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Abstract: In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds
from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1,
4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8,
10-diyne. Compounds 1–3 showed concentration-dependent inhibitory effects on production of
nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW 264.7
macrophages. Western blotting and RT-PCR analyses demonstrated that compounds 1–3 suppressed
the protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2).
Furthermore, compounds 1–3 inhibited transcriptional activity of nuclear factor-κB (NF-κB) and nuclear
translocation of NF-κB in LPS-activated RAW 264.7 cells. The most active compound among them,
compound 1, could reduce the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α)
and suppress the phosphorylation of MAPK including p38, JNK, and ERK1/2. Taken together,
these results suggest that compounds 1–3 from A. macrocephala can be therapeutic candidates to treat
inflammatory diseases.

Keywords: nitric oxide; prostaglandin E2; inducible nitric oxide synthase; cyclooxygenase-2; nuclear
factor-κB; Atractylodes macrocephala

1. Introduction

Atractylodes macrocephala, is a perennial herb that has been used as a traditional medicine in Korea,
China, and Japan for thousands of years to treat gastrointestinal dysfunction. Examples may include
loss of appetite, abdominal distention, and diarrhea [1,2]. The A. macrocephala has been reported
to possess diverse biological activities, including improved functional defects in digestive system,
as well as anti-tumor, anti-inflammatory, anti-aging, anti-oxidative, and anti-bacterial activities [3–7].
A. macrocephala have been reported to contain sesquiterpenoids, polyacetylenes, phenylpropanoids,
flavonoids, and polysaccharides [8]. Some sesquiterpenoids such as atractylenolide I~III exhibited
inhibitory effect on LPS-induced NO production in macrophages and neuroprotective effects in the
Parkinson’s disease model [8–11]. Moreover, polyacetylenes including atractylodemayne A, E, F,
G, and 14-acetoxy-12-senecioyloxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol showed anti-inflammatory
potential against LPS-induced NO production and carrageenan-induced paw edema without their
detailed action mechanisms [8,12,13].

Inflammation is a complicated physiological response to various immune stimuli such as infection
and tissue injury, which is regulated by diverse inflammatory mediators. Although highly regulated
inflammatory response is beneficial for body functions, immoderate and deregulated inflammation
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can cause tissue damages or chronic diseases such as cancer, diabetes, obesity, and Parkinson’s
diseases [14–16].

Macrophage, major immune effector cell, plays an essential role as a responder to inflammation.
Macrophage can be stimulated by external pathogen such as lipopolysaccharide (LPS). The activated
macrophage contributes and accelerates immune response to induce expression of pro-inflammatory
cytokines and inflammatory mediators including nitric oxide (NO) and prostaglandin E2 (PGE2) [17].
NO is synthesized by nitric oxide synthases (NOS) such as neuronal NOS (nNOS), endothelial NOS
(eNOS), and inducible NOS (iNOS). Large amounts of NO are mostly released by iNOS which can
be highly expressed in chronic inflammatory disorders [18]. Alternatively, PGE2 is synthesized by
cyclooxygenase 1 (COX-1) or cyclooxygenase 2 (COX-2). PGE2 is abundantly produced by upregulated
COX-2 in inflammatory state, which leads to pain and inflammation [19]. Therefore, inhibition of
inflammatory responses in activated macrophages can be a preventive strategy to diminish
excessive inflammation.

During searching for anti-inflammatory principles from A. macrocephala, we isolated one
quinone compound and two polyacetylenes, which have not been reported for anti-inflammatory
activity. In these studies, we evaluated the anti-inflammatory effect of three active constituents from
A. macrocephala in LPS-activated RAW 264.7 macrophage cells and investigated their underlying
action mechanisms.

2. Results and Discussion

Nitric oxide (NO), a free radical molecule, plays an important role in physiological activities
in vascular and neuronal functions in normal conditions. Under inflammatory responses, activated
macrophages release high level of NO which causes deleterious and severe inflammation [20]. PGE2,
a lipid mediator synthesized from arachidonic acid, is abundantly produced in inflammatory reaction.
They potentiate inflammation through eliciting vasodilation and increase of local blood flow [21].
Therefore, reducing the NO and PGE2 levels in LPS-activated macrophage cells is reasonable approach
to suppress inflammatory response.

We purified compounds 1, 2, and 3 from A. macrocephala as inflammatory modulators in
LPS-activated macrophages by the activity-guided purification process. Their structures were elucidated
by the analysis of mass and nuclear magnetic resonance (NMR) spectroscopic data [22,23]. Compound 1
has quinone moiety, while compounds 2 and 3 have acetylene moiety (Figure 1A).
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Figure 1. Chemical structures of compounds 1–3 from A. macrocephala (A) and effects of compounds 1–3
on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2)production (B,C).
(B) NO released from cells was assessed as nitrite form in culture supernatant. The amount of nitrite in
culture medium was measured by using the Griess reagents, as described in materials and methods. (C)
The levels of PGE2 in culture medium were determined by enzyme immunoassay method. Veh means
vehicle. The values are expressed as the mean ± S.D. of three individual experiments. * p < 0.01 indicate
significant differences from the LPS alone.

Compounds 1–3 inhibited LPS-induced NO production in a concentration-dependent manner,
whereas LPS treatment dramatically increased NO in RAW 264.7 macrophage cells (Figure 1B). The IC50

values of compounds 1, 2, and 3 were 3.7, 21.1, and 60.4 µM, respectively. We have also examined
the effects of compounds 1–3 on LPS-induced PGE2 production. As shown in Figure 1C, compound 1
suppressed PGE2 production, while the other two compounds 2 and 3 showed marginal suppression
(Figure 1C). Especially IC50 for PGE2 of the compound 1 was 5.26 µM. These findings guided us to
examine the effect of compounds 1–3 on expression levels of iNOS and COX-2 which produce NO and
PGE2 as key mediators of inflammation.

To examine whether the suppressed production of NO and PGE2 by compounds 1–3 were related
with modulation iNOS and COX-2 expressions, western blot and RT-PCR analyses were carried out.
As shown in Figure 2A, compounds 1–3 (10 µM) attenuated the LPS-induced iNOS protein levels in
RAW 264.7 cells whereas LPS treatment showed enhanced protein level of iNOS. Compounds 1–3
also suppressed protein levels of COX-2 compared with LPS treatment. Moreover, compounds 1–3
down-regulated the iNOS and COX-2 mRNA levels in LPS-stimulated RAW 264.7 cells (Figure 2B).
Compound 1 among three compounds showed the most potent inhibitory effect on iNOS and COX-2
expressions. The suppressive effects of compounds 1–3 on iNOS and COX-2 expressions were in
parallel with the NO and PGE2 levels. These results suggest that compounds 1–3 suppressed the
production of NO and PGE2 inflammatory mediators by inhibiting expressions of iNOS and COX-2
protein and mRNA in LPS-induced macrophage cell system. Thus, we hypothesized that a transcription
factor for iNOS and COX-2 gene expression would be affected by compounds 1–3.
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Figure 2. Effects of compounds 1–3 on the expression of LPS-induced iNOS/COX-2 protein and mRNA
in RAW 264.7 macrophages. (A) Cells were activated with LPS (1 µg/mL) in presence or absence of
compounds 1–3 (10 µM) for 20 h. Cell lysates were prepared and the iNOS, COX-2, and β-actin protein
levels were determined by Western blotting. (B) Cells were treated with compounds 1–3 (10 µM) and/or
LPS (1 µg/mL) for 6 h. The mRNA levels for iNOS, COX-2, and β-actin were determined by RT-PCR.
The relative intensity of iNOS/COX-2 to β-actin bands was measured by densitometry. Veh means
vehicle. The values represented mean ± S.D. of three individual experiments. *, # p < 0.01 indicate
significant difference (* iNOS, # COX-2) from LPS alone.

To disclose the action mode of compounds 1–3 for inhibition of transcriptional expression of iNOS
and COX-2, we examined the effect of compounds 1–3 on activation of nuclear factor κB (NF-κB) which
controls the expression of iNOS and COX-2 [24]. First, we assessed the secretory alkaline phosphatase
(SEAP) activity by the transcriptional activation of NF-κB in T-RAW 264.7 cells with pNF-κB-SEAP-NPT
reporter gene systems. As seen in Figure 3A, compounds 1–3 significantly repressed the SEAP activity,
while LPS treatment markedly increased the SEAP activity. This result indicates that compounds 1–3
can suppress transcriptional activity of NF-κB.
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Figure 3. Effects of compounds 1–3 on LPS-induced NF-κB activation. (A) Effects of compounds 1–3 on
LPS-induced nuclear factor-κB (NF-κB) transcriptional activation in T-RAW cells (the stably transfected
RAW 264.7 cells with pNF-κB-SEAP-NPT. The pNF-κB-SEAP-NPT plasmid that permits expression of
the secretory alkaline phosphatase (SEAP) reporter gene in response to the NF-κB activity and contains
the neomycin phosphotransferase (NPT) gene for geneticin resistance.). T-RAW cells were treated with
compounds 1–3 (10 µM) for 2 h prior to stimulation of LPS for 16 h. The transcriptional activity was
assessed by measuring SEAP activity and then expressed as relative fluorescence unit (RFU). (B) Effects
of compounds 1–3 on I-κB-α degradation and p65 translocation to nucleus in LPS-stimulated RAW
264.7 macrophages. Cells were pre-treated with compounds 1–3 (10 µM) for 30 min prior to LPS
treatment for 20 min. Cytoplasmic and nuclear extracts were prepared for western blotting of I-κB-α
and p65, respectively. β-Actin and poly ADP-ribose polymerase (PARP) were used as loading controls.
Veh means vehicle. The values are presented as mean ± S.D. of three individual experiments. *p < 0.01
indicate significant differences from the LPS alone.

Next, we assessed the effects of compounds 1–3 on LPS-induced degradation of I-κBα. NF-κB is
a dimeric transcription factor complexed with p50 and p65 subunits. In normal conditions, NF-κB
exists in cytoplasm as an inactive form (p50/p65 dimer) by physically binding with inhibitor-κB
(I-κB) [25]. However, I-κB is phosphorylated, ubiquitinated, and quickly degraded to discharge
p50/p65 in inflammatory situations. Released p50/p65 moves to nucleus and initiates the expression of
inflammatory genes such as iNOS and COX-2 [26]. Here, we observed the effects of compounds 1–3 on
degradation of I-κBα and translocation of p65 subunit in LPS-stimulated macrophages. As shown in
Figure 3B, LPS treatment showed very low level of I-κBα protein whereas compounds 1–3 recovered
level of I-κBα protein. Furthermore, treatment of cells with compounds 1–3 decreased the level of p65
in nucleus. These results indicated that compounds 1–3 inhibited NF-κB activation by modulating
degradation of I-κBα and nuclear translocation of p65. These findings proposed that anti-inflammatory
potential of compounds 1–3 could be partially associated with their inhibition of NF-κB.

NF-κB has been known to regulate a large array of genes involved in inflammatory responses.
In addition, NF-κB is required for an induction of large numbers of inflammatory genes, including those
encoding IL-1, IL-6 and TNF-α as well as iNOS and COX-2 [27]. Thus, we investigated the
effect of compound 1 on LPS-induced pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α,
because compound 1 is the strongest inhibitor of NF-κB among the three compounds. As shown
in Figure 4, compound 1 concentration-dependently reduced mRNA expressions of IL-1, IL-6 and
TNF-α in LPS-stimulated RAW 264.7 macrophage cells. These suppressive effects of compound 1 on
pro-inflammatory cytokines came from inhibition of I-κB degradation and NF-κB nuclear translocation.
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Figure 4. Effects of compound 1 on the expression of IL-6, IL-1β and TNF-α mRNA in LPS-activated
macrophages. RAW 264.7 cells were treated for 6 h with compound 1 at indicated concentrations
during LPS (1 µg/mL) activation. The mRNA levels of IL-6, IL-1β, and TNF-α were determined by
RT-PCR. Veh means vehicle. Images are the representative results of three separate experiments.

Mitogen-activated protein kinases (MAPKs) including p38, JNK, and ERK1/2 can regulate
gene expression, cellular growth, and inflammatory response [28,29]. MAPKs can induce
inflammatory cytokines in response to various inflammatory stimuli including LPS and TNF-α [30,31].
MAPKs signaling are positively associated with NF-κB activation [32,33]. To examine the effect of
compound 1 on MAPKs signaling, we assessed the phosphorylation levels of MAPKs in LPS-activated
macrophage cells. We observed the elevated phosphorylation of p38, JNK, and ERK1/2 by LPS
treatment (Figure 5). However, compound 1 reduced the p38, JNK, and ERK1/2 phosphorylation in
a concentration-dependent way with no alteration in total p38, JNK, and ERK1/2 levels. These results
suggested that compound 1 could attenuate LPS-induced inflammation by suppression of MAPKs
signaling pathway and NF-κB activation.

Figure 5. Effects of compound 1 on phosphorylation of p38, JNK, and ERK1/2 in LPS-activated
macrophages. RAW 264.7 cells were pretreated with compound 1 (0.1, 1, and 10 µM) for 30 min and
incubated further with LPS (1 µg/mL) for 15 min. The protein levels of ERK, JNK and p38 in cell lysate
were determined by western blotting. Veh means vehicle. Images are representative results of three
independent experiments.

3. Materials and Methods

3.1. General Experimental Procedures

Mass spectra were obtained on a JEOL JMS-AX505WA mass spectrometer. NMR spectra were
determined on a Varian UNITY INOVA 400 NMR spectrometer. Column chromatography was carried
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out over silica gel (40–60 µm, Merck, Kenilworth, NJ, USA). Fractions from column chromatography
were monitored by thin layer chromatography (TLC) (silica gel 60 F254 and RP-C18 F254S, Merck) under
UV light or by heating after spraying 10% H2SO4 in CH3OH (v/v).

3.2. Plant Materials, Extraction and Isolation

The dried rhizomes of A. macrocephala were purchased from the Kyungdong Herbal Market
in Seoul, Korea. The air-dried material (10 kg) was extracted with 20 L of EtOAc three times.
The EtOAc extract (310 g) was subjected to silica gel column chromatography eluting with n-hexane:
EtOAc gradient system (100:1 to 1:2) to give 14 fractions. Fraction 9 (13.2 g), which suppressed
NO production in LPS-stimulated RAW 264.7 cells, was further chromatographed on silica gel with
n-hexane: acetone (30:1 to 1:2) to afford seven sub-fractions. By the activity-guided purification
process, sub-fraction 9-6 (620 mg) was further purified by a silica gel column using n-hexane: EtOAc
(30:1 to 1:2) to afford compound 1 (17 mg). Sub-fraction 9-4 (1.4 g) was re-chromatographed on
silica gel with n-hexane: EtOAc (50:1 to 1:2) to yield compound 3 (53 mg). Fraction 12 (15.1 g)
was chromatographed on silica gel with n-hexane: EtOAc gradient system (50:1 to 1:2) to afford
10 sub-fractions. Sub-fraction 12-6 (3.3 g) was further purified by a silica gel column with
n-hexane: acetone (20:1 to 1:3) to yield compound 2 (45 mg). The structures of compounds
1–3 were identified as 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2,5-cyclohexadiene-1,4-dione
(1), 1-acetoxy-tetradeca-6E,12E-diene-8,10-diyne-3-ol (2), and 1,3-diacetoxy-tetradeca-6E,12E-diene-8,
10-diyne (3) (Figure 1A) by spectroscopic analysis and comparison with the previously reported
data [22,23]. Previously, compound 1 was reported from A. lancea [22] and A. macrocephala [34],
and compounds 2 and 3 from A. koreana [23] and A. chinensis [35].

2-[(2E)-3,7-Dimethy-2,6-octadienyl]-6-methyl-2,5-cyclohexadiene-1,4-dione (1) yellow- brownish
oil, HREIMS m/z 258.1646 (calculated for C17H22O2, 258.1620), 1H-NMR (CDCl3, 400 MHz): δ 6.55 (1H,
dq, J = 2.7, 1.6 Hz, H-5), 6.47 (1H, dt, J = 2.7, 1.6 Hz, H-3), 5.15 (1H, t sext, J = 7.3, 1.2 Hz, H-2′), 5.08 (1H, t
sept, J = 6.8, 1.2 Hz, H-6′), 3.13(2H, br d, J = 7.3 Hz, H-1′), 2.08 (2H, m, H-5′), 2.06 (5H, m, H-4′ and H-7),
1.70 (3H, br s, H-9′),1.62 (3H, br s, H-10′), 1.60 (3H, br s, H-8′); 13C-NMR (CDCl3, 100 MHz): δ 188.0
(C-1 and C-4), 148.5 (C-3), 145.9 (C-5), 140.0 (C-3′), 133.1 (C-6), 132.2 (C-2), 131.8 (C-7′), 123.9 (C-6′),
118.0 (C-2′), 39.6 (C-4′), 27.5 (C-1′), 26.4 (C-5′), 25.7 (C-9′), 17.7 (C-8′), 16.0 (C-10′), 16.0 (C-7).

1-Acetoxy-tetradeca-6E,12E-diene-8,10-diyne-3-ol (2) yellowish oil, HREIMS m/z 260.1448
(calculated for C16H20O3, 260.1413), 1H-NMR (CDCl3, 400 MHz): δ 6.33 (1H, dq, J = 15.0, 7.0 Hz, H-13),
6.27 (1H, dt, J = 15.0, 7.5 Hz, H-6), 5.58 (1H, dd, J = 15.0, 2.0 Hz, H-12), 5.55 (1H, dd, J = 15.0, 2.0 Hz,
H-7), 4.37 (1H, m, H-1a), 4.11 (1H, m, H-1b), 3.7 (1H, m, H-3), 2.28 (2H, m, H-5), 2.07 (3H, s, Acetyl)
1.82 (3H, dd, J = 7.0, 2.0 Hz, H-14), 1.78 (1H, m, H-2a), 1.68 (1H, m, H-2b), 1.58 (2H, m, H-4); 13C-NMR
(CDCl3, 100 MHz): δ 171.6 (aceetyl, C=O), 147.4 (C-6), 143.4 (C-13), 109.8 (C-12), 109.2 (C-7), 79.9 (C-11),
79.4 (C-8), 72.9 (C-10), 72.2 (C-9), 67.7 (C-3), 61.5 (C-1), 36.4 (C-2), 36.0 (C-4), 29.4 (C-5), 20.9 (acetyl,
CH3), 18.9 (C-14).

1,3-Diacetoxy-tetradeca-6E,12E-diene-8,10-diyne (3) yellowish oil, HRFABMS m/z [M + H]+

303.1468 (calculated for C18H22O4, 303.1596), 1H-NMR (CDCl3, 400 MHz): δ 6.33 (1H, dq, J = 15.0,
7.0 Hz, H-13), 6.25 (1H, dt, J = 15.0, 7.0 Hz, H-6), 5.57 (2H, br d, J = 15.0 Hz, H-7 and H-12), 5.00 (1H, tt,
J = 7.0, 6.5 Hz, H-3), 4.10 (2H, t, J = 6.5 Hz, H-1), 2.09 (2H, br dt, J = 7.0, 7.0 Hz, H-5), 2.06 (6H, s, Acetyl),
1.89 (2H, dt, J = 6.5, 6.5 Hz, H-2), 1.84 (3H, dd, J = 7.0, 15.0 Hz, H-14) 1.70 (2H, m, H-4); 13C-NMR
(CDCl3, 100 MHz): δ 170.9 (acetyl, C=O), 170.5 (acetyl, C=O), 146.5 (C-6), 143.5 (C-13), 109.8 (C-12),
109.5 (C-7), 80.0 (C-11), 79.2 (C-8), 73.1 (C-10), 72.3 (C-9), 70.3 (C-3), 60.6 (C-1), 33.0 (C-2), 33.0 (C-4),
29.1 (C-5), 21.0 (acetyl, CH3), 20.9 (acetyl, CH3), 18.9 (C-14).

3.3. Cell Culture

RAW 264.7 murine macrophage cells (ATCC, Rockville, MD, USA) were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) containing 10% FBS, 100 U/mL penicillin, and 100µg/mL streptomycin
(Life technologies, Frederick, MD, USA) at 37 ◦C in 5% CO2 in a humidified atmosphere.
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3.4. Nitrite Assay

RAW 264.7 cells were stimulated with LPS (1 µg/mL) in the absence or presence of compounds for
20 h. NO released from cells was assessed by detecting nitrite in culture supernatant. Aliquots (100 µL)
of culture media were incubated with 150µL of Griess reagent (1% sulfanilamide, 0.1% naphthylethylene
diamine in 2.5% phosphoric acid solution) at room temperature for 10 min. Absorbance at 540 nm
was read by using a microplate reader (Molecular Devices, CA, USA). The concentration of NO was
determined by the sodium nitrite standard curve.

3.5. PGE2 Assay

To observe the effects of compounds on COX-2, cells were seeded with aspirin (500 µM) to
inactivate the COX-1. After 2 h, cells were washed with fresh media three times and incubated with
LPS (1 µg/mL) in presence of compounds for 20 h. The PGE2 levels in culture media were determined
using enzyme immunoassay kit (Cayman Chemical, Ann Arbor, MI) according to the manufacturer’s
instruction. In brief, 50 µL of supernatant of the culture medium and 50 µL PGE2 tracer were put into
the PGE2 EIA plate and incubated for 18 h at room temperature. The wells were washed with 10 mM
phosphate buffer (pH 7.4) containing 0.05% Tween 20. Then 200 µL of Ellman’s reagent was added to
the well and incubated in the dark. Following the developing step, the absorbance was read at 405 nm
by a microplate reader. A standard curve was prepared simultaneously with PGE2 standard ranging
from 0.06 to 6 pg/mL.

3.6. Western Blot Analysis

RAW 264.7 cells (5× 105 cells/60 mm dish) were treated with or without test compounds in presence of
LPS (1 µg/mL) for 20 h. Cells were lysed gently with cell lysis buffer (Cell Signaling Technologies, Beverly,
MA, USA). Cell lysates were centrifuged at 4 ◦C and supernatant were subjected to the quantitation of
protein concentrations by the Bradford method. For preparation of cytosol and nuclear extracts, cells were
treated with test compounds for 30 min prior to the stimulation with 1 µg/mL LPS. Following 15 min
treatment of LPS, cells were collected by using NE-PER nuclear and cytoplasmic extraction reagents
according to the manufacturer’s instructions (Pierce Biotechnology, Rockford, IL, USA). The protein
lysates were then subjected to SDS-PAGE and transferred onto PVDF membranes. After blocking
with 5% non-fat milk for 1 h, membranes were incubated with the primary antibody overnight at 4
◦C. Antibodies against iNOS (BD Biosciences, Franklin Lakes, NJ, USA), COX-2 (Cayman Chemical
Company, Ann Arbor, MI, USA), I-κB-α, p65 (Santa Cruz Biotechnology, Rockford, IL, USA), ERK1/2,
phospho-ERK1/2, p38, phospho-p38, JNK, phospho-JNK, and β-actin (Cell Signaling Technology, Beverly,
MA, USA) were used for immunoblot analysis. After incubation with the secondary antibody for 1 h at
room temperature, proteins were detected by VersaDoc 3000 (Bio-Rad, Hercules, CA, USA) with ECL
reagents (GE Health Care Life Sciences, Marborugh, MA, USA).

3.7. Reverse Transcription and Polymerase Chain Reaction (RT-PCR) Analysis

Cells (1.8 × 106 cells/60mm dish) were stimulated for 6 h with LPS (1 µg/mL) in the presence or
absence of test compounds. Total RNA was extracted by TRIzol (Life technologies, Frederick, MD,
USA) according to the manufacturer’s instructions. RNA was reverse-transcribed into cDNA using
reverse-transcriptase (Life technologies, Frederick, MD, USA) and random-hexamer (Cosmo, Seoul,
Korea). The cDNA amplification was performed by using a recombinant Taq polymerase (Promega,
Madison, WI, USA) and primers for iNOS, COX-2, IL-6, IL-1β, TNF-α, and β-actin. The amplified PCR
products were separated on 2% agarose gels and stained with ethidium bromide.

3.8. Measurement of NF-κB Transcriptional Activity

NF-κB transcriptional activity was determined by using the stably transfected RAW 264.7 cells
with pNF-κB-SEAP-NPT (T-RAW 264.7 cells) as described previously with some modifications [36,37].
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T-RAW 264.7 cells were kindly gifted by Professor Yeong Shik Kim, Seoul National University, Korea.
T-RAW 264.7 cells were plated on a 24 well plate overnight. Test compounds were added to cells 2
h before the treatment with LPS (1 µg/mL). After 16 h incubation, aliquots of culture medium were
heated at 65 ◦C for 6 min and then the activity of SEAP (secretory alkaline phosphatase) was assessed.
The transcriptional activity was expressed as relative fluorescence unit (RFU).

3.9. Statistical Analysis

All values were expressed as mean ± S.D. of three experiments. Statistical analysis was carried
out with Student’s t-test. A p-value of <0.05 was considered as significantly different.

4. Conclusions

In the present study, we explored the anti-inflammatory potential of compounds 1–3 from
Atractylodes macrocephala. Compounds 1–3 reduce NO and PGE2 production, and also suppress
the iNOS and COX-2 expression in LPS-stimulated RAW 264.7 cells. The underlying mechanism
proved that compounds 1–3 suppressed NF-κB through inhibiting I-κB degradation and the NF-κB
nuclear accumulation. Moreover, compound 1, the most potent among three components, decreased
levels of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α, and also suppressed MAPKs
phosphorylation in LPS-activated RAW 264.7 cells. Taken together, compounds 1–3 from A. macrocephala
can be therapeutic candidates to treat inflammatory diseases.
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