cyclo-(S-Pro-S-Ile) (4, 2.3 mg, Rf 0.35 on TLC on silica gel eluent CHCl3-i-PrOH (95:5, v/v)),
and cyclo-(S-Pro-S-Phe) (5, 1.5 mg, Rf 0.32 on TLC on silica gel eluent CHCl3-i-PrOH (95:5, v/v)).

3.4. Extraction and Isolation of Metabolites from Mycelium

Fresh mycelium was homogenized in a mixer with 440 mL of MeOH-H2O (NaCl 1%) mixture
(55:45, v/v). The suspension was stirred in the dark at room temperature for 4 h. After this period,
the suspension was centrifuged (40 min at 7000 rpm, 10 ◦C) and separated from the supernatant.
The residue was overnight extracted with 250 mL of the mixture reported above. The suspension
was centrifuged, and both supernatants were combined for the subsequent extraction with CHCl3.
The organic extracts were combined, dried on anhydrous Na2SO4, and evaporated under reduced
pressure yielding crude extract as a red oil (230.2 mg). The extract was fractionated by CC on silica gel
(1.5 × 40 cm i. d.), eluting with CHCl3/iso-PrOH (97:3, v/v). The last fraction was eluted with MeOH.
Seven homogeneous fraction groups were collected (A 16.0 mg, B 16.4 mg, C 12.2 mg, D 14.2 mg, E
9.8 mg, F 29.1 mg, G 66.2 mg). The residue of fraction B was identified as OMF (2). Fraction C was
purified by TLC on silica gel eluted with n-hexane/acetone (6:4, v/v) to afford a further amount of
OMF (5.6 mg), a crystalline compound identified as vermistatin (6, 1.5 mg, Rf 0.37 on TLC on silica gel
eluent n-hexane-acetone (6:4, v/v)), and an amorphous solid identified as penisimplicissin (7, 0.5, mg,
Rf 0.29 on TLC on silica gel eluting with n-hexane-acetone (6:4, v/v)). Fraction D was purified using
the same condition described for C giving penicillide (8, 6.9, mg, Rf 0.29 on TLC on silica gel eluent
n-hexane-acetone (6:4, v/v)) as amorphous solid. Finally, the residue of fraction F was further purified
on TLC on silica gel eluting with CHCl3/iso-PrOH (9:1, v/v) giving 1-glycerol-linoleate (9, 1.5 mg, Rf
0.40 on TLC on silica gel eluent CHCl3/iso-PrOH (9:1, v/v)) as soft solid.

Talarodiolide (1): amorphous solid; UV (CH3CN) λmax (log ε) 260 (3.15); HRESIMS (+): 471.1990 ([calcd.
471.1995 for C24H32O8Na 2M + Na]+), 449.2182 ([calcd. 449.2175 for C24H33O8 2M + H]+), 247.0950
([calcd. 247.0941 for C12H16O4Na M + Na]+), 225.1118 ([calcd. 225.1127 for C12H17O4 M + H]+);
1H-NMR (CDCl3, 400 MHz) and 13C-NMR (CDCl3, 100 MHz) data: see Table 1.
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Cyclo-(S-Pro-R-Leu) (3): amorphous solid; [α]D −88◦ (c = 0.12, C2H5OH); HRESIMS (+): 443.2636
([calcd. 443.2629 for C22H36N4O4Na 2M + Na]+), 233.1269 ([calcd. 233.1260 for C11H18N2O2Na M +
Na]+), 211.1448 ([calcd. 211.1441 for C11H19N2O2 M + H]+). Optical rotation and NMR data are in
agreement with those previously reported [20].

Cyclo-(S-Pro-S-Ile) (4): amorphous solid; [α]D −193◦ (c = 0.11, C2H5OH); HRESIMS (+): 233.1272 ([calcd.
233.1260 for C11H18N2O2Na M + Na]+), 211.1451 ([calcd. 211.1441 for C11H19N2O2 M + H]+); Optical
rotation and NMR data are in agreement with those previously reported [20].

Cyclo-(S-Pro-S-Phe) (5): amorphous solid; [α]D −65◦ (c = 0.10, CH3OH); HRESIMS (+): 267.1115 ([calcd.
267.1109 for C14H16N2O2Na M + Na]+), 245.1296 ([calcd. 245.1290 for C14H17N2O2 M + H]+); Optical
rotation and NMR data are in agreement with those previously reported [21].

Vermistatin (6): crystalline compound; [α]D −6◦ (c = 0.14, CHCl3); HRESIMS (+): 351.0841 ([calcd.
351.0845 for C18H16O6Na M + Na]+), 329.1025 ([calcd. 329.1029 for C18H17O6 M + H]+). Optical
rotation and NMR data are in agreement with those previously reported [23].

Penisimplicissin (7): amorphous solid; [α]D −112◦ (c = 0.15, CHCl3); HRESIMS (+): 627.1475 ([calcd.
627.1473 for C32H28O12Na 2M + Na]+), 325.0686 ([calcd. 325.0683 for C16H14O6Na M + Na]+), 303.0869
([calcd. 303.0863 for C16H15O6 M + H]+). Optical rotation and NMR data are in agreement with those
previously reported [24].

Penicillide (8): amorphous solid; [α]D +6◦ (c = 0.16, CHCl3); HRESIMS (+): 409.2565 ([calcd. 409.1627
for C22H26O6Na M + Na]+), 371.1493 ([calcd. 371.1489 for C21H23O6 M − CH3]+), 359 [M + H − CO]+.
Optical rotation and NMR data are in agreement with those previously reported ([25] and literature
therein).

3.5. GC/MS Analysis

GC/MS data were acquired on crude extracts or isolated metabolites. The metabolite identities
were confirmed acquiring mass spectra of pure compounds and high-quality mass spectra were
obtained employing the National Institute of Standards and Technology (NIST) deconvolution software
Automatic Mass spectral Deconvolution & Identification System (AMDIS) [29,30]. Mass spectra were
stored in the custom MS target library of metabolites [31]. Fatty acids and esters of fatty acids were
identified by comparing their mass spectra with spectra of pure compounds gathered in the database
NIST 14 Mass Spectral library [27] by employing the NIST Mass Spectral Search Program v.2.0g [32].

4. Conclusions

The present paper describes the isolation and structural characterization of the first 12-membered
macrodiolide, named talarodiolide, from the culture filtrate of strain LT6 of T. pinophilus. We expect
we will be able to isolate sufficient amount of talarodiolide for biological studies. Furthermore, the
identification of metabolites present in culture filtrate and mycelial extracts of this strain was carried
out with the support of a custom GC/MS library mainly built after isolation and identification of
metabolites via NMR spectroscopy. This strategy represents a suitable approach for the screening, with
high confidence, of several metabolites present in crude extracts and future works will focus on testing
the effects of experimental conditions (i.e., media composition, co-cultivation with other microbes, etc.)
on the production of secondary metabolites by strains of T. pinophilus.

Supplementary Materials: The following are available online. NMR spectra of talarodiolide; EI mass spectra at
70 eV of metabolites from T. pinophilus.
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