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Abstract: Owing to their specific pyrylium nucleus (C-ring), anthocyanins express a much richer
chemical reactivity than the other flavonoid classes. For instance, anthocyanins are weak diacids,
hard and soft electrophiles, nucleophiles, prone to developing π-stacking interactions, and bind
hard metal ions. They also display the usual chemical properties of polyphenols, such as electron
donation and affinity for proteins. In this review, these properties are revisited through a variety
of examples and discussed in relation to their consequences in food and in nutrition with an emphasis
on the transformations occurring upon storage or thermal treatment and on the catabolism
of anthocyanins in humans, which is of critical importance for interpreting their effects on health.
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1. Introduction

Anthocyanins are usually represented by their flavylium cation, which is actually the sole chemical
species in fairly acidic aqueous solution (pH < 2). Under the pH conditions prevailing in plants,
food and in the digestive tract (from pH = 2 to pH = 8), anthocyanins change to a mixture of colored
and colorless forms in equilibrium through acid–base, water addition–elimination, and isomerization
reactions [1,2]. Each chemical species displays specific characteristics (charge, electronic distribution,
planarity, and shape) modulating its reactivity and interactions with plant or food components, such as
the other phenolic compounds. This sophisticated chemistry must be understood to interpret the
variety of colors expressed by anthocyanins and the color changes observed in time and to minimize
the irreversible color loss signaling the chemical degradation of chromophores. The chemical reactivity
of anthocyanins is also important to interpret their fate after ingestion and their effects on health,
as anthocyanins may be consumed as a complex mixture of native forms, derivatives, and degradation
products, which themselves can evolve in the digestive tract [3].

2. The Basis of Anthocyanin Chemistry

2.1. Anthocyanins Are Weak Diacids

Due to conjugation with the electron-withdrawing pyrylium ring, the phenolic OH groups of the
flavylium ion at C4′, C5, and C7 are fairly acidic [1,2]. In terms of structure–acidity relationships,
it is clear that C7-OH is the most acidic group with a pKa1 of ca. 4, i.e., 6 pKa units below the phenol
itself. The corresponding neutral quinonoid base (Figure 1) can thus be considered to be the prevailing
tautomer. At higher pH levels, a second proton loss from C4′-OH (pKa2 ≈ 7 for common anthocyanins)
yields the anionic base with maximized electron delocalization over the three rings. Along this
deprotonation sequence, the wavelength of maximal visible absorption typically shifts by 20–30 nm

Molecules 2018, 23, 1970; doi:10.3390/molecules23081970 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-9501-0644
http://www.mdpi.com/1420-3049/23/8/1970?type=check_update&version=1
http://dx.doi.org/10.3390/molecules23081970
http://www.mdpi.com/journal/molecules


Molecules 2018, 23, 1970 2 of 23

(AH+ → A), then by 50–60 nm (A→ A−) (Figure 2), and the corresponding color turns from red to
purple-blue [4].
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Figure 2. (I) Absorption spectra of Cat-Mv3Glc: pH jump from pH = 1.0 (100% flavylium) to pH 3.00,
3.59, 4.50, 5.70, 5.96, 6.25, and 7.15, respectively. Spectra recorded 10 ms after mixing (negligible water
addition). (II) Spectra of the components obtained by mathematical decomposition. From [4] with
permission of the American Chemical Society.
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2.2. Anthocyanins Are Hard and Soft Electrophiles

By analogy with enones, the C2 and C4 atoms of the pyrylium ring can be regarded as hard
and soft electrophilic centers, respectively. Hence, they respectively react with hard (O-centered)
and soft (S- and C-centered) nucleophiles, the first mechanism being driven by local charges and the
second one by interactions between the frontier molecular orbitals (HOMO of nucleophiles and LUMO
of electrophiles).

2.2.1. Nucleophilic Addition at C2

Water addition is the ubiquitous process taking place within aqueous anthocyanin solutions [1,2].
It leads to the colorless hemiketal (Figure 3) and can be characterized by the thermodynamic
hydration constant Kh, or as an acceptable approximation (chalcones making only a minor contribution,
typically less than 20%, of the total pool of colorless forms), by the apparent constant K′h connecting
the flavylium ion and the colorless forms taken collectively. With common anthocyanins, pK′h lies
in the range of 2–3, which means that hydration is thermodynamically more favorable than proton
transfer (pK′h < pKa1). Fortunately, it is also much slower, and its pH-dependent kinetics can be
quantified by the apparent rate constant of hydration (kobs) (Equation (1), h = [H+], χAH = mole fraction
of AH+ within the mixture of colored forms [2,5]:

kobs = khχAH + k′−hh =
kh

1 + Ka1/h + Ka1Ka2/h2 + k′−hh. (1)

kh is the absolute rate constant of water addition, k′−h is the apparent rate constant of water elimination
(from the mixture of hemiketal and cis-chalcone in fast equilibrium), and K′h ≈ kh/k′−h (trans-chalcone
neglected). Equation (1) can be easily understood by keeping in mind that the flavylium ion is the sole
colored form that is electrophilic enough to directly react with water.
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Figure 3. Flavylium ions are hard electrophiles reacting at C2 with O-centered nucleophiles, such as
water (water addition followed by formation of minor concentrations of chalcones).

At a given pH, the initial visible absorbance (A0) (no colorless forms) and the final visible
absorbance (Af) (hydration equilibrium established) can be easily related through Equation (2):

A f

A0
=

1 + Ka1/h + Ka1Ka2/h2

1 + (Ka1 + K′h)/h + Ka1Ka2/h2 . (2)
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Thus, the magnitude of color loss can be expressed as (Equation (3)):

A0 − A f

A0
=

K′h/h
1 + (Ka1 + K′h)/h + Ka1Ka2/h2 (3)

From typical values for the rate and thermodynamic constants of common anthocyanins,
simulations of the pH dependence of the apparent rate constant and percentage of color loss can
be constructed (Figure 4). The plots clearly show that the reversible color loss due to water addition to
the flavylium ion becomes slower at higher pH (less flavylium in solution), whereas its magnitude
becomes larger because of the higher stability of the colorless forms. The typical time-dependence of
the visible spectrum during water addition is shown in Figure 5 [4].
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Figure 4. Simulations of the pH dependence of the apparent rate constant (A) and relative magnitude
(B) of color loss. Selected values for parameters: pKa1 = 4, pKa1 = 7, pK′h = 2.5, kh = 0.1 s−1,
k′−h ≈ kh/K′h.

Molecules 2018, 23, x 4 of 24 

 

Thus, the magnitude of color loss can be expressed as (Equation (3)): 

2
2110

0

//)'(1

/'

hKKhKK

hK

A

AA

aaha

hf





. (3) 

From typical values for the rate and thermodynamic constants of common anthocyanins, 

simulations of the pH dependence of the apparent rate constant and percentage of color loss can be 

constructed (Figure 4). The plots clearly show that the reversible color loss due to water addition to 

the flavylium ion becomes slower at higher pH (less flavylium in solution), whereas its magnitude 

becomes larger because of the higher stability of the colorless forms. The typical time-dependence of 

the visible spectrum during water addition is shown in Figure 5 [4]. 

Near neutrality water addition is so slow (fraction of flavylium ion < 0.1%) that the colored forms 

(mixtures of neutral and anionic bases) can, in principle, persist for hours. However, such a reasoning 

ignores the irreversible mechanisms of color loss taking place near neutrality as the anionic base is 

obviously much more sensitive to autoxidation (non-enzymatic oxidation by O2 triggered by 

transition metal traces) than the flavylium ion. These mechanisms will be addressed in Section 2.3.1. 

 

Figure 4. Simulations of the pH dependence of the apparent rate constant (A) and relative magnitude 

(B) of color loss. Selected values for parameters: pKa1 = 4, pKa1 = 7, pK′h = 2.5, kh = 0.1 s−1, k′−h ≈ kh/K′h. 

 

Figure 5. (I) Spectral changes of Cat-Mv3Glc between 10 ms and 9 s following a pH jump from pH = 

1 to pH = 2.45; half-life of flavylium = 2.4 s. (II) pH jump from pH = 1 to pH = 4.5; half-life of quinonoid 

Wavelength (nm) Wavelength (nm)

Figure 5. (I) Spectral changes of Cat-Mv3Glc between 10 ms and 9 s following a pH jump from pH = 1
to pH = 2.45; half-life of flavylium = 2.4 s. (II) pH jump from pH = 1 to pH = 4.5; half-life of quinonoid
bases = 53.3 s. At pH = 6, the half-life of quinonoid bases ≈ 30 min. From reference [4] with permission
of the American Chemical Society.
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Near neutrality water addition is so slow (fraction of flavylium ion < 0.1%) that the colored forms
(mixtures of neutral and anionic bases) can, in principle, persist for hours. However, such a reasoning
ignores the irreversible mechanisms of color loss taking place near neutrality as the anionic base is
obviously much more sensitive to autoxidation (non-enzymatic oxidation by O2 triggered by transition
metal traces) than the flavylium ion. These mechanisms will be addressed in Section 2.4.1.

2.2.2. Nucleophilic Addition at C4

Bisulfite is an antimicrobial and anti-browning agent that is frequently used in the food industry.
As a S-centered nucleophile, it reversibly reacts with the flavylium ion at C4, thus yielding colorless
adducts (Figure 6) [6]. No such adducts have been identified so far by simply reacting anthocyanins
with natural thiols such as cysteine and glutathione (GSH). Unlike bisulfite, which is actually the
conjugated base of SO2 (pKa ≈ 1.8) and can coexist with the flavylium ion under acidic conditions,
thiolate anions (pKa = 8–9) are usually formed at much higher pH levels where the flavylium ion is
only present as traces.
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such as bisulfite and 4-vinylphenols.

A variety of C-centered nucleophiles are also known to add to the flavylium ion, and this
chemistry underlies the color changes observed in red wine upon aging [7]. In this context, the most
important C-centered nucleophiles are electron-rich C–C double bonds, such as 4-vinylphenols
(4-hydroxystyrenes), formed upon microbial decarboxylation of 4-hydroxycinnamic acids (Figure 6)
and the enol forms of various aldehydes and ketones such as pyruvic acid and ethanal
(acetaldehyde) [8,9]. In the process, new pigments, called pyranoanthocyanins, are formed, which are
resistant to nucleophilic addition at C2 and C4 [10–12]. Their color (shifted to orange-red, compared to
the corresponding flavylium ion) is thus more stable. Through their nucleophilic C6- and C8-atoms,
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flavanols and proanthocyanidins can also add to the electrophilic C4 center of anthocyanins [13].
However, the flavene intermediate thus formed is not accumulated and evolves through two possible
routes: (a) under strongly acidic conditions (pH = 2), protonation at C3 allows a second nucleophilic
attack by a nearby phenolic OH group of the tannin to yield a colorless product (see Section 2.3
for a similar mechanism); or (b) under moderately acidic conditions (pH = 3–6), dehydration with
concomitant formation of an additional pyrane ring is favored and a new pigment bearing a xanthylium
chromophore is formed.

With its enediol structure, ascorbate (vitamin C) can also react with flavylium ions at C4 but the
corresponding adducts have not been reported so far.

2.3. Anthocyanin Hemiketals Are Nucleophiles

Basic organic chemistry teaches that electron-donating substituents of benzene rings accelerate
aromatic electrophilic substitutions (SEAr) and orient the entering electrophiles to the ortho and
para positions. In that perspective, the phloroglucinol (1,3,5-trihydroxybenzene) ring (A-ring) of
anthocyanins must be especially favorable to SEAr as the three O-atoms combine their electronic effects
to increase the reactivity of C6 and C8. However, the pyrylium ring (C-ring) of the flavylium ion (and,
to a lesser degree, the enone moiety of chalcones) is strongly electron-withdrawing, so that only the
hemiketal is expected to react by SEAr.

Here, again, wine chemistry provides interesting examples of SEAr between anthocyanins and
various carbocations derived from other wine components (Figure 7) [7]. For instance, wine pigments
in which anthocyanins and flavanols are linked though an ethylidene bridge between their C6- and/or
C8-atoms are formed by double SEAr between A-rings and ethanol [14,15]. The likely intermediates in
the reaction are the 6- or 8-vinyl-flavanol and the 6- or 8-vinyl-anthocyanin hemiketals, the protonation
of which delivers a benzylic cation that is directly involved in the SEAr reaction. Of course, in addition
to the cross reaction products, anthocyanin–ethylidene–anthocyanin and flavanol–ethylidene–flavanol
adducts can also form oligomers and mixed oligomers [16]. Even, pyranoanthocyanins stemming from
the nucleophilic attack of vinyl-phenols at C4 of anthocyanins can be produced.

Flavanol carbocations formed by acidic cleavage of the inter-flavan linkage of proanthocyanidins
also react with anthocyanin hemiketals by SEAr [17]. Interestingly, both direct and ethylidene-bridged
flavanol–anthocyanin adducts are more purple than the native anthocyanin, but only the latter
expresses a color that is stable, i.e., a flavylium nucleus that is less sensitive to water addition [4,18].
A possible explanation is that ethylidene-bridged flavanol–anthocyanin adducts are prone to
non-covalent self-association by π-stacking, which provides a less aqueous environment for the
flavylium nuclei.

Water elimination from the anomeric C-atom of the ellagitannin vescalagin (abundant in oak
barrels) also delivers a carbocation for direct coupling with wine anthocyanins [19] and subsequent
modest protection against water addition [20]. Finally, the anthocyanin hemiketal can react with the
flavylium ion itself, and this pathway provides a route for anthocyanin oligomerization, a poorly
documented mechanism as the corresponding oligomers are probably difficult to evidence and quantify.
However, an oenin trimer has been found in Port wine, and its structure has been fully elucidated by
NMR [21]. The two linkages are of the C4–C8 type. As in the direct flavanol–anthocyanin coupling
(see Section 2.2.2), flavene intermediates evolve by C–O coupling and only the lower unit remains
colored. Similar oligomers also occur with 3-deoxyanthocyanidins, e.g., in red sorghum, but the
detailed structures remain unknown [22].

Anthocyanin hemiketals can also react by Michael addition with o-quinones formed by
two-electron oxidation of catechols, such as epicatechin [13] and caffeoyltartaric acid [23].
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2.4. Anthocyanins Are Electron-Donors

Many polyphenols, especially those containing electron-rich catechol (1,2-dihydroxybenzene)
or pyrogallol (1,2,3-trihydroxybenzene) nuclei are good electron- or H-donors. Electron transfer is
typically faster when the pH is raised, i.e., when the fraction of phenolate anion (a much better
electron-donor than the parent phenol) increases. Electron transfer from phenols is involved in their
oxidation mechanisms and also underlies the most common mechanism of antioxidant activity, i.e.,
the reduction of reactive oxygen species (ROS) involved in oxidative stress from plants to humans.
Anthocyanins are known to be thermally unstable, especially under neutral conditions, and various
degradation products have been identified. Their antioxidant activity has been also established in
various chemical models. However, detailed knowledge on the mechanisms involved and on the
relative contributions of the different colored and colorless forms is still missing.

2.4.1. Oxidation

Anthocyanins are among the least thermally stable flavonoids. Anthocyanidins, the corresponding
aglycones, are actually only stable under highly acidic conditions and are extensively degraded in
less than one hour under physiological conditions (pH = 7.4, 37 ◦C) [24,25]. From the structure
of the degradation products, it is clear that a combination of hydrolytic and autoxidative pathways
operate, leading to cleavage of the C2–C1′, C2–C3 and C3–C4 bonds (Figure 8) [13,26,27]. A mechanism
involving pre-formed hydrogen peroxide actually accounts for the formation of some cleavage products
(Figure 9). The critical step is the addition of H2O2 (a hard nucleophile) at C2 of the flavylium ion,
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followed by Baeyer–Villiger rearrangement, which opens routes for cleavage of the C2–C1′ and C2–C3
bonds [13,26]. However, the preliminary formation of H2O2 remains unclear and must involve the
direct autoxidation of anthocyanins. Thus, an alternative mechanism beginning by electron or H-atom
transfer (mediated by unidentified transition metal traces) from the anionic or neutral base to O2

would deliver a highly delocalized radical that is susceptible to O2 addition at different centers
(Figure 10). The cleavage of hydroperoxide intermediates thus formed could also yield the degradation
products detected.
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2.4.2. Antioxidant Activity

Anthocyanins under their native forms can transfer electrons to ROS and could, therefore,
provide protection to important oxidizable biomolecules, such as polyunsaturated fatty acids (PUFAs),
proteins, and DNA. The relevance of such phenomena is probably much higher in food preservation
than in nutrition and health, given the current knowledge on anthocyanin bioavailability (see Section 3).
In this section, we simply mention that anthocyanins can indeed effectively reduce one-electron
oxidants such as the stable radical DPPH (2,2-diphenyl-1-picrylhydrazyl). Structure–activity
relationships show that hydroxylation at C3′ and C5′ increases the H-donating capacity, thus suggesting
that the B-ring is primarily involved in electron donation [28]. Comparing oenin and the flavanol
catechin shows that the transfer of the first (most labile) H-atom to DPPH is roughly as fast for
both flavonoids but that oenin reduces at least twice as many radicals than catechin (Table 1) [29].
This advantage must be rooted in the extensive oxidative degradation undergone by oenin during the
DPPH-scavenging process with the transient formation of intermediates (possibly, syringic acid)
retaining a substantial electron-donating activity. It is also remarkable that the wine pigments
combining the oenin and catechin units retain a high but contrasting DPPH-scavenging activity [29]:
the direct coupling between the two flavonoid units results in a faster first H-atom transfer (higher
k1) but markedly lowers the total number of radicals reduced (ntot), whereas the coupling through
an ethylidene bridge apparently leaves each unit free to independently react with DPPH (k1 almost
unchanged, approximate additivity in the ntot value), as observed with the equimolar oenin–catechin
mixture (Table 1).
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Table 1. Antioxidant activity of malvidin 3-O-β-D-glucoside (oenin) and related pigments: reduction of
the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical (MeOH, 25 ◦C, 1 and 2) and inhibition of heme-
induced peroxidation of linoleic acid (0.1 mM linoleic acid in acetate buffer + 2 mM Tween-20, 0.1 µM
metmyoglobin, pH = 4, 37 ◦C, 3). From reference [29].

Antioxidant ntot
1 k1/s−1 2 IC50/µM 3

Oenin 11.26 (±0.08) 910 (±70) 0.68
Catechin 4.86 (±0.03) 1200 (±110) 0.27

Oenin + Catechin (1:1) 14.04 (±0.10) 1160 (±330) nd
(R)-Catechin-8-CHMe-8-Oenin 14.56 (±0.03) 1000 (±320) 0.15
(S)-Catechin-8-CHMe-8-Oenin 14.61 (±0.18) 600 (±120) 0.41

Catechin-4,8-Oenin 7.16 (±0.08) 5120 (±1050) 0.60
1 Antioxidant stoichiometry (number of DPPH radicals reduced per antioxidant molecule). 2 Rate constant for the
transfer of the first H-atom from antioxidant to DPPH. 3 Antioxidant concentration for a doubling of the period of
time required for the accumulation of a fixed concentration of polyunsaturated fatty acid (PUFA) hydroperoxides
(conjugated dienes).

Oenin, catechin, and wine pigments were also compared for their ability to inhibit the
peroxidation of linoleic acid induced by dietary heme iron in acidic micelle solutions, a chemical model
of postprandial oxidative stress in the stomach [29]. As hydrophilic antioxidants, polyphenols are
known to act at the initiation stage by reducing the hypervalent iron species (FeIV) involved in the
generation of propagating lipid peroxyl radicals (Figure 11) [30] which, on the other hand, are directly
reduced by the typical chain-breaking amphiphilic antioxidant α-tocopherol (vitamin E). The highly
hydrophilic oenin was found to be less potent than catechin in the inhibition, but coupling both
flavonoids via an ethylidene bridge improves their efficiency (Table 1).
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Acylation by electron-rich hydroxycinnamic acids, such as sinapic and ferulic acids, potentiates the
capacity of anthocyanins to inhibit the diazo-initiated autoxidation of styrene in acetonitrile.
In particular, a higher rate constant and stoichiometric factor of radical scavenging were obtained
for acylated (vs. non-acylated) anthocyanins [31]. Curiously, this trend could not be confirmed
for the peroxidation of linoleic acid in micelles, as if the intrinsic differences in electron-donating
activity were counterbalanced by differences in the partition of anthocyanins between micelles and the
aqueous phase.
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2.5. Anthocyanin Complexes

Phenolic nuclei have an intrinsic ability to develop molecular (non-covalent) interactions as they
combine flat polarizable apolar surfaces (the aromatic nuclei) for strong dispersion interactions and
polar OH groups that are susceptible to acting as H-bond donors and acceptors.

2.5.1. Self-Association and Co-Pigmentation

One of the most remarkable properties of the anthocyanin chromophores is their ability to develop
π-stacking interactions [32–34], mostly driven by dispersion interactions and the concomitant favorable
release of water molecules from the solvation shells of the interacting nuclei, known as the hydrophobic
effect. Owing to their planar structures and extended electron delocalization over the three rings,
the colored forms are much more prone to π-stacking interactions than the colorless forms, for which
such interactions, although not necessarily absent, are typically neglected. Examples of π-stacking
interactions with anthocyanins are self-association and binding between anthocyanins and other
phenols, a phenomenon called co-pigmentation. The affinity of co-pigments for a given anthocyanin
(as measured by the corresponding thermodynamic binding constant) decays along the series:
planar flavonoids (flavones, flavonols) > non-planar flavonoids (catechins), hydroxycinnamic acids
> hydroxybenzoic acids [32]. As for self-association, it is stronger for the neutral base than for the
flavylium ion and the anionic base, as the latter stacks are destabilized by charge repulsion.

The spectral consequences of co-pigmentation are summarized in Figure 12 with malvin (malvidin
3,5-di-O-β-glucoside) and a highly water-soluble rutin (quercetin 3-O-β-rutinoside) derivative [35].
In strongly acidic solutions (negligible water-to-flavylium addition), π-stacking interactions between
the two partners promote bathochromism as a consequence of co-pigment-to-pigment charge transfer.
Changes in color intensity simply reflect differences between the molar absorption coefficients of
free and bound pigments. Under the mildly acidic conditions typically encountered in natural
media, pigment–co-pigment interactions also promote hyperchromism, which can be understood as
a shift in the now established flavylium–hemiketal equilibrium toward the colored form, which is
selectively stabilized by its association with the co-pigment. This combination of bathochromic and
hyperchromic shifts makes co-pigmentation one of the most important mechanisms for color variation
and stabilization in plants. It can also be noted that heating usually attenuates the hyperchromic shift
(Figure 12) as a consequence of the exothermic character of co-pigmentation (∆H0 < 0).
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Figure 12. Co-pigmentation of malvin (malvidin 3,5-diglucoside, 50 µM) by rutin bis(hydrogensuccinate)
(mixture of 3 regioisomers, 200 equiv.). (A) pH = 3.5, malvin + co-pigment at T = 15.5 (1), 25.0 (2),
35.0 (3), 44.2 (4) ◦C, malvin alone at T = 25.3 ◦C (5). (B) pH = 0.9, T = 25.0 ◦C, malvin alone (1),
malvin + co-pigment (2). Adapted from reference [35].

The possibility of developing π-stacking interactions increases with the acylation of anthocyanins
on their glycosyl moieties by hydroxycinnamic acid (HCA) residues. Indeed, depending on the location
and number of HCA residues, different spatial arrangements can be observed (Figure 13) [34]:
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• Intramolecular co-pigmentation: π-stacking interactions promote a conformational folding of the
pigment bringing one or more HCA residue(s) into contact with the chromophore;

• Enhanced self-association: the HCA residues can stabilize the chiral stacking of chromophores
evidenced by circular dichroism.
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Figure 13. Acylated anthocyanins: discrimination of intramolecular co-pigmentation (type 1) and
self-association (types 2 and 3) by circular dichroism (pink or blue CD spectra depending on the
chirality of the stacks). From [34] with permission of the Royal Society of Chemistry.

In such assemblies, the flavylium nucleus has restricted access to the water solvent. Consequently,
the thermodynamics of water addition are less favorable (increased pK′h), and the percentage of colored
forms at equilibrium increases [5,36–38]. For instance, at pH = 3, ca. 90% of the triacylated Morning
glory pigment is still in colored form (mostly flavylium) vs. 15% for its non-acylated counterpart
(Figure 14). Its vulnerability to water addition prevents the non-acylated pigment from accumulating
the neutral quinonoid base at higher pH levels, and the corresponding solutions are almost colorless.
In contrast, 30% of the triacylated pigment is present as the colored neutral base at pH = 5. Moreover,
the π-stacking interactions developed by the triacylated flavylium ion induce a 20 nm bathochromic
shift of its λmax compared to its non-acylated counterpart.

Anthocyanins with an o-dihydroxy substitution on their B-ring (cyanidin, delphinidin,
and petunidin derivatives) also bind hard metal ions, such as Al3+ and Fe3+, in mildly acidic to neutral
solution. As the anthocyanin binds as the quinonoid base with additional proton loss from C3′-OH,
bathochromism is observed with additional ligand-to-metal charge transfer with Fe3+ (Figure 15).
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Figure 14. Triacylated (B) vs. non-acylated (A) Morning glory (Pharbitis nil) anthocyanins: equilibrium
distribution of anthocyanin species in aqueous solution. Red solid line: flavylium ion, blue solid
line: neutral base, dotted green line: total colorless forms. Parameters for plots are pK’h = 2.30,
pKa1 = 4.21 (A); pK’h = 4.01, pKa1 = 4.32 (B). From [36,37].
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Figure 15. (A) 3′,4′-Dihydroxy-7-O-β-D-glucopyranosyloxyflavylium (50 µM) in a pH 4 buffer (0.1 M
acetate), red spectrum: before hydration, blue spectrum: 10 min after addition of Al3+ (4 equiv.);
(B) equilibrium distribution of species in aqueous solution. Red solid line: flavylium ion, blue dotted
line: neutral base, dotted green line: total colorless forms, blue solid line: Al3+ complex. Parameters for
plots are pK’h = 3.42, pKa1 = 4.72, KM = 2 × 10−4. From [39].

At least in mildly acidic solution, metal binding is restricted to the colored forms and thus
efficiently competes with the hydration equilibrium, thereby preventing the formation of the colorless
forms. In the most sophisticated assemblies, metal binding and π-stacking interactions combine,
thus providing the most common mechanism towards the formation of stable blue colors [34,40,41].
In the so-called metalloanthocyanins, a fixed metal–pigment–co-pigment stoichiometry of 2:6:6 is
observed: three anthocyanins bind to each metal ion and two equivalent complexes assemble by
left-handed π-stacking interactions between the chromophores. Then, three pairs of flavone or
flavonol co-pigments in left-handed π-stacking intercalate between the pairs of stacked anthocyanins.
In this intercalation, right-handed pigment–copigment π-stacking occurs. Large-scale aggregation of
acylated anthocyanins can also result in the formation of highly colored assemblies within the vacuole
(the so-called anthocyanin vacuolar inclusions) [42], the organelle where anthocyanins are stored in
plant cells.
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2.5.2. Binding to Biopolymers

Despite the potential significance of such associations in food chemistry and nutrition, the ability
of anthocyanins to bind proteins and polysaccharides is still poorly documented at the molecular level.
This paragraph focuses on anthocyanins (glycosides), although anthocyanidins are also commonly
investigated. Indeed, aglycones are chemically unstable in mildly acidic and neutral conditions and
may be substantially degraded over the duration of analysis.

Saturation transfer difference (STD)-NMR was used to probe the binding of cyanidin and
delphinidin 3-glucosides to pectin from citrus fruits (MM = 111 kDa) [43]. Indeed, magnetization
transfer (requiring proton pairs distant by less than 0.5 nm) from irradiated pectin protons to
anthocyanin protons provided direct evidence that the two partners are in close contact. STD titrations
at pH = 4.0 and pH = 1.5 suggest that the flavylium ion has a higher affinity for pectin than the
hemiketal. Assuming the Scatchard model (n identical binding sites having the same binding constant,
Kb), pectin was found to bind 180–600 anthocyanin units depending on the selected anthocyanin and
pH. The corresponding Kb values are very weak (<103 M−1). Thus, the picture emerging from this
study is that anthocyanins (as individual species or non-covalent oligomers) provide a coating of the
pectin’s surface through the development of very weak interactions (van der Waals contacts, H-bonds).

The quenching of intrinsic protein fluorescence by increasing ligand concentrations is a classical
method to probe ligand–protein binding and to extract binding parameters. As anthocyanins typically
absorb light at the protein’s excitation and emission wavelengths, corrections for these inner-filter
effects should be applied [44], which are not systematic [45] and thus lead to discrepancies in Kb
values as well as in enthalpy and entropy changes. With human serum albumin (HSA), a globular
protein, 1:1 binding is observed with a Kb in the order of 105 M−1 [44,45], meaning a moderate affinity.
The influence of the pH (from pH = 4 to pH = 7.4) on the binding strength is very modest [44].
Competition with probes of a known binding site (ibuprofen, warfarin) enables location of the
anthocyanin binding site, a hydrophobic pocket lined by positively charged amino-acid residues
(Arg, Lys) for possible accommodation of the anionic base [45]. As for the weakly structured salivary
proteins, interaction with malvidin-3-glucoside (probed by STD-NMR) was found to be much weaker
(Kb ≈ 500 M−1) and largely pH-independent (same affinity at pH = 1.0 and pH = 3.4), which suggests
that the hemiketal and flavylium ions bind with close affinities [46]. Electrospray ionization MS
revealed the formation of soluble aggregates involving 2–6 anthocyanin units and 1–4 peptides
(proline-rich proteins or histatin). STD-NMR was also used to investigate the binding of keracyanin
(cyanidin 3-rutinoside) to wheat flour gliadins at pH = 2.5 [47]. Protons C2′-H, C5′-H, C6-H and
C8-H appear to be primarily involved in the binding. At this low pH, the corresponding aglycone
(cyanidin) is stable and can be also investigated. Its affinity for gliadins appears higher based on the
strong shielding of its proton signals when gliadins are added (confirmed by the large retention of
cyanidin in the centrifugation pellet: up to 80% vs. only 8% for keracyanin). However, STP-NMR did
not point protons specifically involved in the interaction. Cyanidin 3-glucoside expresses a rather
high affinity for sodium caseinate (NaCas) [48]. Two binding sites were identified at pH = 2 and
pH = 7, one of high affinity (Kb ≈ 1–7 × 106 M−1 depending on pH and T) and a second of lower
affinity (Kb ≈ 2–7 × 105 M−1). For both sites, the binding was found to be exothermic at pH = 7
but endothermic at pH = 2 and thus is driven by a favorable entropy, which could point to a large
contribution of the hydrophobic effect. Interestingly, NaCl addition gradually cancels cyanidin
3-glucoside–NaCas binding at pH = 7 but has no effect at pH = 2. In contrast to the high affinity of
cyanidin 3-glucoside for NaCas, malvidin 3-glucoside only weakly binds to α- and β-caseins [49] and
to β-lactoglobulin [50] (1:1 binding with Kb < 103 M−1).

Unlike co-pigmentation, the binding of anthocyanins to biopolymers does not trigger spectacular
spectral changes. For instance, in the presence of various polysaccharides [51], no change in the
wavelength of maximal visible absorption (λmax) was observed. Interactions of anthocyanins with
cellulose, oat bran, and lignin is associated with a weak hypochromic effect, whereas an opposite effect
(weak hyperchromism) is observed with highly methylated apple pectins. Sugar beet pectins have
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been shown to promote strong bathochromism in solutions of blackcurrant anthocyanins (cyanidin and
delphinidin glycosides), but this effect is due to endogenous iron ions (bound to the polysaccharide)
forming blue chelates with the pigments [52]. In agreement with the small spectral changes observed,
the binding of anthocyanins to pectin does not significantly affect the thermodynamic constants
of the acid–base and hydration equilibria [43]. In other words, all anthocyanin forms (colored or
colorless) bind pectin with close affinities. This apparent discrepancy with the STD-NMR data (stronger
flavylium–pectin binding) might be due to anthocyanin self-association, which probably is significant
in the concentrated solutions used in the STD-NMR experiments. In contrast, the flavylium cation of
the pyranoanthocyanin portisin is strongly stabilized by interactions with anionic wood lignosulfates
as evidenced by its much weaker acidity in the presence of the polysaccharide (pKa1 = 6.6 vs. 4.6 for
portisin alone) [53].

2.6. Anthocyanins in the Excited State

Although their main function is to absorb visible light and express color, anthocyanins are
intrinsically poorly fluorescent with quantum yields typically lower than 4 × 10−3 (meaning that less
than one photon out of 250 absorbed is actually re-emitted) [54]. Indeed, the fate of anthocyanins
after absorption, i.e., once in the excited state, is a difficult question that must be addressed by
sophisticated fast techniques, such as time-resolved fluorescence and transient absorption-emission
spectroscopies. In the HOMO→ LUMO transition accompanying the absorption of visible light by
the flavylium ion, electron transfer from the B-ring to the A-/C-rings takes place (Figure 16) [55].
In the excited state, the flavylium ion is a strong acid (pKa < 0) that transfers a proton to the solvent
on a picosecond timescale (20 ps for pelargonin at pH = 1) [54,56]. In the next step, the quinonoid
base in the excited state is deactivated by a combination of radiative (fluorescence) and non-radiative
(heat) processes and then captures a proton in the ground state to form the ground state flavylium
ion. In other words, the quinonoid base is responsible for the (weak) fluorescence observed for
anthocyanins even in strongly acidic solution. In the presence of a co-pigment, other mechanisms
(Figure 17) supersede the fast flavylium deprotonation observed with free anthocyanins [57] in the
following ways: (a) within the complex in the excited state, through ultrafast internal conversion
(<1 ps) via a low-energy co-pigment-to-pigment charge transfer state, resulting in static fluorescence
quenching; and (b) for the fraction of free anthocyanin, diffusion-controlled electron transfer from
the co-pigment to the flavylium ion in the excited state, resulting in dynamic fluorescence quenching.
The mechanism of energy dissipation by ultrafast internal conversion has been confirmed for the
folded conformation of a cyanidin glycoside acylated by p-coumaric acid [58]. In addition, fast energy
transfer to the chromophore following absorption of UV light by the acyl residue operates (Figure 17),
thereby conferring acylated anthocyanins to have an important role in plant photoprotection.
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free anthocyanins in the excited state (from references [54,56]).
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Figure 17. The influence of co-pigmentation on the fate of anthocyanins in the excited state.
(A) Intermolecular co-pigmentation (from reference [57]). (B) Intramolecular co-pigmentation (from
reference [58]).

3. The Importance of Anthocyanin Chemistry in Food and Nutrition

3.1. Formulation of Anthocyanins for Food Applications

Anthocyanin degradation typically occurs during thermal processing and storage. The knowledge
on anthocyanin–biopolymer interactions can be applied to devise formulations for improved chemical
stability. Degradation studies aimed at demonstrating the protection afforded by biopolymers may be
limited to monitoring the color loss under given conditions of pH, temperature, and light exposure.
More information is obtained when samples are also acidified to pH 1–2 for quantification of the
residual flavylium ions by HPLC or by UV-visible spectroscopy. With this approach, color loss
(directly observed at the monitoring pH), which combines the reversible water addition and
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irreversible phenomena (hydrolysis, autoxidation), and true anthocyanin loss (irreversible component),
can be distinguished.

In the simplest experiments involving modeling beverages, solutions of anthocyanins and
soluble biopolymers are heated, and their color or residual anthocyanin concentration is monitored
as a function of time. For instance, yeast mannoproteins (0.5% w/w for both anthocyanins and
mannoproteins) increase the half-life of color loss by a factor of 5.4 in experiments conducted at
pH = 7 and T = 80 ◦C or 126 ◦C (modeling pasteurization or sterilization) [59]. Similarly, the color
loss in solutions of purple carrot anthocyanins at pH = 3.0 and T = 40 ◦C (in light) was shown to be
inhibited by the addition of gum arabic (0.05–5.0%) with maximal stability observed at 1.5% (50% color
retention after 5 days, vs. 20% in control) [60]. Similar observations were made with pectins or whey
proteins (1%), the best result being obtained with heat-denatured whey proteins (70% color retention
after 7 days at 40 ◦C, vs. 20% in control) [61]. In these works, fluorescence quenching experiments
suggest that color protection involves direct interactions between anthocyanins and proteins (including
the glycoprotein of gum arabic). However, the mechanism of protection remains largely unknown.
It may be speculated that biopolymers mostly act by providing a more hydrophobic environment to
anthocyanins, resulting in slower hydrolysis (despite the weak impact on the hydration equilibrium
itself, see Section 2.5.2) and/or by scavenging transition metal traces acting as initiators/catalysts of
anthocyanin autoxidation.

A more sophisticated approach consists of preparing solid micro- or nanoparticles as delivery
systems for anthocyanins. For instance, nanoparticles of whey proteins and beet pectin can be
loaded with anthocyanin extracts with a higher efficiency (55%) when anthocyanins are added prior
nanoparticle formation [62]. However, when dispersed in pH 4 solution, these nanoparticles do
not show improved color stability. Particles of chitosan and carboxymethylchitosan (CMC) loaded
with anthocyanins (size ≈ 200 nm, encapsulation efficiencies ranging from 16 to 44% depending
on the CMC/chitosan proportions) can be simply prepared by mixing at pH = 5–6 followed by
centrifugation [63]. The thermal stability of encapsulated anthocyanins was shown to greatly improve:
12% degradation after 3 days at 40 ◦C, vs. 90% in the control (no particles). Similar protection was
observed in samples exposed to white light for 10 days (−20% vs. −80%). Sulfonylated polysaccharides,
such as dextran sulfate and carrageenans, can also be used to encapsulate bilberry anthocyanins from
acidic solutions (pH ≈ 3) with high efficiency and improved stability [64,65]. The binding of isotherms
and HPLC analysis showed that the binding is selective of anthocyanins (the other phenols remaining
in solution) and is stronger when the sulfonylation degree is higher. These data strongly suggest that
the encapsulation is driven by ionic flavylium–sulfate interactions. Interestingly, the nanoparticles are
gradually dissociated under near neutral conditions modeling the small intestine, which is desirable for
subsequent intestinal absorption. Combining chitosan and cellulose nanocrystals at pH 2–3 also allows
the formation of nanoparticles with high affinity for anthocyanins (up to 94% encapsulation) [66].
When cellulose is replaced by sodium tripolyphosphate, a reticulating agent for the polycationic
chitosan chain, gel microcapsules (size ≈ 34 µm, encapsulation yield ≈ 33%) are formed. Finally,
large hydrogel particles (size ≈ 2–3 mm) combining alginate and pectin can be used for encapsulation
of anthocyanin-rich extracts under acidic conditions (pH = 1–3), and they are released upon dissolution
at higher pH [67]. When exposed to white light, the half-life values of anthocyanins in hydrogel,
hydrogel particles dispersed in pH 3 solution, and in a control solution (pH = 3) were 630 h, 277 h,
and 58 h, respectively.

Interestingly, anthocyanin-rich blackcurrant extracts can be incorporated into bread [68].
Replacing wheat flour by a mixture of gluten and starch led to markedly decreased anthocyanin
concentrations (especially, for delphinidin glycosides, which are most sensitive to oxidation).
This suggests that other flour proteins (e.g., albumins, globulins) and non-starch polysaccharides
(e.g., hemicelluloses, β-glucans) may be important to provide chemical stability to anthocyanins in
such matrices.
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3.2. The Fate of Anthocyanins in Humans, Consequences on the Possible Effects on Health

The bioavailability of phenolic compounds has been largely elucidated over the last decades [69].
This knowledge, which is crucial to the interpretation of the possible effects on health, encompasses the
bioaccessibility (the release of phenols from the food matrix during digestion), intestinal absorption,
metabolism, transport, distribution to tissues, and excretion of dietary phenols and their metabolites.
Anthocyanins have emerged as poorly bioavailable micronutrients as judged from the low
concentrations (generally, <0.1 µM) of native forms (mostly, anthocyanidin glucosides) and
anthocyanidin conjugates detected in the general blood circulation [70,71]. These derivatives are
formed in the small intestine after enzymatic hydrolysis by membrane-bound lactate phlorizin
hydrolase or by cytosolic β-glucosidase, and subsequent conjugation by O-glucuronidation,
O-methylation, and/or O-sulfonylation. The detection of native forms in the blood circulation is
not equivalent to other flavonoid glucosides and could be due to partial absorption from the stomach.
This early absorption has been demonstrated in cell and animal models [72–74] and has been proposed
to involve the organic anion transporter bilitranslocase in the gastric epithelium [72].

Most importantly, recent investigations, in particular using 13C-labelled compounds [3],
have shown that the bulk of the ingested amount of anthocyanins is actually converted into simple
phenolic compounds (Table 2), as a consequence of (a) the chemical instability (under near neutral
conditions) of anthocyanins and, especially, of anthocyanidins [24] and (b) the extensive catabolism
by the colonic microbiota of the fraction reaching the large intestine. These simple metabolites,
which themselves can be further conjugated by intestinal and hepatic enzymes, have been found in the
blood circulation in much higher concentration than anthocyanidin derivatives [3,75].

Table 2. Serum pharmacokinetic profiles of cyanidin 3-glucoside (C3G) and its metabolites in humans
after the consumption of 500 mg 13C-labelled C3G. From reference [3] (in red is the reference compound
and its most abundant metabolites).
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Protocatechuic acid (PCA) 8 146 (±74) 3.3 (±0.7) 9.9 (±3.4) 1377 (±760)

Phloroglucinaldehyde 4 582 (±536) 2.8 (±1.1) nd 7882 (±7768)
PCA-sulfates 8 157 (±116) 11.4 (±3.8) 31.9 (±19.1) 1180 (±349)

Vanillic acid (VA) 2 1845 (±838) 12.5 (±11.5) 6.4 23319 (±20650)
VA-sulfates 4 430 (±299) 30.1 (±11.4) nd 10689 (±7751)
Ferulic acid 7 827 (±371) 8.2 (±4.1) 21.4 (±7.8) 17422 (±11054)

Hippuric acid 8 1962 (±1389) 15.7 (±4.1) 95.6 (±77.8) 46568 (±30311)

In agreement with the strong in vivo catabolism of anthocyanins, in vitro digestion models
have shown that whereas anthocyanins are readily released into the acidic gastric compartment
and relatively stable, they undergo substantial degradation in the near neutral upper intestinal
compartment, possibly because of autoxidation [76,77]. However, this chemical instability could be
overestimated in in vitro models, as the O2 content is higher than under real physiological conditions.
As a striking example, protocatechuic acid (PCA, 3,4-dihydroxybenzoic acid), recovered in blood and
fecal samples, was shown to represent more than 70% of the ingested dose of the cyanidin O-glucosides
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from blood orange juice [75]. Interestingly, PCA can be formed by chemical oxidative degradation
of anthocyanins and anthocyanidins (Figures 8–10). However, it must be noted that anthocyanins
bearing an electron-rich B-ring (e.g., cyanidin and delphinidin glycosides) must be much more prone
to oxidative degradation than, for instance, pelargonidin derivatives [78], which indeed could be
detected in higher concentrations (0.2–0.3 µM) in the blood [79].

In the digestive tract, anthocyanins may also modulate the digestion and uptake of nutrients
by interacting with intestinal α-glucosidase [80]. They could, as well, attenuate oxidative stress in
the digestive tract, for instance, by inhibiting the peroxidation of dietary lipids induced by heme
iron [29,81]. After intestinal absorption, anthocyanin derivatives are probably transported in the
blood in moderate association with serum albumin [45] before distribution to tissues, which, again,
could involve bilitranslocase, as evidenced in the kidneys of rats [82].

Most importantly, it must be kept in mind that the degradation products of anthocyanins,
which are formed in the digestive tract and are generally much more abundant than the residual
anthocyanidin derivatives, could mediate most of the potential health effects of anthocyanins [83,84],
which remains intriguing given their chemical simplicity [3] (Table 2). However, redox-active
compounds, such as PCA, could indeed participate in regulating the expression of genes associated
with transcription factors susceptible to redox activation. Such mechanisms could, at least partly,
underline the induction of antioxidant defense via the Nrf2 pathway and the reduction of inflammation
via NF-κB inhibition observed in cells and in rodents with cyanidin derivatives [85] or PCA itself [86].
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