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Abstract: High-speed counter-current chromatography was used to separate and purify galloyl,
caffeoyl, and hexahydroxydiphenoyl esters of glucoses from the aerial parts of the parasitic plant
Balanophora simaoensis for the first time using n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v)
as the optimum solvent system. Accordingly, 1-O-(E)-caffeoyl-3-O-galloyl-B-D-glucopyranose
(I, 125 mg), 1-O-(E)-caffeoyl-3-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-B-D-glucopyranose
(IL, 27.2 mg), and 1-O-(E)-caffeoyl-4,6-(S)-hexahydroxydiphenoyl-B-D-glucopyranose (III, 52.8 mg)
with 98.0%, 98.5%, and 98.7% purities, respectively, were purified from 210 mg crude extract
of B. simaoensis in a one-step separation. The structures of the glucose esters were identified by
electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectra (NMR).
Their antioxidant activities were evaluated by measuring their inhibition activity on liver microsomal
lipid peroxidation induced by the Fe?*-Cys system in vitro. Compounds I-III showed significant
antioxidant activities with ICsy values ranging from 2.51 to 6.68 um, respectively.

Keywords: Balanophora simaoensis; glucose esters; high-speed counter-current chromatography;
antioxidant activities

1. Introduction

Balanophora simaoensis (Balanophoraceae) indigenous to China is a parasitic plant growing on
the roots of various plants and mainly distributed in the Yunnan province, China [1]. In Chinese
traditional medicine, B. simaoensis is medicinally used as hemostatic, antidote, and antipyretic agents
since ancient times [2]. Previous phytochemical investigations of Balanophora species revealed the
presence of various types of bioactive components, such as flavanones, phenylpropanoids, lignans,
steroids, triterpenes, glucose esters, and ellagitannins [3-8]. The glucose esters possessing galloyl,
caffeoyl and hexahydroxydiphenoyl (HHDP) ester moieties exhibited significant antioxidant activities,
thus maybe good candidates for further development with antioxidant potential [9]. In order to further
study the biochemical properties of glucose esters from B. simaoensis and to evaluate their clinical
applications, it is essential to develop an efficient method for the separation of glucose esters.

However, conventional methods for the isolation of these glucose esters are often based
on the extensive use of multiple chromatographic steps, which is time-consuming and offered
low recoveries of the target products [8,10]. High-speed counter-current chromatography
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(HSCCC) is a liquid-liquid partition chromatography, which is capable of eliminating the solid
carrier adsorption and offering total recovery of target compounds. Due to the advantages
of HSCCC, it has been widely used in the separation and purification of different kinds
of natural products [11,12]. To the best of our knowledge, there are few reports on the
preparative separation of glucose esters from plants extracts using HSCCC to date. In the present
paper, an efficient HSCCC method has been developed for isolation and purification of three
glucose esters, 1-O-(E)-caffeoyl-3-O-galloyl-S-D-glucopyranose (I), 1-O-(E)-caffeoyl-3-O-galloyl-4,6-(S)-
HHDP-B-D-glucopyranose (II), and 1-O-(E)-caffeoyl-4,6-(S)-HHDP-B-D-glucopyranose (III) from a
crude sample of B. simaoensis (Figure 1). Furthermore, the antioxidant activities of three glucose esters
were evaluated by measuring their inhibition activity on liver microsomal lipid peroxidation induced
by the Fe?*-Cys system in vitro.
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Figure 1. Chemical structures of three glucose esters from B. simaoensis.

2. Results

2.1. Optimization of HPLC Conditions

Good results were obtained when the mobile phase was acetonitrile (solvent A) and water (solvent
B) with the gradient (0 min 15% A; 35 min 70% A). The flow rate and detection wavelength were
also investigated. The best results were obtained using 1.0 mL/min and 254 nm as the flow rate
and detection wavelength, respectively. The crude extract of B. simaoensis was analyzed under the
optimized HPLC conditions (Figure 2). As shown in Figure 2, peaks I-III were selected as the target
for HSCCC separation in the current work.
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Figure 2. HPLC chromatogram of the crude extract from B. simaoensis (A) and the three glucose esters
purified by HSCCC separation fraction (B-D).
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2.2. Selection of the Two-Phase Solvent System

Selection of a suitable two-phase solvent system is the first and critical step in a successful
separation using HSCCC. A suitable solvent system should provide ideal partition coefficient K values
(K, 0.5-2) and a proper separation factor (« > 1.5) of the target compounds [13]. Several two-phase
solvent systems were investigated and the K values of three glucose esters were measured in Table 1.

Table 1. The K values of the target compounds in several solvent system.

Solvent System (v/v) K
I I 111
ethyl acetate-n-butanol-water (5:2:6) 9.72 15.20 18.83
ethyl acetate-ethanol-water (5:1:6) 4.75 11.46 19.11
n-hexane-ethyl acetate-methanol-water (3:5:3:5) 0.28 0.59 1.82
n-hexane-ethyl acetate-methanol-water (2:5:2:5) 0.89 1.71 3.28
n-hexane-ethyl acetate-methanol-water (1:2:1:2) 0.57 1.02 2.13

As shown in Table 1, the K values of three glucose esters were too large in the two-phase solvent
systems of ethyl acetate-n-butanol-water (5:2:6, v/v) and ethyl acetate-ethanol-water (5:1:6, v/v),
which would cause excessive band broadening and a longer elution time. Then the n-hexane-ethyl
acetate-methanol-water (HEMWat) system was tested, which has been widely applied to separate
various natural products [14]. When the solvent system changed to the HEMWat system (3:5:3:5,
2:5:2:5, 1:2:1:2), the K values of three glucose esters decreased. It can be seen that the K values in
the solvent system with the volume ratio of 1:2:1:2 (v/v) were suitable for separation of the target
compounds. As shown in Figure 3, good resolution and acceptable separation time could be obtained
using n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v) as the two-phase solvent system.
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Figure 3. HSCCC chromatogram of the crude sample of B. simaoensis. Solvent system: n-Hexane-ethyl
acetate-methanol-water (1:2:1:2, v/v); revolution speed: 850 r/min; flow rate: 2.0 mL/min; sample size:
210 mg; UV detection wavelength: 254 nm.

2.3. HSCCC Separation of Three Glucose Esters

With the optimized solvent system #n-hexane-ethyl acetate-methanol-water (1:2:1:2,
v/v), the ethyl acetate extract (210 mg) of B. simaoensis was successfully separated and
purified by HSCCC in one step. As shown in Figure 3, three glucose esters were obtained:
1-O-(E)-caffeoyl-3-O-galloyl-B-D-glucopyranose (I, 12,5 mg),1-O-(E)-caffeoyl-3-O-galloyl-4,
6-(S)-HHDP-B-D-glucopyranose (II, 27.2 mg), and 1-O-(E)-caffeoyl-4,6-(S)-HHDP-B-D-glucopyranose
(ITL, 52.8 mg). The crude extract and HSCCC fractions were analyzed by HPLC, and the HPLC
chromatograms were shown in Figure 2. The purities of three glucose esters were 98.0%, 98.5%, and
98.7% purities, respectively, as determined by HPLC. The retention of the stationary phase was 71.0%,
and the separation time was within 5 h in each separation run. These results demonstrated that
HSCCC was a powerful and efficient tool for the preparative separation of glucose esters.
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2.4. Identification of Separated Compounds

The structures of three glucose esters were determined by ESI-MS, IH-NMR, and ¥3C-NMR
analysis. The results were as follows:

Compound I: ESI-MS m/z: 493 [M — H]~. 'H-NMR (CD30D-dy, 600 MHz) 6: 7.65 (1H, d, ] = 15.0 Hz,
caf-7),7.08 (1H, d, ] = 2.4 Hz, caf-2), 7.01 (2H, s, gal-2, 6), 6.92 (1H, dd, | = 2.4, 7.8 Hz, caf-6), 6.74 (1H, d,
J =7.8 Hz, caf-5), 6.31 (1H, d, ] = 15.0 Hz, caf-8), 5.72 (1H, d, ] = 7.8 Hz, glc-1), 5.24 (1H, t, ] = 9.0 Hz,
glc-3),4.48 (1H, d, | = 12.6 Hz, glc-6a), 4.28 (1H, d, ] = 12.6 Hz, glc-6b), 3.72 (1H, t, | = 9.0 Hz, glc-4),
3.69 (1H, t, | = 9.6 Hz, glc-2), 3.56 (1H, t, | = 9.4 Hz, glc-5)."*C-NMR (CD;0D-dy, 150 MHz) §: caffeoyl:
126.5 (C-1), 114.3 (C-2), 145.4 (C-3), 148.5 (C-4), 115.6 (C-5), 122.8 (C-6), 147.6 (C-7), 113.1 (C-8), 166.3
(C-9); galloyl: 119.7 (C-1), 109.5 (C-2, 6), 144.8 (C-3, 5), 138.6 (C-4), 166.5 (C-7); glucose: 94.8 (C-1), 72.5
(C-2),79.1 (C-3), 69.8 (C-4), 78.2 (C-5), 62.1 (C-6). On comparison with the reported data [8], compound
I was identified as 1-O-(E)-caffeoyl-3-O-galloyl-B-D-glucopyranose.

Compound IT: ESI-MS m/z: 795 [M — H]~. 'H-NMR (CD30D-dy, 600 MHz) &: 7.64 (1H, d, ] = 16.0 Hz,
caf-7), 7.06 (1H, d, | = 2.4 Hz, caf-2), 7.03 (1H, dd, | = 2.4, 7.8 Hz, caf-6), 7.02 (2H, s, gal-2, 6), 6.78
(1H, d, ] = 7.8 Hz, caf-5), 6.60, 6.45 (each 1H, s, HHDP-3, 3'), 6.32 (1H, d, ] = 16.0 Hz, caf-8), 5.76 (1H,
d, ] =78 Hz, glc-1), 542 (1H, t, ] = 9.6 Hz, glc-3), 5.32 (1H, dd, | = 6.6, 13.2 Hz, glc-6a), 5.07 (1H, t,
J=9.6 Hz, glc-4), 4.30 (1H, brdd, | = 6.6, 9.6 Hz, glc-5), 3.84 (1H, t, | = 8.0 Hz, glc-2), 3.84 (1H, d,
] = 13.2 Hz, glc-6).13C-NMR (CD30D-dy, 150 MHz) d:caffeoyl:126.6 (C-1), 114.4 (C-2), 145.3 (C-3), 148.5
(C-4), 115.4 (C-5), 122.7 (C-6), 147.5 (C-7), 113.2 (C-8), 166.0 (C-9); galloyl: 119.6 (C-1),109.1 (C-2, 6), 145.1
(C-3,5), 138.4 (C-4), 166.3 (C-7); HHDP: 115.3, 115.0 (C-1, 1), 125.2, 125.0 (C-2, 2), 106.9, 107.1 (C-3, 3'),
144.4,144.5 (C-4,4'), 136.2,136.5 (C-5, 5'), 143.1, 143.4 (C-6, 6'), 167.8, 168.1 (C-7, 7'); glucose: 95.1 (C-1),
71.4 (C-2), 74.8 (C-3), 70.1 (C-4), 75.2 (C-5), 65.3 (C-6).Compared with the reported data [8], compound
II was identified as 1-O-(E)-caffeoyl-3-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-B-D-glucopyranose.

Compound III: ESI-MS m/z: 643 [M — H]~. 'H-NMR (CD50D-d,, 600 MHz) é: 7.66 (1H, d, ] = 16.0 Hz,
caf-7),7.04 (1H, d, ] = 2.4 Hz, caf-2), 6.98 (1H, dd, | = 2.4, 8.0 Hz, caf-6), 6.79 (1H, d, ] = 8.0 Hz, caf-5),
6.59, 6.48 (each 1H, s, HHDP-3, 3'), 6.30 (1H, d, ] = 16.0 Hz, caf-8), 5.69 (1H, d, ] = 8.0 Hz, glc-1), 5.30
(1H, dd, ] = 6.0, 12.6 Hz, glc-6), 4.86 (1H, t, ] = 9.6 Hz, glc-4), 4.13 (1H, brdd, | = 6.0, 9.6 Hz, glc-5),
3.80 (1H, d, ] = 12.6 Hz, glc-6), 3.79 (1H, t, ] = 9.6 Hz, glc-3), 3.56 (1H, t, ] = 10.0 Hz, glc-2). 3C-NMR
(CD30D-dy, 150 MHz) é: caffeoyl: 127.7 (C-1), 115.5 (C-2), 146.3 (C-3), 149.5 (C-4), 116.4 (C-5), 123.2
(C-6), 148.5 (C-7), 114.2 (C-8), 166.5 (C-9); HHDP: 115.0, 115.3 (C-1, 1'), 125.3, 125.5 (C-2, 2'), 106.4, 107.2
(C-3,3'),144.4,144.8 (C-4,4"), 136.3, 136.5 (C-5, 5), 143.7, 143.8 (C-6, 6'), 167.8, 168.1 (C-7, 7'); glucose:
96.1 (C-1), 72.7 (C-2), 74.5 (C-3), 73.1 (C-4), 75.5 (C-5), 64.7 (C-6). According to literature [8], compound
IIT was identified as1-O-(E)-caffeoyl-4,6-(S)-hexahydroxydiphenoyl-B-D-glucopyranose.

2.5. Antioxidant Activities of Three Glucose Esters

The antioxidant activities of three glucose esters were evaluated by measuring their inhibition
activity on liver microsomal lipid peroxidation induced by the Fe?*-Cys system in vitro. As shown in
Table 2, compounds I-III showed significant antioxidant activities with ICsy values ranging from 2.51
to 6.68 um, respectively.

Table 2. Antioxidant activities of Compounds I-1II.

Compounds ICs¢Values (um)
I 6.68
1I 2.51
111 3.74

Vitamin E 2.08
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3. Materials and Methods

3.1. Apparatus

The HSCCC instrument employed in the study was a model TBE-300C high-speed countercurrent
chromatography apparatus (Tauto Biotech, Shanghai, China) with three multilayer coils connected in
series (total volume: 315 mL; I.D.: 1.6 mm), which was equipped with a model TBP-5002S constant-flow
pump (Tauto Biotech, Shanghai, China), a Model TBD2000 UV detector (Tauto Biotech, Shanghai,
China) operating at 254 nm, and a model HW2000 workstation (Tauto Biotech, Shanghai, China).
The temperature of the HSCCC column was controlled at 25 °C using a Model DC-0506 circulatory
temperature regulator (Tauto Biotech, Shanghai, China).

The analytical HPLC system consisted of a Waters Empower system (Milford, MA, USA) with
a model 600 pump, a model 600 multi-solvent delivery system, a model 996 diode-array detector,
and an Empower workstation. The ESI-MS data were obtained by an Agilent 1100/MSG1946 mass
spectrometer (Agilent, Santa Clara, CA, USA). The 'H- and '3C-NMR experiments wereperformed on
a Varian 600 MHz NMR spectrometer (Varian, Palo Alto, CA, USA).

3.2. Reagents and Materials

The solvents used for the HSCCC separation and antioxidant assay were analytical grade, and
were purchased from Tianjing Chemical Factory (Tianjing, China). Acetontrile was HPLC grade and
purchased from Siyou Special Reagent Factory (Tianjin, China). The PBS, liver microsomes, and
cysteine were bought from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China). The
FeSO, and thiobarbituric acid were obtained from Sigma (St. Louis, MO, USA). The whole plants
of B. simaoensis were collected in Yunan, China, and identified by Dr. Jia Li (College of Pharmacy,
Shandong University of Traditional Chinese Medicine).

3.3. Preparation of Crude Sample

The whole plants of B. simaoensis (1.5 kg) were powdered and extracted with MeOH at room
temperature. The extract was filtered and concentrated in vacuo to afford the crude extract (210 g).
Then, the extract was suspended in water (500 mL) and extracted by n-hexane (3 x 500 mL), ethyl
acetate (3 x 500 mL), and n-butanol (3 x 500 mL) in sequence. The ethyl acetate extract were evaporated
to dryness, yielding 42 g of ethyl acetate extract for further HSCCC separation.

3.4. Selection of Two-Phase Solvent System

The selection of two-phase solvent system was based on the partition coefficient (K) of the three
target compounds. The K values were determined by HPLC [15]; approximately 2 mg of crude extract
was added to a test tube, and 2 mL of equilibrated two-phase solvent system was added. The test tube
was shaken violently for several minutes to make the sample fully dissolve. Then, an equal volume of
the organic and aqueous phases were analyzed by HPLC. The K value was expressed as the peak area
of the compound in the upper phase divided by that in the lower phase.

3.5. HSCCC Separation

In the present study, the two-phase solvent system of n-hexane-ethyl acetate-methanol-water
(1:2:1:2, v/v) was used for the HSCCC separation. The solvent system was thoroughly equilibrated in
a separation funnel by repeatedly vigorously shaking at room temperature and separated shortly prior
to use. The sample solution was prepared by dissolving the dried extract in the mixture solution of
lower phase and upper phase (1:1, v/0) of the solvent system.

The upper phase was firstly pumped to the multiplayer coiled column as the stationary phase.
Then, the lower aqueous phase was pumped into the column at a suitable flowrate of 2 mL/min, while
the apparatus was rotated at a speed of 850 rpm. After hydrodynamic equilibrium was established,
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the sample solution was injected into the HSCCC and separated with a head-to-tail mode. The effluent
of the HSCCC was continuously monitored by a UV detector at 254 nm. The peaks were collected
manually according to the elution profile and then analyzed by HPLC. Finally, the retention of the
stationary phase was obtained by measuring the ratio of the organic phase to the whole volume in the
multilayer-coiled columns.

3.6. HPLC Analysis of HSCCC Fractions

The peak fractions from the crude sample and HSCCC separation were analyzed by HPLC
equipped with a Inertsil-ODS-SP column (250 x 4.6 mm, 5 pm, GL Sciences Inc., Tokyo, Japan) at room
temperature. The mobile phase of acetonitrile (A) and water (B), with gradient 0 min 15% A; 35 min
70% A, was applied at a flow rate of 1.0 mL/min. Chroma grams were recorded at 254 nm.

3.7. Identification of HSCCC Fractions

The fractions of the target compounds obtained from the HSCCC were determined by MS, 'H-
and *C- NMR spectra. ESI-MS spectra were analyzed by an Agilent 1100/MS-G1946 (Agilent, Santa
Clara, CA, USA) mass spectrometer in the negative ionzation mode. The 'H- and '*C-NMR spectra
were obtained on a Varian-600NMR spectrometer (Varian, Palo Alto, CA, USA).

3.8. In Vitro Antioxidant

The antioxidant activities of compounds I-III were evaluated by measuring their inhibition
activities on liver microsomal lipid peroxidation induced by the Fe?*-Cys system in vitro [16]. Vitamin
E was used as a positive control. Briefly, 1 mg/mL microsomal protein, different concentrations of
the test compound or vehicle and 0.2 um cysteine in 0.1 M PBS (pH 7.4) were incubated for 15 min at
37 °C, 0.5 um FeSO,; was added, mixed, and incubated for 15 min at 37 °C again. The reaction was
terminated by addition an equal volume of 20% TFA. The mixture was centrifuged at 3000 x g rpm for
10 min. The supernatant (1 mL) was reacted with 0.67% (w/v) thiobarbituric acid in a boiling H,O bath
for 10 min. After cooling, the absorbance was read at 532 nm, and the inhibitory rate was calculated.
The value of ICsy was calculated by Origin 8.0 Version software (OriginLab, Northampton, MA, USA)
from the graph plotting inhibition percentage.

4. Conclusions

In this study, an efficient HSCCC method was developed and successfully applied to the
separation and purification of glucose esters from the crude extract of B. simaoensis. From 210 mg
of the crude sample, three glucose esters with purity all over 98.0% were preparative separated and
showed significant antioxidant activities by measuring their inhibition activity on liver microsomal
lipid peroxidation induced by the Fe?*-Cys system in vitro. The study is of great reference value for
preparative separation of glucose esters with high purity from the Balanophora plants, which also
demonstrated that HSCCC is a powerful protocol for quick and efficient separation and purification of
active compounds from natural products.
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