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Abstract: Curved (non-planar) aromatic compounds have attracted significant research attention
in the fields of basic chemistry and materials science. The contribution of the quinoidal structure
in the curved π-conjugated structures has been proposed to be the key for materials functions.
In this study, the curve effect on the quinoidal contribution was investigated in Kekulé-type singlet
diradicals (S-DR1-4) as a sensitive probe for quinoidal structures in curved π-conjugated molecules.
The quinoidal contribution in S-DR1-4 was found to increase with increasing the curvature of the
curved structure, which was quantitatively analyzed using NBO analysis and the natural orbital
occupation numbers computed by the CASSCF method. The curve effect on the singlet-triplet
energy gap was examined by the CASPT2 method. The singlet-triplet energy gaps for the highly
π-conjugated diradicals were determined for the first time using the CASPT2 method. Substantial
quinoidal contribution was found in the curved structures of the delocalized singlet diradicals
S-DR1-4, in contrast to its absence in the corresponding triplet states T-DR1-4.

Keywords: Kekulé-type diradicals; curve effect; π-conjugated molecules; quinoidal structure;
CASPT2/CASSCF calculations

1. Introduction

Curved (non-planar) aromatic compounds like fullerenes, buckybowls, and carbon nanotubes
have attracted considerable attention from researchers in the fields of basic chemistry as well as
materials science [1–11]. In general, the HOMO–LUMO energy gap of a π-conjugated molecule
decreases with increasing π-conjugation, leading to red-shifted absorption spectra [12]. However,
according to recent reports on cycloparaphenylenes ([n]CPPs, n being the number of benzene rings
in the structure) [13–19], which are hoop-shaped carbon molecules, the absorption bands were
blue-shifted with increasing number of benzene rings [20–25]. This has been explained by the quinoidal
characteristic of CPPs having small ring size, such as [6]CPP (Figure 1a). The quinoidal character of
small CPPs has been proved by Raman spectroscopic analyses [26] and size-dependent-change of
emission in CPPs [27,28].
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The quinoidal contribution is rationalized by the increase of diradical character in the bent 
structure of benzene, which is the intermediate structure for the formation of Dewar benzene [29–32] 
(Figure 1b). In this study, the curve effect on the quinoidal character in Kekulé-type singlet diradicals 
S-DR1-4 [33–37] is investigated to design a sensitive probe for the quinoidal contribution (q) in curved 
π-conjugated molecules (Figure 1c) [35,36,38–55]. 

 
Figure 1. (a) [n]CPPs and their quinoidal structures; (b) bent effect on the diradical character of 
benzene [7]; (c) curve (θ°) effect on the diradical character in DR1-4 as a sensitive probe for the 
quinoidal contribution (this study). The structures DR1, DR2, and DR4 were optimized in C2 
symmetry. The structure DR3 was optimized in CS symmetry. 

2. Results and Discussion 

2.1. Computations for DR1.  

First, the curve effect on the diradical character was investigated on the 4,4′-dimethyl-1,1′-
biphenyl-4,4′-diyl diradical (DR1) (Table 1, entries 1–4). The molecular structures of the singlet (S) 
and triplet (T) forms of DR1 were optimized to obtain C2 symmetry at the UB3LYP/6-31G(d) level of 
theory with Gaussian 09 (revision D.01) software (Gaussian, Inc., Wallingford, CT, USA). The broken-
symmetry (BS) method [56] was used for the optimization of S-DR1 (See Supplementary Materials). 
The natural occupation numbers in the active orbitals were determined by the complete active-space 

Figure 1. (a) [n]CPPs and their quinoidal structures; (b) bent effect on the diradical character of
benzene [7]; (c) curve (θ◦) effect on the diradical character in DR1-4 as a sensitive probe for the
quinoidal contribution (this study). The structures DR1, DR2, and DR4 were optimized in C2 symmetry.
The structure DR3 was optimized in CS symmetry.

The quinoidal contribution is rationalized by the increase of diradical character in the bent
structure of benzene, which is the intermediate structure for the formation of Dewar benzene [29–32]
(Figure 1b). In this study, the curve effect on the quinoidal character in Kekulé-type singlet diradicals
S-DR1-4 [33–37] is investigated to design a sensitive probe for the quinoidal contribution (q) in curved
π-conjugated molecules (Figure 1c) [35,36,38–55].

2. Results and Discussion

2.1. Computations for DR1

First, the curve effect on the diradical character was investigated on the
4,4′-dimethyl-1,1′-biphenyl-4,4′-diyl diradical (DR1) (Table 1, entries 1–4). The molecular structures
of the singlet (S) and triplet (T) forms of DR1 were optimized to obtain C2 symmetry at
the UB3LYP/6-31G(d) level of theory with Gaussian 09 (revision D.01) software (Gaussian, Inc.,
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Wallingford, CT, USA). The broken-symmetry (BS) method [56] was used for the optimization of S-DR1
(See Supplementary Materials). The natural occupation numbers in the active orbitals were determined
by the complete active-space multiconfiguration method at the CASSCF(14,14) [57]/cc-pVDZ [58]
level of theory with MOLCAS 8 program package (v8.0.15-06-18) (MOLCAS, Lund, Sweden).
The occupation number in orbital ψA (HOMO in the restricted Hartree-Fock (RHF) method) increased
from 1.66 (θ = 0◦, entry 1) to 1.80 (θ = 29◦, entry 4) with increasing angle of bend (θ) in the diradical
structures. The bent angles (θ) were obtained after the structural optimization of DR1 in C2 symmetry
at the fixed angles of C1–C2–C6 = C10–C9–C5 = 180, 160, 140, and 135◦, respectively. On the other
hand, the occupation number in orbital ψB (LUMO in the RHF method) decreased from 0.35 (θ = 0◦,
entry 1) to 0.21 (θ = 29◦, entry 4) with increasing θ. Figure 2 shows that the HOMO and LUMO orbitals
correspond to the bonding and anti-bonding orbitals of the quinoid form, respectively. The quinoidal
contribution (q) was given by q (%) = (nψA/2.0) × 100, nψA being the number of electrons in the
HOMO orbital. The q values increased from 83 to 90 with increasing θ. The θ-dependent changes in the
occupation number and q value indicates that the bonding interaction between the two phenyl-rings,
leading to the formation of the quinoidal structure, increased with increasing θ. In fact, the C5–C6
distance was found to decrease from 143.0 pm (θ = 0◦) to 139.6 pm (θ = 29◦). The increase in quinoidal
contribution was also proved by the decrease in C1–C2 bond distance and the increase in the Wiberg
bond order (BO) [59] (entries 1–4). The computational results clearly indicate that the quinoidal
contribution increases with increasing the extent of bending in S-DR1.
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Figure 2. The molecular orbitals ψA (HOMO) and ψB (LUMO) for (a) S-DR1, (b) S-DR2, (c) S-DR3,
and (d) S-DR4.

The electronic energies of singlet ground state (11A) S- and triplet (13B) T-DR1 were
computed using the complete active-space second-order multiconfigurational perturbation theory
(CASPT2) [61,62], including the dynamic corrections and cc-pVDZ basis set (Table 1). Active-space
CAS (14,14) encompasses all π orbitals. The MO plots and weights of the leading configurations of
the CASSCF wavefunction are provided in the Supporting Information. Both S- and T-DR1 were
destabilized with increasing θ, as reflected by the ∆Erel,S/∆Erel,T values in Table 1. The relative
energies, ∆Erel,S and ∆Erel,T, were calculated with respect to the singlet and triplet absolute energies,
respectively, in the planar structure (θ = 0◦). The singlet–triplet energy difference, ∆EST = ES − ET,
increased substantially from 11.6 (θ = 0◦, entry 1) to 19.3 kcal mol–1 (θ = 29◦, entry 4). As judged by the
curve effect on the electronic energies of S-DR1 and T-DR1, i.e., ∆Erel,S/∆Erel,T, the triplet state was
destabilized more significantly than the singlet one with increasing θ. For example, at θ = 29◦ ∆Erel,S
and ∆Erel,T were calculated to be +21.0 and +28.7 kcal mol–1, respectively (entry 4). The curve effect on
∆EST is rationalized by the quinoidal contribution to the curved structure of the singlet state S-DR1,
which stabilized the singlet state, but not the triplet state.
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Table 1. Curve effect, in terms of θ (◦), on the natural occupation numbers in ψA (HOMO) and ψB

(LUMO), quinoidal contribution (q), Wiberg bond order (BO), C1–C2 distance (pm), and singlet-triplet
energy gap (∆EST, kcal mol–1) a.

Entry DR Bent Angle θ (◦)
Occupation Number

q BO b
C1–C2

Singlet/Triplet
∆EST

c

∆Erel,S/∆Erel,TψA
(HOMO)

ψB
(LUMO)

1

DR1

0
(C1-C2-C6 = C10-C9-C5 = 180◦) 1.66 0.35 83.0 1.55 137.4/140.8 11.6

0.0/0.0

2 13
(160◦) 1.70 0.31 85.0 1.61 136.7/140.8 12.9

+4.4/+5.7

3 25
(140◦) 1.79 0.23 89.5 1.73 135.6/140.4 17.4

+17.0/+22.8

4 29
(135◦) 1.80 0.21 90.0 1.75 135.5/140.2 19.3

+21.0/+28.7

5

DR2

0
(C1-C2-C6 = C8-C7-C12 = 180◦) 1.77 0.24 88.5 1.68 135.9/142.0 22.0

0.0/0.0

6 12
(160◦) 1.78 0.23 89.0 1.69 135.8/142.0 23.3

+4.0/+5.2

7 17
(140◦) 1.82 0.19 91.0 1.71 135.6/141.9 27.4

+15.4/+20.7

8 26
(120◦) 1.85 0.16 92.5 1.76 135.2/141.6 35.5

+32.4/+45.8

9

DR3

0
(C1-C5-C6 = C10-C6-C5 = 180◦) 1.58 0.43 79.0 1.47 138.5/141.2 11.8

+0.0/+0.0

10 17
(160◦) 1.62 0.39 81.0 1.51 138.1/141.1 12.9

+5.9/+7.0

11 34
(140◦) 1.76 0.25 88.0 1.67 136.2/140.8 16.6

+23.1/+27.9

12 52
(120 ◦) 1.87 0.14 93.5 1.75 135.6/140.2 26.7

+46.6/+61.4

13

DR4

0
(C1-C5-C6 = C10-C13-C14 = 180◦) 1.65 0.36 82.5 1.54 137.5/140.6 15.2

+0.0/+0.0

14 12
(160◦) 1.68 0.33 84.0 1.57 137.2/140.5 16.0

+5.0/+5.8

15 24
(140◦) 1.76 0.25 88.0 1.68 136.0/140.3 18.3

+20.1/+23.2

16 35
(120◦) 1.82 0.19 91.0 1.73 135.6/140.0 24.0

+43.0/+51.7
a The structural optimization was performed in C2 (DR1, DR2 and DR4) and CS (DR3) symmetry at the
(U)B3LYP/6-31G(d) level of theory. The occupation numbers in ψA and ψB were computed at the CASCF/cc-pVDZ
level of theory, CASSCF(14,14) for DR1, CASSCF(12,12) for DR2, and CASSCF(16,16) for DR3 and DR4. The energies
were obtained at the CASPT2/cc-pVDZ level of theory. b The Wiberg BO between C1 and C2 was determined by
natural atomic orbital (NAO) and natural bond orbital (NBO) analyses at the B3LYP/6-31G(d) level of theory [60].
c The singlet-triplet energy gap, (∆EST), was determined to be ES − ET. The energies, ∆Erel,S/∆Erel,T, were relative
to the absolute energy for θ = 0◦.

The quinoidal contribution in S-DR1 was also rationalized by the curve effect on the dihedral
angle (θd = C4–C5–C6–C7) of the biphenyl moiety (Figure 3). The dihedral angle θd decreased to nearly
0◦ from 7.4◦ when the bent angle θ increased from 0◦ to 29◦ (Figure 3a,b). In contrast to the significant
curve effect on θd, the corresponding dihedral angle was nearly the same in T-DR1 because there was
no quinoidal contribution in the triplet state (Figure 3c).
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Figure 3. (a) The curve effect on the dihedral angle (θd = C4–C5–C6–C7) in DR1; (b) the optimized
structure of S-DR1 at θ = 29◦; (c) the optimized structure of T-DR1 at θ = 29◦.

2.2. Computations for DR2-4

Similar computations were conducted for the π-extended Kekulé-type diradicals, viz.,
2,6-dimethylnaphthalene-2,6-diyl diradical (DR2) (entries 5–8), 2,7-dimethylphenanthrene-2,7-diyl
diradical (DR3) (entries 9–12), and 2,6-dimethylanthracene-2,6-diyl diradical (DR4) (entries 13–16)
to analyze the quinoidal contribution to the curved singlet states. As found for DR1, the quinoidal
contribution (q) to the singlet state of DR2-4 increased with increasing θ (entries 5–16). For DR2, the q
value increased from 88.5 to 92.5 with increasing θ. The q values for other diradicals DR3 and DR4
were also found to increase with increasing their curved character: from 79 to 93.5 for S-DR3 and from
82.5 to 91.0 for S-DR4. Consistent with the increase in quinoidal contribution, the C1–C2 bond in the
singlet state became shorter than that in the triplet state, indicating that the quinoidal contribution to
the singlet state increases with increasing θ. Furthermore, the Wiberg BOs of C1–C2 increased with
increasing θ in DR2-4: from 1.68 to 1.76 for S-DR2, from 1.47 to 1.75 for S-DR3, and from 1.54 to 1.73
for S-DR4. As for DR1, the significant curve effect on the singlet–triplet energy gap (∆EST) was also
computed for DR2-4. The energy gap increased with increasing θ, because the destabilization with
increasing θ in the triplet states T-DR2-4 were larger than those in the corresponding singlet states.

3. Conclusions

In this study, the quinoidal contributions in curved aromatic structures were quantitatively
analyzed by computing the curve effect on the diradical character of DR1-4 at high-level ab initio
calculations using the CASPT2/CASSCF method. The singlet-triplet energy gaps for the highly
π-conjugated diradicals were determined for the first time using the CASPT2 method. The diradical
character in the singlet states decreased with increasing the curve angle (θ) of the aromatic ring. In other
words, the quinoidal contribution increases with increasing θ of the aromatic ring. The increases in the
quinoidal contribution in the curved diradicals are consistent with the curve effect on the quinoidal
character of hoop-shaped molecules, which has been intensively investigated in the last decade.
The curved structure can increase the π-conjugation length with decreasing the HOMO-LUMO gap,
which should be smaller than that in the planar molecules having the same number of π-electrons.
The molecular design is expected to be appropriate for future soft-materials.

Supplementary Materials: The following are available online.
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conceptualization M.A.; writing–review and editing, I.A. and M.A.
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