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Abstract: In recent years, metabolic disorder, especially fatty liver disease, has been considered
a major challenge to global health. The attention of researchers focused on expanding knowledge
of the regulation mechanism behind these diseases and towards the new diagnostics tools and
treatments. The pathophysiology of the fatty liver disease is undoubtedly complex. Abnormal hepatic
lipid accumulation is a major symptom of most metabolic diseases. Therefore, the identification
of novel regulation factors of lipid metabolism is important and meaningful. As a new diagnostic
tool, the function of microRNAs during fatty liver disease has recently come into notice in biological
research. Accumulating evidence supports the influence of miRNAs in lipid metabolism. In this
review, we discuss the potential role of miRNAs in liver lipid metabolism and the pathogenesis of
fatty liver disease.
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1. Introduction

In vertebrates, the liver is a vital gland tissue that plays several major roles in regulating the
metabolism of carbohydrates, proteins, amino acids, and lipids. The majority of lipoproteins, such as
very low-density lipoprotein (VLDL) and nascent high-density lipoprotein (HDL), are synthesized in
the liver. Meanwhile, the liver is also an important accessory digestive organ, producing bile acids
that aid in lipids digestion [1–4]. Various molecules have been proven to playing important regulatory
roles in the lipid metabolism, including several nuclear transcription factors: liver X receptors (LXRs),
sterol regulatory element-binding proteins (SREBPs) and farnesoid X receptors (FXRs). These nuclear
receptors are involved in the regulation network of the lipid metabolism along with other molecules,
including various miRNAs.

MicroRNAs (miRNAs) are small endogenous non-coding RNA molecules, generally about 18-22nt
in length, which act as regulators of protein expression. After miRNAs were first discovered as a
regulator in the development process of Caenorhabditis elegans, numerous miRNAs have subsequently
been demonstrated to carry broad influences over a wide range of biological processes. In the
mammalian canonical miRNA pathway, miRNA genes are usually transcribed by RNA polymerase II in
the nucleus to produce long-chain primary miRNA (pri-miRNA) transcripts, which are subsequently
processed to form the stem-loop hairpin structures of precursor miRNA (pre-miRNA) by RNase
III enzyme Drosha. Then, pre-miRNAs are transported from the nucleus to the cytosol through
exportin-5 and are subsequently spliced to mature double-stranded miRNA by Dicer, an enzyme
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belonging to the RNase III family. The mature miRNAs can complex with argonaut proteins 2 (Ago2)
to form RNA-induced Silencing complex (RISC). The RISC-attached mature miRNAs then hybridize
to a complementary sequence in the three prime untranslated regions (3′ UTR) of specific mRNA
targets, and facilitates the post-transcriptional regulation (Figure 1). The regulatory mechanisms
induced by miRNA binding have not been fully illustrated but seem to involve translation repression,
deadenylation, and degradation of the target mRNAs. Each miRNA is predicted to target several
genes, and 3′ UTR of each specific mRNA can hold putative target sites for many miRNAs [4–6].
miRNAs have recently been reported to present another regulatory layer overlaying and intersecting
with a transcriptional control mechanism in keeping metabolic homeostasis [7–9]. Furthermore, our
understanding for miRNA was expanded from bench to bedsides, miRNAs shows the potential of
diagnostic and treatment for many diseases, including liver disease.

In this review, we discuss recent advances in our understanding of the emerging roles of miRNAs
in guiding lipid homeostasis in the liver with emphasis on the progression of fatty liver disease.
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of most dietary fatty acids from the small intestine depends on the presence of sufficient bile acids. 
Bile acid-emulsified fatty acids can be used for triglycerides synthesis and then enter the circulation 

Figure 1. The biogenesis and regulation of microRNA: One miRNA is initially transcribed by
RNA polymerase II (RNA Pol II) as part of one arm of a several hundred nucleotide-long primary
miRNA (pri-miRNA). The pri-miRNA is cleaved by Drosha, a Class 2 ribonuclease III enzyme,
to produce a characteristic stem-loop structure of about 70 base pairs long, known as a pre-miRNA.
Endoribonuclease Dicer cleaves pre-microRNA (pre-miRNA) into short single-stranded RNA fragments
called mature miRNA in cytoplasm. Mature miRNA form RISC complex to combine the target mRNA.

2. Overview of Liver Lipid Metabolism

Lipids have diverse biological functions serving as crucial structural components of cell
membranes, sources of important energy storage, and as signaling molecules (such as steroid
hormones). Lipid metabolism involves multiple pathway, the core elements of which the present
discussion will focus on include those involving triglycerides and fatty acids [10,11].

Food is a major source of daily fat, with dietary fat (mainly triglyceride) being hydrolyzed to
free fatty acids and glycerol in the intestine via pancreatic lipases and varied enzymes carried by the
gut microbiota. Apart from short chain fatty acids that enter the circulation directly, the absorbance
of most dietary fatty acids from the small intestine depends on the presence of sufficient bile acids.
Bile acid-emulsified fatty acids can be used for triglycerides synthesis and then enter the circulation
as lipoprotein particles called chylomicrons via the lymphatic system. The chylomicron-attached
triglycerides can be attacked by lipoprotein lipase and release free fatty acids (FFAs) at the endothelial
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surface of capillaries [12]. The resulting fatty acids (~70%) are delivered to adipose tissue and stored
as lipid droplets, a portion of which can be stored as energy fuel, while the remainder transferred the
liver (Figure 2).
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Figure 2. Digestion and metabolism of dietary lipids: Dietary fat is hydrolyzed to glycerol and free
fatty acids (FFA) in intestine. Most of the FFA are delivered to adipose tissue for storage; some are
transported to the liver for lipid synthesis. Excessive free fatty acids in the peripheral circulation lead
to lipid ectopic deposition in tissues.

Free fatty acids are largely bound to albumin in plasma for its hydrophobicity, fatty acids uptake
into the liver thereby requires the dissociation of FFAs from albumin [9,11,13–15]. While the members
of fatty acid transport protein (FATP) family, like FATP2, FATP5 and cluster of differentiation 36 (CD36)
then mediate transportation of FFAs across the plasma membrane [16,17]. In mammalian cells, FATP2
is enriched in liver and kidney whereas FATP5 is a hepatic-specific isoform. CD36 is widely expressed
in various tissues and cells while lowly expressed in hepatocytes. Deletion of CD36 does not influence
the development of hepatic steatosis in mice, illustrating that uptake of fatty acids in hepatocytes is
mainly dependent on FATPs [18,19].

Once uptaken into hepatocyte cytosol, FFAs are used to synthesize fatty acyl-CoAs through
the fatty acyl-CoA synthetases (ACSs). However, previous studies have demonstrated the FATPs
themselves exhibit both long chain and very long chain fatty acyl-CoA synthetase activity [20,21]. Fatty
acyl-CoA is a temporary compound formed by adding coenzyme (CoA) to the end of fatty acids, which
will quickly undergo β-oxidation to break down fatty acids and generate ATP or be incorporated into
triglycerides [22,23]. Fatty acid oxidation occurs mainly in mitochondria, and partly in peroxisomes or
microsomes. Since no ACSs exists in the mitochondrial complex, fatty acids traverse mitochondrial
membranes in the form of fatty acyl-CoA. Short-chain fatty acyl-CoAs can simply diffuse across the
inner mitochondrial membrane, while long-chain fatty acyl-CoAs must be coupled with free carnitine
and then converted into acyl-carnitine by the carnitine palmitoyltransferase 1 (CPT 1) in the outer
mitochondrial membrane [11,19,24,25]. Fatty acyl-CoAs are subsequently cleaved into two carbon
segments to synthesize acetyl-CoA in each β-oxidation cycle, along with abundant production of ATP.
Acetyl-CoA as the final product of β-oxidation take part in a series of biochemical reaction, like the
tricarboxylic acid (TCA) cycle and also used back to lipid de novo synthesis [26–28].
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Except being the fuel to provide energy, exogenous fatty acids are rapidly assimilated into neutral
and polar lipids such as glycerolipids, sterols, and glycerophospholipids. Otherwise, in the setting of
excess carbohydrates intake, hepatic de novo lipogenesis (DNL) is triggered in the liver by extensive
glucose or other factors. After uptake into the liver, glucose is converted to acetyl-CoA via glycolysis
and oxidation of pyruvate. Acetyl-CoA carboxylase (ACC) catalyzes the formation of malonyl-CoA
from acetyl-CoA; then this newly synthesized product is used to assemble palmitic acid by joining
with acetyl-CoA by fatty acid synthase (FAS) [29–31]. Palmitic acids are elongated and desaturated to
generate oleoyl-CoA through stearoyl-CoA desaturase (SCD1) and long chain fatty acid elongase 6
(ELOVL6). Oleoyl-CoAs are substrates for glycerol-3-phosphate acyltransferase (GPAT) to catalyze
the formation of lysophosphatidic acids (LPA) [32]. 1-acylglycerol-3-phosphate sequentially converts
LPAs to phosphatidic acids (PA), which then are processed to diacylglycerols (DAG) by lipin1. DAGs
will be used to form triglycerides through acyl-CoA: diacylglycerol acyltransferase (DGAT) (Figure 3).
Hepatic de novo lipogenesis is regulated primarily at the transcriptional level [33,34]. Under normal
dietary conditions, the accumulation of circulating glucose and insulin facilitate lipogenesis in order to
maintain the homeostasis of glucose, which is related to the regulation of two transcription factors:
carbohydrate response element binding protein (ChREBP) and sSREBP1c. Insulin physiologically
stimulates the SREBP1c expression and finally results in upregulation of several lipogenic genes,
such as FAS, ACC, SCD1 and lipin 1 [35–37]. The mechanism by which insulin facilitate SREBP1c
expression is phosphoinositide 3-kinase (PI3K) dependent and relies on the participation of LXRs.
As a nuclear receptor, LXR mediated transactivation requires the formation of a heterodimer complex
with retinoid X receptor (RXR) and binding its ligands [38–40]. The complex binds to the LXR
response element, usually located upstream of target genes in their promoter regions. ChREBP
also has important functions on lipogenesis triggered by glucose within the liver. ChREBP is a
glucose-sensitive transcription factor that acts on lipogenesis independently or in conjunction with
LXR-RXR complex [41,42].
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The lipids can incorporate into very low-density lipoprotein (VLDL) particles and transport
from the liver into peripheral tissue. VLDL is a triglyceride-rich lipoprotein which is synthesized
in the liver, and the mechanism of VLDL synthesis and secretion is well known [43–45]. The VLDL
particle consists of a hydrophobic core composed triglycerides and cholesterol. The long polypeptide
apolipoprotein B100 (ApoB 100) is a critical factor when the VLDL particle is assembling, which is
translocated onto the surface to stabilized VLDL structure [46]. Once mature VLDL particles are release
into circulation from hepatocytes, they will contact with lipoprotein lipase (LPL) in capillary beds of
peripheral tissues, such as cardiac, skeletal muscle and adipose tissue. The triglycerides contained
in VLDL are hydrolyzed to FFAs that provide energy fuel or storage in different tissues outside the
liver [47]. Serving as an important traffic hub for triglycerides and fatty acids in the body, the liver is
a critical organ for maintaining the whole body’s lipid and glucose homeostasis. Under physiological
conditions, these metabolic pathways described above is to keep homeostasis of intracellular FFA
and acyl-CoA.

3. miRNAs in Lipid Metabolism

miRNAs play a significant role in regulating many facets of liver lipid metabolism by targeting
varied transcripts across different cell types. For instance, many miRNAs take part in adipogenesis.
miR-143 is a well-documented miRNA shown to participate in human adipocyte differentiation,
with overexpression of miR-143 accelerating the differentiation process of murine preadipocytes, and
specific inhibition of miR-143 blunting adipogenesis [48–50]. In recent studies, miR-204, miR-200c,
miR-141, and miR-439, are also been reported to participate in early adipocyte cell fate determination,
while others, including miR-27a, miR-378, miR-130 and etc., are involved in the terminal stage of
adipocyte differentiation [51,52].

The excessive lipid accumulation in adipose tissue leads to obesity and finally contributes to
metabolic syndrome. In previous studies, increased expression of miR-335 was found both in liver and
white adipose tissues of obese mice, such as leptin-deficient (ob/ob) mice, leptin receptor-deficient (db/db)
mice, compared to normal mice [51–53]. miR-335 also influences lipid metabolism and may participate
in the differentiation of human mesenchymal stem cells, which exhibit adipogenic potential [54,55].
Similarly, expression of miR-335 is upregulated during mouse preadipocyte differentiation [56].
However, the molecular basis for miR-335 in the regulation of adipogenesis and lipid metabolism
remains elusive.

In addition, miRNAs may also regulate the lipid metabolism in the liver. There are 150 miRNAs
which are upregulated in mice fed with high-fat diet. Many of these miRNAs have been identified to
regulate metabolic processes in the liver, although their roles on fatty liver pathogenesis remain to be
determined [57,58].

As the first identified miRNA participating in lipid metabolism, miR-122 is a liver-specific
and liver-enriched miRNA, accounting for nearly 70% of total hepatic miRNA expression [59,60].
General knockout or conditionally hepatic knockdown of miR-122 significantly decreases serum
triglyceride and total cholesterol levels. Similarly, after blocking biological function of endogenous
miR-122 via complementary antisense-locked nucleic acid, there was a significant reduction (~30%) of
circulating cholesterol levels in mice [61]. Consistently, other studies revealed that a set of cholesterol
biosynthesis genes were down-regulated by miR-122 by an indirectly regulation manner, including
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and microsomal TG transfer protein
(MTTP), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) [17,62–64].

However, miR-122 has been shown to induce the expression of genes involved in de novo
lipogenesis including SREBP1-c, DGAT2, FAS, and ACC1. Interestingly, miR-122 may also interact with
other miRNAs during the development of fatty liver disease. For instance, overexpression of miR-370
in HepG2 cells stimulates the expression of lipogenic genes FAS and ACC1 through modulation of
SREBP-1c expression [19]. However, silencing of miR-122 in HepG2 cells abolishes miR-370 mediated
activation of SREBP-1c. In addition, transfection of HepG2 cells with miR-370 induces up-regulation of
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miR-122, and knockdown miR-370 in vivo leads to miR-122 down-regulation. Therefore, these findings
suggest that miR-370 regulates expression of genes involved in lipid metabolism via miR-122 [65,66].

Another important miRNA, miR-33, which is extensively involved in the regulation of liver lipid
metabolism and shows great therapeutic potential to fatty liver disease [7,67]. The miR-33 family
comprises two members, miR-33a and miR-33b. In humans, miR-33a and miR-33b are located in the
intronic regions of SREBP2 and SREBP1, respectively [68–70]. As mentioned above, SREBPs are key
regulators of cholesterol and lipids synthesis, accompany with their transcripts, miR-33 can translate
and participate in the regulation of similar physiological processes. Blocking the function of miR-33
in vivo increases the circulation HDL concentrations through targeting adenosine triphosphate-binding
cassette transporter A1 (ABCA1) and adenosine triphosphate-binding cassette transporter G1 (ABCG1),
and thus further suppresses cholesterol efflux to apolipoprotein A1 (ApoA1) or nascent HDL [67,71].
Besides the role in cholesterol metabolism, miR-33 also blunts fatty acid oxidation and regulates
insulin signaling [72]. Inhibition of miR-33 reduced the circulation levels of VLDL, by increasing the
expression of key enzymes involved in fatty acid oxidation, including Carnitine Palmitoyltransferase
1A (CPT1A), Hydroxylacyl-CoA Dehydrogenase/3 Ketoacyl-CoA Thiolase (HADHB), Carnitine
O-Octanoyltransferase (CROT) and so on. Consistently, overexpression of miR-33 in hepatocytes
can lead to the significant accumulation of triglycerides in the cytoplasm, accompanied with inhibition
of β-oxidation.

Additionally, it has been demonstrated that the miRNAs, miR-27a and miR-27b can regulate the
adipogenesis through targeting of Retinoid X receptor alpha (RXRα) and PPARγ. Overexpression of
miR-27b stimulates lipolysis and lipids secretion from cells in the form of glycerol or free fatty acids.
On the other hand, increased miR-27a represses several lipid metabolic genes, such as FAS, SREBP-1,
peroxisome proliferator-activated receptor-α (PPARα) [57]. By high-throughput small RNA sequencing
and consequent in silico analysis, miR-27b is considered as a regulatory hub in lipid metabolism of
human hepatocytes (HuH7 cells). Hepatic miR-27b is responsive to lipid levels and is predicted
to affect 27 lipid metabolism-related target genes. Some of these targets, such as angiopoietin-like
3 (ANGPTL3), glycerol-3-phosphate acyltransferase (GPAM) and N-deacetylase-N-sulfotransferase
(NDST1) were already validated by experiments for both functional importance as well as direct
interaction [73]. For instance, GPAM is highly expressed in liver, and plays role in catalyzing the first
committed step in DNL as mentioned; overexpression of GPAM causes steatosis and hepatosis [74].
The plasma level of ANGPTL3, secreted from the liver, is closely correlated with the progression of
dyslipidemia and atherosclerosis. Accompanied by this, hepatic miR-27b is upregulated in ApoE
knockout induced dyslipidemia animal mode [75,76].

4. miRNAs in Nonalcoholic Fatty Liver Disease

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in modern
societies, and it is also considered a manifestation of metabolic syndrome. established risk factors
associated with NAFLD and more progressive diseases include obesity (central), hypertension,
dyslipidemia, type 2 diabetes and metabolic syndrome [77]. The hallmark of NAFLD is hepatic
lipid ectopic accumulation (conventionally set as more than 5% by weight) in the absence of excessive
alcohol consumption and other forms of chronic liver diseases [78]. The term NAFLD comprises
a serial of progressions, from simple steatosis over non-alcoholic steatohepatitis (NASH) to cirrhosis
and hepatocellular carcinoma (HCC). Despite the high prevalence of NAFLD in the general population,
the majority of patients merely have simple steatosis, and experience similar life expectancy and
transaminase levels as the general population; only 5–10% of patients who are diagnosed with NAFLD
will progress to NASH and 30% of the NASH patients will eventually develop liver fibrosis [79,80].

Although the pathogenesis of NAFLD is incompletely understood, there is a “two-hit hypothesis”
proposed to explain the sequential evolution from steatosis to steatohepatitis or advanced NASH.
The first “hit” is insulin resistance, which is induced by dietary habits, together with genetic factors.
Insulin resistance of the white adipose tissue results in increased fatty acid flux to the liver with



Molecules 2019, 24, 230 7 of 20

subsequent ectopic hepatic fat deposition and causes the liver to become more susceptible to injury [81].
The second “hit” is from oxidative stress, increased cytokine and activated inflammation cascades,
finally resulting in NAFLD [82]. However, this theory has been extended to a new concept termed
“multiple hit” hypothesis later.

The new theory deems multiple insults effect together on genetically predisposed subjects to
induce NAFLD and introduce another consideration of NAFLD pathogenesis [83]. In addition to
insulin resistance, the multiple hits include more factors such as circulation adipokines, nutritional
factors, intestinal microbiota, genetic and epigenetic factors. Clinical investigations showed that
epigenetic modification occurred during NASH development. Epigenetic processes, including DNA
methylation, histones modifications and the activity of miRNAs, could regulate gene expression at
the transcriptional level without DNA sequence alteration. DNA methylation is already identified
as one of the crucial determinants during progression from steatosis to NASH and is affected by the
concentration of fundamental methyl donors in dietary, such as betaine, choline, and folate [84].

To date, a number of recent studies conducted both in vitro and in vivo have illustrated that
miRNAs could regulate epigenetic mechanisms of gene expression, which is not only involved in the
regulation of cellular growth and differentiation even in the control of energy balance and hepatic
lipid metabolism. The emerging roles of miRNAs on adipocytes differentiation, insulin resistance,
hepatic lipid metabolism, and inflammation implicate the potential relationship between miRNAs
and NAFLD pathogenesis. Many studies have been designed to dig into the regulation of miRNAs
on NAFLD.

In a previous study, the circulation levels of miRNAs are altered in different stages of NAFLD,
and some specific miRNAs are correlated with the pathogenesis of NAFLD. By using Sprague-Dawley
(SD) rats to generate NAFLD animal model, researchers characterized 58 up-regulated miRNAs and
51 down-regulated miRNAs in different stages of NAFLD [85]. Several members of these detected
miRNAs, like miR-16, miR-29c, and miR-122, are reported to have the impact on many biological
activities [86]. For instance, miR-16 is gradually increased along with NAFLD pathogenesis, which is
a known apoptosis regulation factor. Therefore, miR-16 may have the potential to regulate hepatocyte
apoptosis during NAFLD pathogenesis [87]. While miR-29c and miR-122 have been proved that
they could regulate insulin resistance and lipid metabolism, which implicated their possible roles
in the development of NAFLD [88]. In fact, serum-miR-29c and miR-122 are continually increased
throughout the progression of NAFLD in rats [89].

Likewise, in another study with western type diet-induced NAFLD in LDLR knockout mice,
hepatic miRNA profile was significantly altered during NAFLD progression. The transcriptome
data revealed that miR-216 and miR-302a could play an important role in fatty liver development.
Especially, miR-302a is predicted to target ELOVL6 which is involved in the elongation of palmitate to
stearate. Meanwhile, the decrease in miR-302a expression is associated with a parallel increase in the
expression of ELOVL6 [90]. This evidence indicates that miR-302a could regulate the lipid synthesis
during NAFLD development.

miR-34a, another miRNA related to NAFLD which is increased in the serum of patients with
NAFLD [91,92]. It has been reported that miR-34a targets sirtuin-1 (SIRT1) and blunts its biological
function. SIRT1 is an activator of Adenosine 5′-monophosphate (AMP)-activated protein kinase
(AMPK) pathway which inhibits hepatocyte lipid accumulation [93]. Recently, a new target of miR-34a,
PPARα, have been identified [94]. PPARα is crucial to regulating lipid transport and metabolism,
especially playing an important role on the mitochondrial β-oxidation pathway. The target genes of
PPARα include fatty acid (FA)-metabolizing enzymes, such as mitochondrial FA oxidation related
enzymes, the majority of which exist in the liver [95,96]. Both mRNA and protein levels of PPARαwere
directly downregulated by miR-34a in (mouse) liver, which could be rescued by inhibiting miR-34a
expression. Consistent with this, knockdown of miR-34a markedly attenuated the FFA induced lipid
accumulation in hepatocytes in vitro. Meanwhile, administrating miR-34a inhibitor through vein
injection could alleviate high-fat-diet induced hepatic steatosis. In this process, increased PPARα
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expression not only stimulated the AMPK signaling but also activated fatty acids β-oxidation-related
genes, which could further decrease the lipid accumulation in liver [94].

miR-24 is also found that it’s upregulated in the liver of mice fed with high-fat diet [97]. Moreover,
miR-24 was upregulated in FA treated HepG2 cells and primary human hepatocytes [98]. Bioinformatic
and experimental results prove that miR-24 could directly bind the 3′ UTR region of insulin-induced
gene 1 (Insig1), an inhibitor of lipogenesis. Silencing of endogenous miR-24 leads to up-regulation
of Insig1 in vitro and subsequently blocks the hepatic lipid accumulation. An (in vivo) study also
showed that miR-24 overexpression facilitates SREBP-1c processing and further upregulates the
expression of lipogenic genes, through targeting Insig1 [98]. These researches suggest the potential role
of miR-24 in hepatic lipid accumulation. Thus, miR-24 may become a potential therapeutic target for
the obesity-related NAFLD.

Recently, some miRNAs were identified that their expression level in peripheral blood and
liver were both correlated with the development of NAFLD, including miR-122 and miR-21 [99,100].
As we discussed above, nearly 70% of liver miRNAs is miR-122, and the function of miR-122 in lipid
metabolism has been well demonstrated. For miR-21, its expression is lower in the serum but higher
in the liver in NAFLD patients compared with healthy people, although the cause of its expression
difference between serum and liver remains unknown [101]. However, Li and his colleagues observed
that expression level miR-21 was gradually declined in the livers of diet-induced NASH mice compared
with the control group, with the development of disease [53]. Transfecting HepG2 cells with miR-21
mimics suppressed the levels of triglyceride (TG), total cholesterol (TC) and free cholesterol (FC) in
cells. Meanwhile, HMGCR, the rate-limiting gene of cholesterol biosynthesis was down-regulated by
miR-21 mimics. Through in silico analysis and experimental validation, HMGCR is identified to be a
direct target of miR-21. Inhibition of miR-21 led to increased expression of HMGCR. Taken together,
these results demonstrate that miR-21 regulate liver TG and cholesterol metabolism through directly
targeting HMGCR [102].

Another NAFLD associated miRNA is miR-149. Its expression level is elevated in FA treated
HepG2 cells, and also upregulated in NAFLD animal model [103]. In addition, the absence of miR-149
could block the lipogenesis in FA-treated HepG2 cells, and transfection of miR-149 mimics induces
lipid accumulation in normal culture condition without the addition of excessive exogenous fatty
acids. Through bioinformatics analysis, fibroblast growth factor 21 (FGF-21) was identified as the
target gene of miR-149 [103]. FGF-21 is a member of the fibroblast growth factors, which is highly
expressed in muscle, white adipose tissue and liver. FGF-21 plays critical regulatory roles on lipid
metabolism and benefit improvement of NAFLD [104,105]. Previous studies have illustrated that
miR-149 negatively regulates protein translation of FGF-21, and subsequently promotes lipogenesis in
HepG2 cells. In consideration of over-expression of FGF-21 in vivo has been shown to ameliorate fatty
liver [105], pharmacological inhibition of endogenous miR-149 might be a new therapeutic strategy
for NAFLD.

In addition to excessive lipid accumulation, hepatocyte inflammation and apoptosis are important
pathological elements for the progression of NAFLD [83]. miRNAs could also participate in the
progression of steatohepatitis, such as miR-10b, miR-144, miR-155, and miR-146b [106–108]. It’s
reported that miR-10b could increase the lipid contents in steatosis L02 cells by targeting PPAR-α.
In particular, miR-155 is considered one of the important regulators of inflammation, which influences
both innate and adaptive immunity [109]. Feeding with Methionine-choline-deficient (MCD) diet
induces steatohepatitis in mice and increases miR-155 in the entire liver in the meantime [110,111].
Early research indicates that miR-155 is triggered by Toll-like receptor activation, which subsequently
increases the translation of tumor necrosis factor alpha (TNFα), a key inflammatory cytokine involved
in the progression of steatohepatitis [112]. More interestingly, it has been confirmed that LXRα is
a direct target of miR-155 [113]. Higher activity of LXRα induces the expression of SREBP-1c and
subsequently facilitates lipogenesis and lipids accumulation in the liver [113]. Consistently, liver
steatosis is improved and the expression of genes involved in lipogenesis is decreased in miR-155
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knockout mice fed with MCD, compared with the wild type mice [111]. Clinical studies also found
that miR-155 is downregulated in the liver and peripheral circulation of NAFLD patients [110],
This evidence suggested that miR-155 could participate in the regulation of lipid metabolism and
inflammation in the progression of steatohepatitis.

5. miRNAs in Alcohol and Virus-Induced Fatty Liver

Long-term alcohol overconsumption can induce alcoholic liver disease (ALD). The manifestations
include fatty liver, alcoholic hepatitis, and liver fibrosis or cirrhosis. Moreover, patients with ALD
generally simultaneously suffer from nonalcoholic fatty liver disease, or chronic viral hepatitis.

The liver is the primary organ for alcohol metabolism, while hepatocytes produce most of the
alcohol metabolizing enzymes, like majority of alcohol dehydrogenases (ADHs) and cytochrome P450
2E1 (CYP2E1) which are expressed in the liver [114,115]. Meanwhile, steatosis is the most common
response of the liver to chronic alcohol consumption [116]. Steatosis can occur in any individual who
administrates excess alcohol over a long period of time, and this process is transient and reversible [117].
As mentioned before, miR-155 is harmful to non-alcoholic liver steatosis and fibrosis. Coincidentally,
the miR-155 expression is also induced in the liver of ALD mouse model, especially in hepatocytes and
Kupffer cells [118,119]. Meanwhile, a serial of lipid metabolism-related genes are downregulated in
miR-155 knockout MCD fed mice, including ADRP, DGAT2, CPT1a, and PPARα [111], which suggests
that miR-155 may be involved in hepatic lipid metabolism in alcoholic fatty disease.

The presence of alcohol in the liver can accelerate hepatic lipid synthesis and weaken fatty acid
oxidation. Previous studies have found that alcohol activates hepatic SREPB-1 processing, thereby
stimulates hepatocytes transferring from lipid consumption to lipid storage [120]. It’s well known
that SIRT1 plays a crucial role in lipid metabolism by deacetylation of modified lysine residues on its
target gene like SREBP-1. Activation of SITR1 inhibits the gene expression of SREBP-1 [121]. In recent
studies, alcohol has been proved to suppress the activity of SIRT1 in the liver, which subsequently
induces SREBP-1 signaling and lipogenesis [122]. The evidence is now emerging to suggest that hepatic
steatosis induced by chronic alcohol exposure is mainly mediated by SIRT1 [123].

miR-217 should be specially mentioned due to its roles on alcohol-induced hepatic steatosis.
The expression of miR-217 in hepatocytes is dramatically upregulated by alcohol treatment either
in vivo or in vitro studies [124]. It has been demonstrated that miR-217 could act on SIRT1 in
endothelial cells [125]. Therefore, it’s reasonable to conclude that alcohol-mediated inhibition of
SIRT1 in the liver is mediated by miR-217. Additionally, a recent study found that overexpression of
miR-217 could induce the expression of lipin-1, which is a critical enzyme catalyzing DAG synthesis
and also involved in the development of both alcoholic and non-alcohol fatty liver diseases [126–130].
Therefore, chronic alcohol exposure impairs SIRT1/SREBP-1 axis in a miR-217 dependent manner and
ultimately induces hepatic steatosis [124].

Emerging evidence demonstrates that hepatitis virus infection independently facilitates lipid
accumulation in the liver, although the exact mechanism is incompletely understood. Hepatitis C
Virus (HCV) is an RNA virus responsible for 170 million cases of viral hepatitis worldwide [131].
Nearly half of HCV infected patients develop hepatic steatosis. And expression of HCV core protein
alone can trigger fat accumulation in liver [132]. The cytoplasmic lipid droplet (LD) in hepatocytes is
crucial for HCV particle assembly, and the host LD scaffold protein perillipin 3 (PLIN3) is reported
as an indispensable factor during virus-induced steatosis [133]. As mentioned before, endogenous
miRNAs modulate lipid metabolism at post-transcriptionally level, so it is not surprising that the
viruses regulate the host miRNAs in multiple ways to facilitate pathogenesis [134]. In recent reports,
miR-27, the liver-abundant miRNA described above, is stimulated by HCV both in vitro and in vivo
experiments [135]. The upregulation of miR-27 contributes to decreased FFA oxidation and increased
FFA uptake, thus facilitates fat accumulation in hepatocyte, which may due to the suppression of its
target genes PPARα and ANGPTL3 [136]. ANGPTL3 could inhibit the activity of LPL and further
decrease the FFA uptake by the liver. Antagonism of PPARα alone could result in increased cellular
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triglyceride contents, which is same with the roles of miR-27, while agonist of PPARα reverses miR-27
induced hepatic lipid accumulation [73,135].

In another study, miR-185-5p is decreased by HCV core protein in HEPG2 cells, and meanwhile,
SREBP-2, a validated target of miR-185-5P is increased by HCV core protein [136]. SREPB-2
regulates cholesterol homeostasis in the liver through influencing microsomal HMG-CoA reductase
(HMGCR), which regulates the rate-limiting step in cholesterol synthesis. The role of HCV core
protein in cholesterol metabolism is one of the mechanisms of steatosis induced by HCV infection.
This mechanism can be explained by the correlation between miR-185-5p and SREBP2.

6. Novel Diagnostic Tools and Treatments for Fatty Liver Diseases

Fatty liver is characterized by excessive triglyceride accumulation as the form of lipid droplets,
and liver biopsy is the gold standard to classify different stages of NAFLD. However, there are a
number of drawbacks of this procedure, including patient discomfort, a limit value for early diagnosis
and the risk for serious complications. Thus, it’s urgent to find noninvasive diagnosis strategies.
Currently, ultrasound and other imaging modalities have been applied widely for the diagnosis of
NAFLD, but these techniques have failed to distinguish the stage of the disease and to differentiate
various causes of NAFLD [137].

As candidate biomarkers for NAFLD, miRNAs are resistant to the degradation by ribonucleases
and exist in almost all body fluids. miRNAs could be secreted from the cell via extracellular
microvesicles release, and finally detected in peripheral circulation. This kind of miRNAs is termed as
circulating miRNAs. The application of circulating miRNAs has been expanded from experimental
researches to clinical early disease detection and monitoring of disease progression. For instance,
circulating miRNAs were found abnormally expressed in different kinds of cancer. Some specific
miRNAs expression patterns have been utilized to distinguish colorectal, pancreatic, hepatocellular
carcinoma from normal tissues [138]. As described in this review, miRNAs are closely associated
with the pathogenesis of fatty liver disease. Thus, circulating miRNAs may be specific and sensitive
biomarkers for fatty liver disease and disease stage assessment.

Recently, a multistage, case-control study was performed to screen a circulating miRNAs profile
as diagnose markers for NAFLD [138]. In this study, pooled serum samples from NAFLD patients and
healthy volunteers were prepared for high throughput sequencing. Several miRNAs were significantly
upregulated in NAFLD samples, like miR-122, miR-27b-3p, miR-192, miR-148a-3p, etc. Among the
most abundant miRNAs in the human liver, the increased levels of circulating miRNA-122 in NAFLD
has been repeatedly observed in multiple reports [89,139,140]. MiR-122 also accumulates in the
serum of ethanol-fed mice model. Furthermore, release of miR-192, miR-30a, miR-14 and miR-155
through exosomes indicates their clinical diagnostic values in alcoholic liver disease [141,142]. It has
been reported that miR-122, and miR-34a steadily increased in serum during HCV infection process.
Similarly, in a clinical survey, circulation levels of miR-122 and miR-34a are positively correlated with
the clinical parameters and stages of disease progression from simple steatosis to steatohepatitis [91].

However, large clinical cohorts are required to clearly confirm circulating miRNAs as a kind
of more sensitive and specific biomarker for fatty liver diseases than other noninvasive diagnostic
measurements [143,144]. As mentioned previously, miRNAs play important roles in the pathology of
liver lipid metabolism, and inappropriate miRNAs expression links to fatty liver disease development.
According to that, miRNAs that undergo disease-specific alteration and exhibit cell-specific regulating
ability in the liver could be developed as a novel therapeutic target for fatty liver disease. Various
studies demonstrated that miRNAs could be new therapeutic targets for many diseases, thus
their mimics or antisense oligonucleotides are using to influence the specific endogenous miRNA
concentration, subsequently regulating the target genes and biological function [145,146].

However, miRNA-based therapy will face many challenges, including off-target effects, miRNA
stability, and binding affinity. But overall a high-efficiency delivery system is a key factor in developing
of miRNA-based therapy [42,147,148]. The nanoparticles (NPs) is one of the feasible strategies.
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Nanoparticles can provide well-organized structural made up of macromolecules which have been
designed to carry out biological molecules like peptides, DNA and RNA [149,150]. Assembly of
miRNAs into NPs could protect the miRNAs from degradation and enhance their structure stability
and circulation time in vivo [151,152]. The small size and capacity for binding the cell-penetrating
peptides lead to a huge increase in cellular entry, NPs thereby could also enhance the cellular uptake
of miRNAs. However, NPs are foreign molecules and not a part of the host system. After these foreign
materials enter into the body, the NPs will be recognized by the immune system and might generate
undesirable effects like immune stimulation or suppression. Therefore, the NPs-related immune
responses have to be well investigated before as a carrier of miRNAs transport [153].

7. Summary

Accumulating evidence has suggested that miRNAs are important modulators for lipid
metabolism. miRNAs have received much interest not only from a scientific perspective but also their
potential clinic applications [154–158]. Our understanding of miRNAs in hepatic lipid metabolism is
expanding in Figure 4 and Table 1. However, it is essential at the current stage to clearly define their
roles in fatty liver diseases. Since each miRNA has multiple targets and one gene may be regulated
by several miRNAs, it is still too early for us to predict any miRNA as a simple target for fatty liver
diseases. Nevertheless, with increasing discoveries of miRNAs, once the function of some specific
miRNAs in disease pathogenesis is established, we may use these specific miRNAs to diagnose or
treat diseases. Finally, it’s reasonable that the clinical applications of miRNAs are certainly promising
and hopeful.Molecules 2018, 23, x 11 of 21 
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Table 1. Summary of recently reported miRNA studies in fatty liver disease.

miRNA Species Disease-Association Expression Target Genes Findings Pathologic (+) or
Protective (−) Reference

miR-122 Human, mouse NAFLD
↑

(circulation)
↓

HMGCR, MTTP,
HMGCS1PGC1-α

Upregulate the expression of SREBP1-c,
DGAT2, FAS and ACC1 + [37,112,113]

miR-370 Human NAFLD ↑ SREBP-1c,
DGAT2

Upregulate the expression of genes
involved in lipogenesis Upregulate the

expression of miR-122;
+ [39]

miR-29c Human NAFLD ↑ HMGR, Sirt1 Regulate insulin resistance and
lipid metabolism − [84]

miR-216 Mouse NAFLD ↓ FAS, SREBP-1c Regulate the lipid synthesis / [61]

miR-302a Mouse NAFLD ↓ ELOVL; ABCA1 Regulate hepatic lipid accumulation / [61]

miR-34a Mouse, Human NAFLD ↑ PPARα, SIRT1 Decrease FA β-oxidation − [68,75,84]

miR-24 Human, Mouse NAFLD ↑ Insig1 Downregulate Insig1 expression;
Promote SREBP-1 processing − [72]

miR-21 Mouse NAFLD ↓ HMGCR Regulate liver TG and
cholesterol metabolism + [76]

miR-149 Mouse NAFLD ↑ FGF21 Regulate lipogenesis in HepG2 cells − [77]

miR-10b Human NAFLD ↑ PPARα Overexpression of miR-10b increases the
triglyceride levels in hepatocytes − [82]

miR-155 Mouse, Human NAFLD; Alcoholic
fatty liver ↓ LXRα Regulate LXRα/SREBP-1c signaling and

influence liver lipid accumulation. +/− [117–119,124,125]

miR-467 Mouse NAFLD ↓ LPL Regulate lipid metabolism
through target LPL + [86]

miR-217 Human Alcoholic fatty liver ↑ SIRT1; Lipin1 Promote ethanol induced -fat
accumulation in hepatocytes +/− [133]

miR-27 Human Dyslipidemia
Virus hepatitis ↑ PPARα;

ANGPTL3

Promote triglyceride accumulation in
hepatocytes and inhibit hepatitis C virus
replication dyslipidemia animal model

+/− [60,81,136]

miR-185-5p Human Virus hepatitis ↓ SREBP2 Regulate cholesterol homeostasis in liver − [137]
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