Supplementary Materials: PeptoGrid — rescoring function for AutoDock Vina to identify new bioactive molecules from short peptide libraries

Arthur O. Zalevsky^{1,2,3}*^(D), Alexander S. Zlobin^{1,3}, Vasilina R. Gedzun⁴, Roman V. Reshetnikov², Maxim L. Lovat⁵, Anton V. Malyshev⁴, Igor I. Doronin⁴, Gennady A. Babkin⁴ and Andrey V. Golovin^{1,2,6}^(D)

1 1. Computational workflow

Figure S1. Scheme of the docking preparation workflow.

Figure S2. Scheme of the PeptoGrid grid calculation and scoring workflow.

2 2. Peptides

WebLogo 3.5.0

Figure S3. Logo of the tripeptide dataset used for ACE benchmark system.

Figure S4. Distribution of docking scores. (**A**) AutoDock Vina energies, (**D**) LeDock energies, (**C**) PLANTS_{CHEMPLP} score, (**B**) PeptoGrid score derived from AutoDock Vina.

WebLogo 3.5.0

Figure S5. Logo of the tetrapeptide dataset used for GABAB screening system.

Sequence	Number of occuerences	Maximum score
PSYG	6	0.97
PYYA	5	1.00
QFLG	2	0.99
RYPS	1	0.97
PVRG	1	0.96
SFSD	1	0.96
VFGK	1	0.95
FLGA	1	0.96
FFVA	1	0.96
PSFS	1	0.98

Table S1. Number of occurrences of peptides from top 20 poses.

3 3. Apparatuses parameters

- 4 3.1. Open Field Test
- ⁵ The "open field" test was carried out in a 4L trapezoid tank. The parameters are shown in Figure
- 6 1. The base, back, and side walls are made of matte black plastic, and the front wall (of smaller length)
- 7 is made of transparent acrylic glass.

Figure S6. Scheme of the open field test tank.

- ⁸ The apparatus for shoal cohesion test is a plexiglass container with a removable partition (Figure
- S7). A "flock" of 5 adult Danio rerio individuals was placed in a small compartment, and the test fish
- ¹⁰ was placed in a large compartment. The tank was illuminated by environmental light (about 200 Lx).

Figure S7. Scheme of the shoaling test tank.