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Abstract: Brown seaweeds contain bioactive compounds that show anti-tumorigenic effects. These
characteristics have been repeatedly observed in the Lessoniaceae family. Egregia menziesii, a member
of this family, is distributed in the North Pacific and its properties have been barely studied.
We evaluated herein the cytotoxic and anti-proliferative activity of extracts of this seaweed, through
toxicity assay in Artemia salina and lymphocytes, and MTT proliferation assay, in Bergmann glia
cells, 3T3-L1 and brain cancer cell lines. E. menziesii’s extracts inhibited the spread of all the tested
cell lines. The hexane extract showed the highest cytotoxic activity, while the methanol extract was
moderately cytotoxic. Interestingly, seaweed extracts displayed a selective inhibition pattern. These
results suggest that E. menziesii’s extracts might be good candidates for cancer prevention and the
development of novel chemotherapies due to its highest cytotoxicity in transformed cells compare to
glia primary cultures.
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1. Introduction

In recent years, a wide variety of biological activities have been characterized in marine products.
Among the different marine sources for bioactive substances, seaweeds are of special importance due to
the rich, varied, and underexploited amount of bioactive substances they contain. Seaweeds are used
broadly as a source of food and either industrial or pharmaceutical products [1–3]. Properties such as
fungicidal [4], antimicrobial [5], antimalarial [6], antimycobacterial [7], and antiviral [8] activities have been
demonstrated to be present in algae. A number of diverse metabolites with important bioactivities have

Molecules 2019, 24, 260; doi:10.3390/molecules24020260 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-2989-1359
https://orcid.org/0000-0003-2215-058X
https://orcid.org/0000-0003-4442-1141
http://www.mdpi.com/1420-3049/24/2/260?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24020260
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 260 2 of 14

been isolated from these organisms with particular attention in phlorotannins, sulphated polysaccharides,
polyphenols, carotenoids, peptides, and sterols or polyunsaturated fatty acids [9].

Particularly, brown seaweeds of the Lessoniaceae family are rich in polysaccharides including
alginic acids, laminarans, fucoidans, phlorotannins, and diterpenes [10]. Ecklonia cava, a brown
alga of this family that contains phlorotannins, has been reported to display diverse biological
activities such as antioxidant effects [11], and its immunomodulatory properties have been associated
with antidiabetic [12], antihypertensive [13], anti-inflammatory [14], radioprotective [15], and anti-
proliferative [16] effects. Egregia menziesii is another marine brown alga belonging to Lessoniaceae family,
distributed in the North Pacific from Alaska to Mexico, whose biological activity is being investigated
due to its close phylogenetic relationship with Ecklonia cava.

In 2012, the World Health Organization (WHO) estimated more than 14 million new cancer cases,
and at least 8.2 million deaths from this cause [17]. Cancers of the central nervous system (CNS) are
among the 15 most common types of cancer in both men and women. Only in 2012, 256,000 new cases
of the CNS cancers and 189,000 deaths, representing 1.8% of new cancers and 2.3% of cancer deaths
were reported [18]. Specifically, glioblastomas are the most frequent and aggressive type of tumors,
and comprises more than 70% of all brain cancers [19].

Currently, cancer treatment is based on chemotherapy and radiotherapy, which have
demonstrated to cause a wide range of side effects. Even though chemotherapy is the most used,
especially to treat patients with metastasis, this therapy shows low specificity to suppress cancer cells
proliferation without a significant damage to normal cells [20]. In this context, compounds from natural
sources with anti-proliferative activity represent an important and novel alternative to treat several
types of cancer. Brown algae are gaining importance due to the proven anti-proliferative properties of
sulfated polysaccharides and fucoidans, which are abundant in these organisms [9]. Phloroglucinol’s
derivatives isolated from Ecklonia cava have a significant anti-proliferative activity over MCF7 human
cancer cells [16]. Likewise, extracts from the brown algae Laminaria japonica inhibit proliferation of
human hepatocellular carcinoma (BEL7402) and murine leukemic cells (P388) [21]. Moreover, some
seaweeds compounds have been tested against several types of glioblastoma cells, demonstrating
suitable results inhibiting cell viability, without normal cell side effects [22].

A great deal of attention has been focused in recent years on exploring the anticancer activity of
biocompounds. Besides the anti-proliferative properties of these compounds, when used in patients,
a diminished record of side effects are present, compared to chemotherapy or hormone treatment [23].
With this in mind, we assess the anticancer activity present in extracts from the brown alga Egregia
menziesii in normal Bergmann glia cell line from chick, and cancer glioma cell lines from mouse, rat
and human. We observed that E. menziesii’s extracts decrease cell viability of glioma cells without
causing damage of normal glia cells.

2. Results

2.1. Cytotoxic Activity of E. menziesii’s Extracts over Artemia Salina Brine Shrimp

The first step to assess the cytotoxic potential of E. menziesii extracts was through the well-
established Artemia salina brine shrimp toxicity test. Two way ANOVA showed that there was
a significant effect of the E. menziesii’s extracts on the viability of A. salina (α = 0.05, F(3, 24) = 380.1,
p < 0.0001), concentrations (α = 0.05, F(2, 24) = 1590, p < 0.0001), and the interaction between E. menziesii’s
extracts and concentrations (α = 0.05, F(6, 24) = 205.6, p < 0.0001) after 24 h of exposure. Specifically,
Figure 1A shows differences in lethal activity profile among extracts. Hx and Chl extracts inhibited
the viability of A. salina shrimp in a dose-dependent manner, whereas exposure of shrimps to MeOH
extract caused death in 20–30% with all tested concentrations. The Hx and Chl extracts showed similar
lethality pattern, the LC50 values for Hx and Chl extracts were in the range of the LC50 of L-ascorbic acid
(LAA), a positive control, LC50 = 169.46± 0.067, 197.39± 0.015, and 150.33± 0.036 µg/mL, respectively.
In contrast, the LC50 of MeOH extract was significantly higher than 1000 µg/mL (Figure 1B).
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Figure 1. Cytotoxic activity of E. menziesii’s extracts over Artemia salina brine shrimp. A) Percentage 
of brine shrimp death at 5, 50 or 500 μg/mL of hexane (Hx), chloroform (Chl) or methanol (MeOH) 
extracts obtained from E. menziesii seaweed for 24 h. L-Ascorbic acid (LAA) and artificial seawater 
were used as positive and negative controls, respectively. Data are expressed as the mean ± SEM of at 
least three independent experiments. Statistical differences were determined by two-way ANOVA, 
and differences among groups by Tukey’s test with multiple comparisons. a–g nomenclature: the 
same lowercase letters on each bar mean there are not differences among treatment values; 
conversely, distinct letters indicate significant differences within treatments (p < 0.01). B) Half 
maximal lethal concentration (LC50) of Hx, Chl and MeOH extracts, and LAA was determined by 
linear regression. 

2.2. Determination of Cytotoxic Activity of E. menziesii’s Extracts against Nervous System Cell Lines 

We evaluated the extracts in four brain cancer cell lines: Mus musculus neuroblastoma (N1E-115); 
Rattus norvegicus glioma (C6); human glioblastoma (U737) and immortalized human Müller cells 
(MIO-M1). A Bergmann glia cell primary culture was used as normal cell control. The cytotoxic 
activity over the nervous system cancer cell lines (C6, MIO-M1, N1-115, and U737) of Hx (α = 0.05, 
F(4, 30) = 1.813 × 106, p < 0.0001), Chl (α = 0.05, F (4, 30) = 1.502 × 107, p < 0.0001), and MeOH (α = 0.05, F(4, 30) 
= 2.625 × 107, p < 0.0001) extracts obtained from E. menziesii at different time of incubation (4 h: α = 
0.05, F(2, 30) = 4441, p < 0.0001; 24 h: α = 0.05, F(2, 30) = 10579, p < 0.0001; 48 h: α = 0.05, F(2, 30) = 2.625 × 107, 
p < 0.0001), and the interaction of cell lines and time of incubation (α = 0.05, F(8, 30) = 1.493 × 106, p < 
0.0001; α = 0.05, F(8, 30) = 7303, p < 0.0001; α = 0.05, F(8, 30) = 2.625 × 107, p < 0.0001) is summarized in Table 
1. The estimation of the IC50 demonstrated that Hx and Chl extracts were the most effective. 
Moreover, the growth inhibitory effect of Hx and Chl extracts seems to be cell-specific, since its effect 
was observed mainly against C6, MIO-M1, and U737 cell lines. Particularly, the Hx extract proved to 
be significantly effective inhibiting the growth of the rat glioblastoma C6 cell line. Exposure of C6 
cells to Hx extract, for 4, 24 and 48 h, significantly diminished their viability from 40 up to 90%, even 
above the inhibition observed in the group treated with 100 μM H2O2, that was 80% (data not shown). 
The IC50 of the Hx extract in C6 cells remains constant after 4 (9.51 ± 1.45 μg/mL), 24 (9.59 ± 1.34 
μg/mL), or 48 h (8.59 ± 0.93 μg/mL) of exposure time (Table 1). On the contrary, the effectiveness of 
Hx extract against MIO-M1 cells increases as a function of the exposure time: after 4 (IC50 > 1000 

Figure 1. Cytotoxic activity of E. menziesii’s extracts over Artemia salina brine shrimp. (A) Percentage
of brine shrimp death at 5, 50 or 500 µg/mL of hexane (Hx), chloroform (Chl) or methanol (MeOH)
extracts obtained from E. menziesii seaweed for 24 h. L-Ascorbic acid (LAA) and artificial seawater
were used as positive and negative controls, respectively. Data are expressed as the mean ± SEM of at
least three independent experiments. Statistical differences were determined by two-way ANOVA,
and differences among groups by Tukey’s test with multiple comparisons. a–g nomenclature: the
same lowercase letters on each bar mean there are not differences among treatment values; conversely,
distinct letters indicate significant differences within treatments (p < 0.01). (B) Half maximal lethal
concentration (LC50) of Hx, Chl and MeOH extracts, and LAA was determined by linear regression.

2.2. Determination of Cytotoxic Activity of E. menziesii’s Extracts against Nervous System Cell Lines

We evaluated the extracts in four brain cancer cell lines: Mus musculus neuroblastoma (N1E-115);
Rattus norvegicus glioma (C6); human glioblastoma (U737) and immortalized human Müller cells
(MIO-M1). A Bergmann glia cell primary culture was used as normal cell control. The cytotoxic
activity over the nervous system cancer cell lines (C6, MIO-M1, N1-115, and U737) of Hx (α = 0.05,
F(4, 30) = 1.813 × 106, p < 0.0001), Chl (α = 0.05, F(4, 30) = 1.502 × 107, p < 0.0001), and MeOH (α = 0.05,
F(4, 30) = 2.625 × 107, p < 0.0001) extracts obtained from E. menziesii at different time of incubation
(4 h: α = 0.05, F(2, 30) = 4441, p < 0.0001; 24 h: α = 0.05, F(2, 30) = 10,579, p < 0.0001; 48 h: α = 0.05,
F(2, 30) = 2.625 × 107, p < 0.0001), and the interaction of cell lines and time of incubation (α = 0.05,
F(8, 30) = 1.493 × 106, p < 0.0001; α = 0.05, F(8, 30) = 7303, p < 0.0001; α = 0.05, F(8, 30) = 2.625 × 107,
p < 0.0001) is summarized in Table 1. The estimation of the IC50 demonstrated that Hx and Chl extracts
were the most effective. Moreover, the growth inhibitory effect of Hx and Chl extracts seems to be
cell-specific, since its effect was observed mainly against C6, MIO-M1, and U737 cell lines. Particularly,
the Hx extract proved to be significantly effective inhibiting the growth of the rat glioblastoma C6 cell
line. Exposure of C6 cells to Hx extract, for 4, 24 and 48 h, significantly diminished their viability from
40 up to 90%, even above the inhibition observed in the group treated with 100 µM H2O2, that was 80%
(data not shown). The IC50 of the Hx extract in C6 cells remains constant after 4 (9.51 ± 1.45 µg/mL),
24 (9.59 ± 1.34 µg/mL), or 48 h (8.59 ± 0.93 µg/mL) of exposure time (Table 1). On the contrary, the
effectiveness of Hx extract against MIO-M1 cells increases as a function of the exposure time: after
4 (IC50 > 1000 µg/mL), 24 (IC50: 88.48± 1.65 µg/mL), and 48 h (IC50: 10.08± 1.98 µg/mL). The growth
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of N1-115 cells after 4 h of exposure to the Hx extract was IC50: 10.94 ± 1.93 µg/mL and surprisingly,
no effects were observed in these cells at 24 and 48 h of exposure time (IC50 > 1000 µg/mL, for both
extracts). In contrast, cytotoxicity was no observed neither in the U737 cell line nor in Bergmann glia
cells (IC50 > 1000 µg/mL).

Table 1. Half maximal inhibitory concentration (IC50) [µg/mL] of the extracts of E. menziesii against
nervous system cancer cell lines.

Cell Line
Hx Chl MeOH

4 h 24 h 48 h 4 h 24 h 48 h 4 h 24 h 48 h

BC >1000 a >1000 c >1000 g >1000 a >1000 e >1000 i >1000 a >1000 b >1000 c

C6 9.51 ± 1.45 b 9.59 ± 1.34 d 8.59 ± 0.93 h 9.82 ± 0.83 b 8.86 ± 1.23 f 7.39 ± 1.43 j >1000 a >1000 b >1000 c

MIO-M1 >1000 a 88.48 ± 1.65 e 10.08 ± 1.98 i 90.11 ± 1.23 c 86.32 ± 1.39 g 9.41 ± 1.93 k >1000 a >1000 b >1000 c

N1-115 10.94 ± 1.93 b >1000 c >1000 g >1000 a >1000 e >1000 i >1000 a >1000 b 10.23 ± 1.23 d

U737 >1000 a 891.96 ± 1.23 f 906.73 ± 1.73 j 105.71 ± 1.83 d 108.85 ± 1.93 h 95.76 ± 1.35 l >1000 a >1000 b >1000 c

BC: Bergmann glia primary culture cells; C6: Rattus norvegicus glioma cell line; MIO-M1: immortalized human
Müller cell line; N1-115: Mus musculus neuroblastoma cell line; U737: human glioblastoma cell line; Hx: Hexanic
extract; Chl: chloroformic extract; MeOH: methanolic extract. IC50 was determined as described in the Materials
and Methods section. Two-way ANOVA and Tukey’s tests with multiple comparisons were performed for each
extract tested, considering α value of 0.05. a–l nomenclature: the same superscript lowercase letters mean there
are no significant differences among the values of each treatment; conversely, distinct letters indicate significant
differences among treatments.

The Chl extract was effective by inhibiting the growth of C6, MIO-M1 and U737 cell lines. The
highest effectiveness of Chl extract was observed in the C6 cell line, it inhibited cell growth with the
same significant efficacy for all examined time periods: IC50: 9.82 ± 0.83 µg/mL, 8.86 ± 1.23 µg/mL,
and 7.39 ± 1.43 µg/mL, after 4, 24 and 48 h of treatment, respectively. In MIO-M1 cells, the growth
inhibition activity of Chl extract increased significantly with respect to the exposure time as observed
in its IC50 after 4 (90.11 ± 1.23 µg/mL), 24 (86.32 ± 1.39 µg/mL), and 48 h (9.41 ± 1.93 µg/mL). The
effect of Chl extract on U737 cells after being exposed during 4 (IC50: 105.71 ± 1.83 µg/mL), 24 (IC50:
108.85 ± 1.93 µg/mL), and 48 h (IC50: 95.76 ± 1.35 µg/mL) is also observed in Table 1. Chl extract
did not show no significant effect in Bergmann glia cells (IC50 > 1000 µg/mL). Assays with the MeOH
extract inhibited the growth of N1-115 cell line just after 48 h of treatment (IC50: 10.23 ± 1.23 µg/mL).
MeOH extract did not show effectiveness inhibiting any other cell line. As observed in Table 1, the Hx
and Chl extracts were the most effective inhibiting the growth of brain cancer cells. To our knowledge,
there are no reports about the antineoplastic activity of seaweeds on brain tumor cells.

2.3. Cytotoxic Activity of E. menziesii Extracts over Human Peripheral Blood Lymphocytes (HPBL)

For many years, it has been accepted that cancer cells proliferate faster than normal cells; therefore
most cancer drugs based therapies are design to target high-rate growing cells [24]. However, normal
cells that grown fast (e.g., bone narrow, hair follicle, gastrointestinal and epidermal cells) are also
largely affected by chemotherapy. Therefore, we evaluated the extracts using human peripheral blood
lymphocytes (HPBL) through trypan-blue exclusion tests. In the assays, the same extract concentrations
of A. salina test were used. Statistical analysis demonstrate that there was a significant effect of the
E. menziesii’s extracts on the viability of HPBL (α = 0.05, F(3, 24) = 491.1, p < 0.0001), concentrations
(α = 0.05, F(2, 24) = 714.3, p < 0.0001), and the interaction between E. menziesii’s extracts and concentrations
(α = 0.05, F(6, 24) = 137.0, p < 0.0001) after 1 h of exposure. Figure 2A shows that all extracts reduced
HPBL viability in a dose-dependent manner. The Hx and Chl extracts inhibited up to 100% of HPBL
growth, and the decreased in cell number resulted dose-dependent (Figure 2). In particular, a decrease
of 20 and 30% was detected at 5 µg/mL, around 70% at 50 µg/mL, and 100% inhibition at 500 µg/mL,
after Hx and Chl exposure. Again, these extracts showed similar effects (IC50 = 91.19 µg/mL and
71.5 µg/mL, respectively); whereas MeOH extract was unable to inhibit more than 30% at 500 µg/mL,
and its LC50 was greater than 1000 µg/mL.
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extracts, and LAA was determined by linear regression. 

2.4. Cytotoxic Activity of E. Menziesii Extracts against Differentiated and Non-Differentiated 3T3-L1 Cell 
Lines 

Considering the cytotoxic activity results of E. menziesii’s extracts on HPBL could be an 
undesirable effect, we used 3T3-L1 fibroblastic cell line (derived from mouse embryo) to evaluate the 
toxicity of our extracts. This cell line can differentiate from fibroblast to adipose cells, moving from a 
fast growth state to a confluent and contact inhibited state [26], through the adipose differentiation 
with insulin and dexamethasone. Two way ANOVA showed that there was a significant effect of the 
E. menziesii extracts against differentiated (α = 0.05, F(2, 18) = 41,369, p < 0.0001) and non-differentiated 
(α = 0.05, F(2, 18) = 146,390, p < 0.0001) 3T3-L1 cell lines, time of incubation (α = 0.05, F(2, 18) = 38,052, p < 
0.0001; α = 0.05, F(2, 18) = 585,555, p < 0.0001, respectively), and the interaction between E. menziesii’s 
extracts and time of incubation (α = 0.05, F(4, 18) = 16,919, p < 0.0001; α = 0.05, F(4, 18) = 146,390, p < 0.0001, 
respectively). As can be observed in Table 2, E. menziesii extracts were most effective inhibiting 
adipocytes than fibroblast. Again, the Hx and Chl extracts exhibit greater cell growth inhibitory 
activity of 3T3-L1 cells than the MeOH extract. However, the extracts inhibited mainly differentiated 
cells, which display slow growing profile. Additionally, MeOH extract did not inhibit the growth of 
non-differentiated 3T3-L1 cells, and it diminished the viability of differentiated cells after 48 h of 
treatment (IC50 = 107.79 ± 2.76 μg/mL). Therefore, we consider that the extracts contain a moderate 
anti-proliferative activity against 3T3-L1 fibroblast and adipose cells. However, it is important to 
perform a most extensive characterization of the anticancer properties of our extracts, using 
commercial cell panels [9]. 

Figure 2. Cytotoxic activity of E. menziesii’s extracts over human peripheral blood lymphocytes (HPBL).
(A) Percentage of growth inhibition of HPBL by the treatment with 5, 50 or 500 µg/mL of hexane
(Hx), chloroform (Chl) or methanol (MeOH) extracts obtained from E. menziesii seaweed for 24 h.
* 10 mM Partenolide [25], and PBS 1X were used as positive and negative controls, respectively. Data
are expressed as the mean ± SEM at least of three independent experiments. Statistical differences
were determined by two-way ANOVA, and differences between groups by Tukey’s test with multiple
comparisons. a–i nomenclature: the same lowercase letters on each bar mean there are no significant
differences among treatment values; conversely, distinct letters indicate significant differences within
treatments. (B) Half lethal maximal concentration (LC50) of Hx, Chl and MeOH extracts, and LAA was
determined by linear regression.

2.4. Cytotoxic Activity of E. menziesii Extracts against Differentiated and Non-Differentiated 3T3-L1
Cell Lines

Considering the cytotoxic activity results of E. menziesii’s extracts on HPBL could be an undesirable
effect, we used 3T3-L1 fibroblastic cell line (derived from mouse embryo) to evaluate the toxicity of our
extracts. This cell line can differentiate from fibroblast to adipose cells, moving from a fast growth state
to a confluent and contact inhibited state [26], through the adipose differentiation with insulin and
dexamethasone. Two way ANOVA showed that there was a significant effect of the E. menziesii extracts
against differentiated (α = 0.05, F(2, 18) = 41,369, p < 0.0001) and non-differentiated (α = 0.05, F(2, 18) =
146,390, p < 0.0001) 3T3-L1 cell lines, time of incubation (α = 0.05, F(2, 18) = 38,052, p < 0.0001; α = 0.05,
F(2, 18) = 585,555, p < 0.0001, respectively), and the interaction between E. menziesii’s extracts and time
of incubation (α = 0.05, F(4, 18) = 16,919, p < 0.0001; α = 0.05, F(4, 18) = 146,390, p < 0.0001, respectively).
As can be observed in Table 2, E. menziesii extracts were most effective inhibiting adipocytes than
fibroblast. Again, the Hx and Chl extracts exhibit greater cell growth inhibitory activity of 3T3-L1 cells
than the MeOH extract. However, the extracts inhibited mainly differentiated cells, which display
slow growing profile. Additionally, MeOH extract did not inhibit the growth of non-differentiated
3T3-L1 cells, and it diminished the viability of differentiated cells after 48 h of treatment (IC50 = 107.79
± 2.76 µg/mL). Therefore, we consider that the extracts contain a moderate anti-proliferative activity
against 3T3-L1 fibroblast and adipose cells. However, it is important to perform a most extensive
characterization of the anticancer properties of our extracts, using commercial cell panels [9].
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Table 2. Half maximal inhibitory concentration (IC50) [µg/mL] of the extracts of E. menziesii against
3T3-L1 cell line.

Extract
Fibroblast State Adipose State

4 h 24 h 48 h 4 h 24 h 48 h

Hx >1000 a >1000 a 105.01 ± 2.12 b >1000 a 110.15 ± 4.15 b 8.78 ± 3.12 c

Chl >1000 c >1000 c 107.79 ± 1.98 d 13.17 ± 3.13 d 109.15 ± 3.11 e 8.46 ± 4.16 d

MeOH >1000 e >1000 e >1000 e >1000 f >1000 f 107.79 ± 2.67 g

Hx: Hexane extract; Chl: chloroform extract; MeOH: methanol extract. To determine IC50 see Materials and Methods
section for details. Two-way ANOVA and Turkey’s test with multiple comparisons were performed for each cell
state, considering α value of 0.05. a–g Same superscript lowercase letters mean there are no statistically significant
differences between the values of each treatment; distinct letters indicate statistically significant differences
between treatments.

3. Discussion

Cancer therapies represent an important challenge to clinicians, pharmaceutical companies and
researchers, due to the large variety of cancer cell behavior within patients. Recently, seaweeds have
attracted significant interest due to the diversity of species that display important anticancer activity [9].
We evaluated brown seaweed E. menziesii, since some species of its family have shown anticancer
activity [16] using different cancer glioma cell lines from mouse, rat and, human as well as normal glia
cells from chick.

The A. salina toxicity test represents a rapid (24 h), inexpensive, and simple assay to evaluate
extracts and pure compounds, from natural and/or synthetic origin [27]; using a large number of
organisms that allows statistical validation; in order to establish their potential cytotoxicity [28].
The results of this type of assay have been compared with other cytotoxicity tests, such as MTT
assay to calculate lethal doses [29], and extrapolate the results to acute toxicity tests in mice [30].
Moreover, A. salina shrimps are resistant to several toxic agents (e.g., heavy metals) [31]. Therefore,
this model constitutes an affordable and straightforward method to assess the toxicity of extracts and
pure compounds. Accordingly, the results obtained in this study show that the Hx and Chl extracts
inhibited up to 100% of A. saline’s growing, and therefore have to be considered as cytotoxic agents.

Brain cancers are difficult to treat due to the diversity of cells that comprise brain tumors, the high
degree of malignancy and spreading potential [32,33]. Nowadays, there are not effective therapies
against brain tumors. Radiation, chemotherapy and surgery, are the most common treatments for this
type of malignancy [34]. Our findings are noteworthy since gliomas are the most common malignant
primary tumors in CNS, which molecular characteristics and modifications make them difficult to
treat [35]. For example, patients presenting glioblastoma multiform, that have been subject to surgery
following of chemo-radiation and chemotherapy, have a median survival of only 14 months [36].
It is well known that glioma cells overexpress anti-oxidant enzymes that correlate with resistance
to chemotherapeutic drugs [32], since the increase of anti-oxidant enzymes has been considered an
adaptive mechanism of cancer cells against chronic stress [37]. This fact is relevant, in this study
although we use glioma cancer cell lines from mouse, rat and human, our results showed that Hx and
Chl extracts are effective by diminishing the viability of glioma cell lines (Table 1).

Usually antineoplastic treatments are unspecific, therefore both healthy and cancer cells are
killed, and this sometimes leads to irreversible organ damage and the development of tolerance to the
treatment [38,39]. Marine origin compounds are demonstrated to have promising selective anticancer
activity [40,41]. Interestingly, our extracts did not diminish the viability of all cell lines tested. When
the C6 cell line was treated, the IC50 of Hx and Chl extracts was around 10 µg/mL, at 4, 24 and 48 h
of treatment. However, further human cell lines are needed to test the selectivity of the extracts. The
carotenoid fucoxanthin diminished cell viability of human glioma cell lines U251 and U87, by promote
apoptosis, inhibit migration and invasion activities on these cells. Moreover, fucoxanthin reduced the
weight and volume of glioma mass in mice [42]. Likewise, the brown seaweed-isolated compound
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aplysin suppresses T98G cells invasion through Akt pathway inhibition [43]. However, future analysis
is required to explore the metabolites associated with E. menziessi’s effects.

Interestingly, Bergmann glia viability was not altered with these same treatments. This inhibition
activity profile was also observed in other seaweeds, e.g., E. cava, E. bycils, and U. pinnatifida, all of
them members of the Lessonaceae family, which showed cell-specific activity against MCF7, HeLa
and HepG2, respectively, without damaging normal cells, used as controls [40,44,45]. This effect was
also observed over other glioma cells treated with seaweeds derivate compounds; that reduced cell
viability of cancer cell lines without causing damage in normal cells [42,43,46]. Additionally, the
methanol-dichlorometane (7:3) extract of E. menziesii did not show cytotoxic activity against HCT-11
colon cancer cells [47]. It has been described that several compounds derivate from seaweeds have
important cytotoxic activity against brain cancer cell lines.

It is also noteworthy that the MeOH extract is non-toxic to any cell line tested (IC50 > 1000 µg/mL),
except for N1-115 cells after 48 h of treatment, which IC50 was similar to those of Hx and Chl extracts
(Table 1). Unexpectedly, the growth brain cell lines derived from human were not inhibited after the
treatment with the extracts.

Even though we do not have evidence about the possible mechanism that mediates the cytotoxic
activity of our extracts, our findings are not associated to a genotoxic event, since trypan-blue
exclusion and MTT methods, evaluate the permeability of cell membrane and the metabolic rate
of the cell, respectively. This is important to mention since several drugs used in chemotherapy are
genotoxic agents, therefore it has been described that these drugs cause more severe DNA damage
to cancer cells, mainly because of their weaker response to DNA damage and impaired DNA repair
mechanisms, whereas in normal cells these drugs would lead to a severe growth arrest and cell
death. Also, it has been suggested that this effect is less evident using general cytotoxic agents [48].
Even though it has been described that seaweeds can induce DNA fragmentation and apoptosis [49],
there are other mechanisms through which seaweeds mediate their anticancer activity, including cell
arrest, p53-dependent and independent apoptosis, increase of the antioxidant cell system, among
others [9]. Specifically, the cytotoxic activity of seaweeds on glioma cells is due to suppression of
invasion, inhibition of angiogenesis, migration; as well as induction of cell arrest, apoptosis and DNA
fragmentation [42,43,46,50]. Furthermore, it has described that these effects are mediated mainly by
the inhibition of the Akt pathway [43,50]. However, other signaling pathways such as the mitogen
activated protein kinases pathway (MAPK), are also modulated by seaweeds [50,51]. Additionally,
fucoidan induces the phosphorylation of p38 MAPK and inducible nitric oxide synthase expression
in C6 glioma expression, which contributes with the anti-inflammatory response against neuronal
damage [52].

Still, we can hypothesize about the possible compounds that could be responsible of the cytotoxic
activity. It has been reported that several compounds such as fucoidans, laminarians, terpenoids, and
polyphenols stated to possess anticancer, anti-tumor and anti-proliferative properties, are abundantly
produced in brown seaweeds [27]. Particularly, the compounds that have shown cytotoxic activity against
glioma cells are fucoidan [52,53]; the polyphenol eckol [50]; the carotenoid fucoxanthin [42]; aplysin [43];
phloroglucinol derivative 2,4-bis(4-fluorophenylacetyl) phloroglucinol [54]; and pheophorbide a [46].
Moreover, polyphenols have anti-oxidant effects that could be acting against glioma cell proliferation,
similar to those effects observed in resveratrol treatments [32]. Furthermore, oxylipins were shown to
have anti-cancer activity against several cancer cell types [55]. Taki-Nakano and colleagues demonstrated
that the oxylipin 12-oxo phytodienoic acid has cytoprotective effect against human neuroblastoma
SH-SY5Y cells, through Nrf2 signaling activation; that protects the cells from ROS-mediated cell
death [56]. Oxylipins have been previously isolated from E. menziesii [57]. “However, future analysis is
required in order to explore the metabolites associated with E. menziesii anti-proliferative effects”.

The delivery of anticancer drugs to brain tumors represents an important challenge for commercial
drug development. The anticancer compounds isolated from seaweeds possessed complex chemical
structures, which [57] in fact, might not cross the brain blood barrier (BBB). However, it has been
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proposed that several compounds from seaweeds (e.g., polysaccharides, fucoidans, and polyphenols
with sugar substituents) are absorbed by the intestine through the SGLT1 and GLUT2 transport
systems [58]. Therefore, we believe that this could be a possible mechanism to deliver the extracts
through the BBB. Still, it is compulsory to probe this hypothesis using our extracts in an in vivo model.

Although a large percentage of commercial synthetic drugs have been developed after the
discovery of the biological activities of natural products, it is also known that the development
of new drugs, especially those intended for use in cancer therapies are expensive, usually take long
time and frequently they are ineffective after the clinical trials. Thereby, prevention could be the main
application of marine natural products like seaweeds [59,60].

In conclusion, the Hx and Chl extracts of E. menziesii seaweed possess growth inhibitory activity
against rat C6 and human MIO-M1 cells. Therefore, this work open the possibility to study the
mechanisms involved in the anticancer activity of seaweeds, against brain cancer cells, and the
development of potential brain tumors drugs.

4. Materials and Methods

4.1. Drugs and Chemicals

Lymphoprep was purchased from Nycomed Pharma (Zürich, Switzerland) and tissue culture
reagents from Gibco Invitrogen (Gaithersburg, MD, USA). All other chemicals were obtained from
Sigma-Aldrich (St. Louis, MO, USA).

4.2. Animals

Chick embryos (10 days old) were kindly donated from Avi-Mex (Mexico City, Mexico) and
maintained at 37 ◦C until used. All experiments were performed following the international guidelines
on the ethical use of animals, under the specific approval of the Animal Ethics Committee of
Cinvestav-Mexico, protocol number 0012-12. All efforts were made to reduce the number of embryos
used and their suffering.

4.3. Seaweed Samples and Preparation of Extracts

Brown seaweed specimens of Egregia menziesii were collected in “Campo No. 5”, Punta Banda,
Baja California, Mexico (31◦44′3.45′′ N; 116◦43′39.95′′ W) during August 2014. Algae were collected
according to normative of Diario Oficial de la Federación [61], and in accordance with Instituto
Nacional de Pesca (INAPESCA) Ensenada. Genus and specie of seaweeds were taxonomically verified
by Oceanologist Luis Aguilar Rosas. All collected samples were gently rinsed with fresh water
(to remove salt, sand and epiphytes), and then air-dried at 25 ± 3 ◦C in the course of 15 days.
E. menziesii’s stipes, fronds, and pneumatocysts were separated manually and compiled. Extracts were
prepared soaking the stipes and fronds in hexane, chloroform or methanol (1:9 w/v), for 20 days at
room temperature. After, the solvent was removed under reduced pressure using a rotary vacuum
evaporator (R300 model, Büchi, Flawil, Switzerland), light-green liquid fractions were obtained, and
lyophilized (Lyobeta 15 model, Telstar, Terrassa, Spain); the obtained dark-green powder was stored at
4 ◦C. The yields of the three extracts are shown in Table 3.

Table 3. Yields of extracts obtained from Egregia menziesii.

Extract Obtained Amount (g) Yield (%)

Hx 1.48 0.25
Chl 2.96 0.49

MeOH 79.65 13.27

Hx: Hexane extract; Chl: chloroform extract; MeOH: methanol extract.



Molecules 2019, 24, 260 9 of 14

4.4. Cytotoxic Activity by Brine Shrimp Lethality Test

A brine shrimp lethality bioassay was carried out to elucidate the cytotoxicity of seaweed extracts
against Artemia salina nauplii, according to an established methodology [62] with minor modifications.
Dried cysts were incubated (1 g cyst L−1) in artificial seawater at 27–30 ◦C for 24 h with strong aeration,
under a continuous light regime. For toxicity test, hatched nauplii were collected with a pipette and
concentrated in a small vial. Every single assay consisted of exposing groups of 10 nauplii to 5, 50 or
500 µg/mL of each of the three E. menziesii’s extracts. L-Ascorbic acid (LAA) and artificial seawater
were used as positive and negative controls, respectively. Toxicity was determined after 24 h exposure
by counting the number of living organisms, and calculating the percentage of mortality. Nauplii
larvae were considered dead if they did not show any movement after 30 s of observing them under
the stereoscope (C-Leds SMZ445 model, Nikon, Tokio, Japan), and their mortality percentage and the
LC50 were calculated by linear regression analysis. Mortality below 50% was considered non-cytotoxic;
mortality higher than 50% but below 75% was considered mildly cytotoxic; and mortality higher than
75% was considered highly cytotoxic according to the criteria of Vinayak et al. [27]. Assays were
carried out in triplicate.

4.5. Lymphocyte Toxicity Test

Peripheral blood samples from healthy non-smokers donor volunteers (20–25 year-old) were
collected by vein puncture according to standard procedures, and used within the 3 h from the
collection. Informed consent was obtained in accordance with the Declaration of Helsinki. Human
peripheral blood lymphocytes (HPBL) were isolated by centrifugation (centrifuge Beckman Coulter
Allegra X-22R model, Brea, CA, USA) on Lymphoprep (Nycomed Pharma, Zürich, Switzerland)
gradients, as described by the manufacturer. Extracts were dissolved in ethanol/water (3:1), and 5,
50 or 500 µg/mL of each extract were placed in triplicate in 24-well tissue culture plates. Thereafter,
1 × 105 HPBL were seeded into these plates for 1 h at 37 ◦C. Partenolid (PrD, 10 mM in DMSO) and
phosphate buffered saline (PBS) were used as positive and negative controls, respectively [25]. After
incubation time, cells were stained with trypan blue and manually quantified in a Neubauer chamber.
Cells’ mortality percentage and the LC50 were calculated by linear regression analyses.

4.6. Cell Culture

4.6.1. Bergmann Glia Primary Cultures

Chick cerebellar Bergmann glia cultures were prepared as previously described [63]. Briefly,
cerebella from 14-day-old chick embryos were dissected and homogenized mechanically. Cells were
plated at a density of 8 × 105 mL−1 in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS), 2 mM glutamine, 100 units/mL penicillin, and 100 µg/mL
streptomycin. Cells were incubated (NU-5720 incubator, Nuaire, Plymouth, MN, USA) at 37 ◦C in 5%
CO2 and used after 5–6 days in culture. As was demonstrated by Ortega et al. [63] immunocytochemical
and kainate-induced ion fluxes of these primary cultures have shown that the vast majority of cultured
cells are Bergmann glia cells. Confluent monolayers were treated as indicated above.

4.6.2. Cell Lines

Mus musculus neuroblastoma (N1E-115), Rattus norvegicus glioma (C6), human glioblastoma
(U737), and Mus musculus fibroblast (3T3-L1) cell lines were obtained from the American Tissue
Culture Collection (ATCC, Manassas, VA, USA). The human Müller cell line Moorfields/Institute of
Ophthalmology- Müller 1 (MIO-M1) was obtained from the UCL Institute of Ophthalmology (London,
UK) [64]. Cells were grown and maintained at 37 ◦C with 5% of CO2 in DMEM supplemented with 10%
FBS, 100 units/mL penicillin, and 50 µg/mL gentamicin. When the cells reached 80% of confluence,
they were seeded at a density of 5 × 103 mL−1 in sterile 96 well tissues culture plates for experimental
treatment and analysis.
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4.6.3. In Vitro 3T3-L Cell Line Differentiation

A total of 5× 103 3T3-L1 cells/well were seeded in complete DMEM medium (10% FCS), at a 80% of
confluence the cells were supplemented with 0.25 µM dexamethasone and 10 µg/mL insulin for 3 days.
Thereafter the cells and shifted to complete DMEM medium with 10 µg/mL insulin for 7 more days.
Adipose differentiation was verified using Oil Red O staining according to Ramirez-Zacarias et al. [65].

4.7. In Vitro Viability Assays

Cell viability was determined by mitochondrial reduction of [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] (MTT) as described by Mosmann et al. [66]. Two days after reaching
confluence, cells were treated during 4, 24 and 48 h with vehicle or 0.1, 1.0, 10, 100, 1000, and 1000 µg/mL
of the seeded extracts. As positive control, the cells were exposed to 100µM H2O2 for 15 min. At indicated
time points, 50 µg/mL of MTT was added and incubated for 4 h. The media was removed and its
absorbance was determined at 570 nm in a microplate reader (EPOCH, Biotek, Winooski, VT, USA).
All plates were put back into the 37 ◦C incubator for 5 min, then transferred again to plate reader and
their absorbance measured at 550 nm to determine the amount of total proteins per well. Data were
represented as the mean ± SEM of OD at 570 nm, and were normalized with the amount of total protein.
For each treatment, vehicle-stimulated cells were considered to have a 100% of viability; vehicles were
each one of the same solvents used to do the extracts (hexane, chloroform and methanol), without
seaweeds. Viability in vehicle-treated cells was not statistically different from non-treated cells (data
not shown). Into the same plate assays were run by triplicate for each tested extract concentration. All
experiments with cell lines were repeated at least 3 times.

4.8. Half Maximal Inhibitory Concentration (IC50) Determination

The IC50 was determined extrapolating the OD data obtained from the dose-response plot. The
extract concentration that reduced the viability of cells by 50% (IC50) was determined by plotting
triplicate data points over a concentration range and calculating values using the linear regression
analysis function of the GraphPad PRISM Software version 5.00 for Mac (San Diego, CA, USA).

4.9. Statistical Analysis

Data are expressed as the mean ± SEM at least of three independent experiments.
Homoscedasticity was evaluated in all data by D’Agostino-Pearson omnibus test. The data presented
a normal distribution, and in all cases parametric analyzes were done. To determine differences
between groups and the interaction effects of the extracts, we performed two-way ANOVA and
Tukey’s test with multiple comparisons, α = 0.05, using PRISM Software version 5.00 for Mac (San
Diego, CA, USA).
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