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Abstract: Numerous oxidative transformations of lignan structures have been reported in the literature.
In this paper we present an overview on the current findings in the field. The focus is put on transformations
targeting a specific structure, a specific reaction, or an interconversion of the lignan skeleton. Oxidative
transformations related to biosynthesis, antioxidant measurements, and total syntheses are mostly
excluded. Non-metal mediated as well as metal mediated oxidations are reported, and mechanisms
based on hydrogen abstractions, epoxidations, hydroxylations, and radical reactions are discussed for
the transformation and interconversion of lignan structures. Enzymatic oxidations, photooxidation,
and electrochemical oxidations are also briefly reported.
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1. Introduction

Lignans constitute a group of natural phenolics found in plant species. They have been identified in
around 70 families in the plant kingdom, for example in trees, grasses, grains, and vegetables. Lignans are
found in roots, rhizomes, stems, leaves, seeds, and fruits, from where they are usually isolated through
extraction with an appropriate solvent. They have a diverse structure built up from two phenyl propane
units with different degrees of oxidation in the propane moiety and different substitution patterns in the
aromatic rings. Lignans have been shown to have a wide range of biological activities such as antibacterial
and insecticidal effects in plants, and anti-cancerous, antiviral, anti-inflammatory, immunosuppressive,
anti-diabetic, and antioxidant properties in mammals [1–6]. In addition, many lignans have been
found in different foods and feeds, and have been associated with health benefits, such as antioxidant
activity and anticancer properties [7–10]. The structure and occurrence of lignans have previously
been extensively reviewed in the literature. In some of these reviews the chemical transformations and
oxidative degradations have partially been described, mainly for determination of structures [6,11–16].
More recently, advances in the chemistry of lignans, including transformations and interconversions of
different lignans, were reviewed by Ward [17]. Although synthetic modifications and interconversions
have been extensively reported for lignans, a specific overview on oxidative transformations has not
been published. Oxidative transformations of lignan structures can be found in various fields: in total
synthesis, in biosynthesis, in antioxidant studies, in oxidative degradations, and as part of targeted
chemical transformations. In this paper, we report an overview on oxidative transformations of lignan
structures, where the focus is put on transformations targeting a specific structure, a specific reaction,
or an interconversion of the lignan skeleton. Oxidative transformations related to studies of biosynthetic
routes, antioxidant activities, and total syntheses for coupling phenylpropane units (creating the lignan
skeleton) are mostly excluded. The purpose of this paper is to exemplify the transformations induced
by different reagents or oxidation methods (Table 1). The presented text, figures, and schemes should
be taken as representative examples rather than a comprehensive review of the literature. However,
the most relevant literature in the field is cited.
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Table 1. Various methods for oxidative transformations of lignans.

Non-Metal Ox. Oxidative Transformation Yields Ref.

DDQ Benzylic hydride abstraction and benzylic ring
closures, Ar-Ar-coupling to
dibenzocyclooctadiene, nucleophilic attack,
alcohol oxidation, aromatization

~10–40% [18–37]

mCPBA Epoxidation, Baeyer-Villiger oxidation,
oxidation of ethoxy-THF-lignans to lactones

~70–90% [29,38–42]

peroxyl radical (ROO.) Antioxidative radical scavenging to phenoxyl
radicals and further radical couplings

No data [43–46]

Azo compounds
(AAPH, AIBN, ABTS)

Same as above No data [46–63]

DPPH Same as above, radical 5-5 couplings to dimers
and oxidation of benzylic alcohol to ketone

No data [6,51,64–67]

TEMPO Oxidation of benzylic alcohol to ketone 60% [68]
BAIB and PIFA phenolic hydroxyl oxidation to quinone type

structures, Ar-Ar-coupling to
dibenzocyclooctadienes, nucleophilic attack at
ipso- or benzylic position

~10–80% [69–74]

IBX Aromatic demethylation, benzylic alcohol
oxidation to carbonyl

~25–95% [75–79]

Dess-Martin Periodinane
(DMP)

Benzylic alcohol oxidation to carbonyl,
9,9′-diol oxidation to lactols

>90% [80–89]

NaIO4 Oxidation of guaiacyl or syringyl groups to
demethylated o-quinones, Lemieux–Johnson
oxidation

~50–95% [90–100]

N-Bromosuccinimide (NBS) Brominations (arylic or benzylic), benzylic CH2
to ketone, benzylic ring closure and
aromatization

75–90% [35,101–107]

Dimethyldioxirane (DMDO) Oxidative ring opening of furan rings ~80% [108]
Nitrobenzene Oxidative degradation to vanillin and

vanillic acid
80–100% [109–111]

Metal-Mediated Ox. Oxidative Transformation Yields Ref.

Cr-(VI)
(CrO3, PCC, PDC)

Oxidation of benzylic alcohols to ketones,
primary alcohols into lactones and
carboxylic acid

~60–95% [87,103,105,
112–120]

Pd, Au Oxidation of benzylic alcohols in presence of
free phenolic into (mainly) ketone

No data [121–126]

MoOPH α-Hydroxylation ~25–95% [113,127–131]
MoCl5 Ar-Ar-coupling to dibenzocyclooctadienes ~50–90% [132,133]

VoF3; V2O5; Tl2O3; RuO5 Ar-Ar-coupling to dibenzocyclooctadienes,
benzylic ring closure

~50–100% [134–147]

MTO (catalyst) Aromatic demethylation and quinone
formation and simultaneous benzylic alcohol
oxidation to ketones, benzylic cleavage,
benzylic hydroxylation, oxidation of benzylic
alcohol to ketone

~40–100% [148–150]

Pb(OAc)4 Benzylic acetoxylation ~30–70% [151]
CeCl3 α-Hydroxylation 71% [152]

Other Oxidations Oxidative Transformation Yields Ref.

Enzymatic ox.

peroxidase Benzylic ring closure 37–99% [153–155]
HRP Radical 4-O-5 coupling 3.6% [156]
SDH Oxidation of diol to lactone No data [157]

P450/CPR1 Arylic hydroxylation and rearrangement No data [158]
CYP Benzylic hydroxylation 90% [159]

Electrochemical ox.
Demethylation, quinone formation, and
benzylic ring closure

No data [160]

Ar-Ar-coupling to dibenzocyclooctadiene >80% [161]
Photooxidation Benzylic: cleavage/alcohol oxidation to

ketone/ring closure/nucleophilic attack
No data [162]
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2. Non-Metal-Mediated Oxidations

2.1. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (or DDQ)

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has been used to promote benzylic
functionalization of lignans by abstraction of a hydride from the benzylic position. The benzylic cation
can then be a target for either intramolecular ring closure or nucleophilic attack. The nucleophilicity of
the solvent can direct the reaction towards either benzylic ring closure to aryltetralins, or to aryl-aryl
coupling to cyclooctadienes, or toward nucleophilic attack by the solvent. In the latter case, a nucleophilic
solvent such as AcOH can function as an oxygen donor. As an example, (−)-dehydroxycubebin was
oxidized by DDQ in AcOH, and reacted by either benzylic ring closure to an aryltetralin (1), or by
O-acetylation through nucleophilic attack at the benzylic position (2) [18] (Scheme 1). When the solvent
was changed to the more acidic and less nucleophilic trifluoroacetic acid (TFA), aryl-aryl coupling to
a dibenzocyclooctadiene (3) was favored [19–27].
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Another example of benzylic O-acetylation is shown in Scheme 2. Tomioka et al. reported that the
dibenzocyclooctadiene lignan known as (+)-isostegane could be O-acetylated at the benzylic position
by DDQ in acetic acid, forming (+)-steganacin (Scheme 2) [28].Molecules 2019, 24, x 4 of 38 
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Scheme 2. Benzylic O-acetylation of (+)-isostegane by 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ) in AcOH.

A DDQ/TFA-mediated reaction of an epoxy-lignan (5), formed through mCPBA epoxidation of
an olefinic lignan (4), did not form the cyclooctadiene as expected. Instead, TFA-induced epoxide
opening and methyl or benzyl group rearrangement to two intermediates preceded DDQ mediated
ring closure to 6 and 7 (Scheme 3) [29]. One intermediate underwent the previously described ring
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closure to a cyclooctadiene, while the other went through benzylic ring closure to a cyclohexanone,
with subsequent ring closure to a benzofuran.
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DDQ has also been used for benzylic dehydrogenation of lignan structures to olefins, and in some cases
further aromatization to naphthalene type lignans [23,30–32]. One example of benzylic olefin formation
is visualized in Scheme 4 by the DDQ oxidation of the natural lignan hydroxymatairesinol (HMR) [33,34].
Due to different stereoelectronic properties at the benzylic alcohol for the hydroxymatairesinol epimers,
the oxidation reaction resulted in different major products, of which oxomatairesinol had the highest yield.
A range of minor products, which are not shown here, were also formed in the reactions.Molecules 2019, 24, x 5 of 38 
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Scheme 4. Oxidation of hydroxymatairesinol (HMR) by DDQ is dependent on the stereochemistry of
the benzylic alcohol position. The major products are shown here. A range of minor products were
also formed in the reactions.

An example of DDQ-mediated aromatization of lignans is shown in Scheme 5, for the aromatization
of isodeoxypodophyllotoxin [35].



Molecules 2019, 24, 300 5 of 37

Molecules 2019, 24, x 5 of 38 

 

 
Scheme 4. Oxidation of hydroxymatairesinol (HMR) by DDQ is dependent on the stereochemistry of 
the benzylic alcohol position. The major products are shown here. A range of minor products were 
also formed in the reactions. 

An example of DDQ-mediated aromatization of lignans is shown in Scheme 5, for the 
aromatization of isodeoxypodophyllotoxin [35]. 

 
Scheme 5. DDQ-mediated aromatization of isodeoxypodophyllotoxin. 

When gmelinol reacted with three equivalents of DDQ it underwent benzylic hydride 
abstraction and C-C-bond rearrangement, followed by an oxidative ring opening of an ether bridge 
to form an aldehyde, and finally, another benzylic hydride abstraction and formation of olefin (8) 
[36]. The reaction is visualized in Scheme 6. 

 
Scheme 6. Oxidation of gmelinol with three equivalents DDQ. 

DDQ-mediated epimerization followed by nucleophilic ring closure at the benzylic position is 
visualized in Scheme 7 on a lignan (9) synthesized from gmelinol [37]. The epimerization step may 
go through benzylic hydride abstraction, leading to adjacent C-C bond cleavage and regeneration. 
One epimer (10) is favored as it can undergo nucleophilic attack at the positively charged benzylic 
position, forming product 11.  

Scheme 5. DDQ-mediated aromatization of isodeoxypodophyllotoxin.

When gmelinol reacted with three equivalents of DDQ it underwent benzylic hydride abstraction and
C-C-bond rearrangement, followed by an oxidative ring opening of an ether bridge to form an aldehyde,
and finally, another benzylic hydride abstraction and formation of olefin (8) [36]. The reaction is visualized
in Scheme 6.
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Scheme 6. Oxidation of gmelinol with three equivalents DDQ.

DDQ-mediated epimerization followed by nucleophilic ring closure at the benzylic position is
visualized in Scheme 7 on a lignan (9) synthesized from gmelinol [37]. The epimerization step may
go through benzylic hydride abstraction, leading to adjacent C-C bond cleavage and regeneration.
One epimer (10) is favored as it can undergo nucleophilic attack at the positively charged benzylic
position, forming product 11.
Molecules 2019, 24, x 6 of 38 
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2.2. Meta-Chloroperoxybenzoic Acid (mCPBA)

Epoxidation of olefinic lignans with mCPBA has been reported, as previously shown in
Scheme 3 [29,38].

The Bayer-Villiger oxidation of ketones with mCPBA has also been reported for lignans.
The 3,7-dioxobicyclo[3,3,0]octane lignan 12 gave the corresponding dilactone product 13 (Scheme 8) [39,40].
In the total synthesis of taiwanin E, the last two steps consist of Baeyer-Villiger of an aldehyde (14) to the
corresponding formate (15), followed by hydrolysis by MeOH and K2CO3 to the alcohol (Scheme 9) [41].
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In addition, mCPBA and Lewis acid mediated oxidation of an ethoxy-THF-lignan (16) to a lactone
(17) has been reported (Scheme 10) [42].Molecules 2019, 24, x 7 of 38 
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2.3. Oxidations by Peroxyl Radical

Radical scavenging of peroxyl radicals has been utilized for measuring antioxidant activity
for natural phenolics, including flavonoids [43,44] and lignans [45,46]. The antioxidant activity of
lignans is caused by their efficiency to scavenge radicals through hydrogen abstraction, forming
phenoxyl radicals. However, in the process, the lignan structure is oxidized and undergoes various
transformations. The highly antioxidant active lignan known as secoisolariciresinol was oxidized
by two ethyl linoleate peroxide radicals induced by azobisisobutyronitrile (AIBN) to a quinone-like
intermediate (18), which formed the lignan lariciresinol through trans-selective ring closure. As a side
reaction, a peroxyl radical also undertook radical coupling at the ipso-position of the phenoxyl radical
intermediate to 19 (Scheme 11) [45,46].
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2.4. Azo Compounds (AAPH, AIBN and ABTS)

2,2′-Azobis(2-amidinopropan) dihydrochloride (AAPH or ABAP), azobisisobutyronitrile (AIBN),
and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) are radical initiators often used in
studies of oxidative stability of drugs and proteins, and of antioxidative activity in, among others,
food supplements and natural products [47–49]. These azo compounds undergo thermal degradation
under release of N2, and formation of two amidino propane (from AAPH) or isobutyronitrile (from
AIBN) radicals. These radicals can be transformed into other reactive radical species depending on the
reaction environment, for example by oxygen addition into peroxyl radicals [50].

Studies on antioxidant activity on a range of lignans have been done using AAPH, but only in
some cases the major oxidation products have been characterized [51–56]. Upon radical scavenging,
the lignans form phenoxyl radicals with their radical delocalized over the phenolic ring, followed by
radical coupling at either the ipso- or meta-position, or through the para phenoxyl radical. Alternatively,
a second radical reaction yields a quinone methide intermediate that reacts further through an ionic
mechanism, as shown in Scheme 11 for 18. As an example, secoisolariciresinol primarily reacted
through an aryl-aryl coupling, the so called 5-5 coupling, to dimer 20, and through phenoxyl or
meta-coupling with an amidino propane radical from AAPH to 21 and 22 respectively [57]. Further
hydrolysis of the meta-coupled amidino propane unit formed a furanone product (23). Lariciresinol
was also formed through a similar mechanism as described above (in Scheme 11) for peroxyl radicals.
Uniquely for secoisolariciresinol, an alternative radical scavenging path is possible. In this path,
an intermediate with alkoxyl radicals on one or both aliphatic hydroxyls, reacts through radical
coupling with another hydroxyl radical, forming dimer 24, or with water, forming hydroperoxides (25)
(Scheme 12).

As described in the previous chapter, AIBN has been used as a radical initiator for peroxyl radicals
in antioxidant studies on lignans [46]. As shown in Scheme 11, a possible antioxidant product is
formed through ipso-coupling of the lignan with an AIBN derived peroxide. AIBN has also been used
in total synthesis of a range of lignans, in aryl halide and Ru3SnH/AIBN initiated radical aryl-aryl
couplings [58], and in (Me3Si)3SiH/AIBN promoted radical conversion of a thionocarbonate to a lignan
lactone [59]. The radical initiator ABTS has also been used for antioxidant studies on lignans [60–63],
in the so called trolox equivalent antioxidant capacity (TEAC) assays [163]. However, no systematic
study on the formed oxidation products by AIBN or ABTS has been done, excluding the product 19.
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2.5. 2,2-Diphenyl-1-picrylhydrazyl (DPPH)

DPPH is a stable nitrogen centered free radical that is commonly used for antioxidant assays [64,65].
It has been vastly used for antioxidant assays on lignans [6,66]. Eklund et al. [51] and Smeds et al. [67]
investigated the antioxidant mechanism for the DPPH-initiated radical scavenging of different lignans.
Upon radical scavenging, the lignan intermediates underwent further radical abstractions or aryl
couplings to form dimers and oligomers by 5-5′- or 5-O-4′-couplings. An example is shown in
Scheme 13 for the reaction between HMR and DPPH. The two major reaction paths, following the
initial radical abstraction, were the intramolecular radical coupling forming an aryl-aryl dimer (26),
or a second radical abstraction and rearrangement to the lignan oxomatairesinol. Further coupling of
the dimeric structure also formed larger oligomers.
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2.6. 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO)

The free radical organocatalyst TEMPO has been used in combination with a number of different
oxidants. For decades it has been used for oxidation of primary and secondary alcohols [164–166].
Surprisingly, TEMPO has not been widely used for the oxidation of lignans. However, a TEMPO-catalyzed
oxidation of the benzylic hydroxyl on podophyllotoxin to the corresponding ketone (podophyllotoxone)
has been reported (Scheme 14) [68]. Sodium periodate (NaIO4) was used as the oxidant in the presence
of NaBr as the co-catalyst.
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2.7. Hypervalent Iodine Reagents

The hypervalent iodine reagents BAIB, PIFA, IBX, DMP, and NaIO4 have been used in numerous
studies for mild oxidation of lignan structures. Efficient oxidation of primary and benzylic alcohols
into carbonyls, and phenolics into quinones have been reported. In addition, PIFA has been used for
arylic coupling to form benzocyclooctadienes.
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2.7.1. [Bis(acetoxy)iodo]benzene (BAIB or PIDA) and [Bis(trifluoroacetoxy)iodo]benzene (PIFA)

Diphyllin was oxidized by BAIB or PIFA through phenolic hydroxyl oxidation and nucleophilic
attack to a para-quinone type product (27) (Scheme 15) [69].
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started from ferulic acid. Firstly, a diarylcyclobutanediol intermediate (31) was made through a three-
step synthesis, involving para-nitro-esterification of the carboxylic acid, light induced [2 + 2] coupling, 
and finally reduction of the para-nitro esters with LAH. This intermediate was then oxidatively ring 
opened to a di-para-quinone methide (32) by BAIB in TFE and acetone, followed by 5-exo-trig 
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Scheme 15. Bis(trifluoroacetoxy)iodo benzene (PIFA) or Bis(acetoxy)iodo benzene (BAIB)-mediated
oxidation of diphyllin.

Lignans have also been ring closed to cyclooctadienes by PIFA in TFE (Scheme 16, upper reaction
path). The initial step is believed to be cyclization to a spirodienone intermediate (28) that undergoes
rearrangement to the cyclooctadiene product (29). In the cases where a lignan has a para-hydroxyl
group, in addition to the cyclooctadiene product, nucleophilic addition at ipso-position to 30 was
reported when using a more nucleophilic solvent such as methanol (Scheme 16, lower reaction
path) [70–73]. Other minor products were also formed.
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Scheme 16. Lignan oxidation by PIFA in TFE or MeOH. With TFE as the solvent, the major reaction was
formation of the cyclooctadiene. In methanol, nucleophilic attack occurred as an additional reaction.

BAIB has also been utilized in the total synthesis of the natural lignan (±)-tanegool. The synthesis
started from ferulic acid. Firstly, a diarylcyclobutanediol intermediate (31) was made through a three-step
synthesis, involving para-nitro-esterification of the carboxylic acid, light induced [2 + 2] coupling,
and finally reduction of the para-nitro esters with LAH. This intermediate was then oxidatively ring
opened to a di-para-quinone methide (32) by BAIB in TFE and acetone, followed by 5-exo-trig cyclization,
by one of the hydroxyls, to 33. The cyclization was stereoselective due to steric hindrance of the bulky
aromatic rings. Finally, hydration by addition of water gave (±)-tanegool (Scheme 17) [74].
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2.7.2. 3-Iodobenzoic Acid (IBX)

A green and selective demethylation reaction, using IBX as the primary oxidant, has been reported
for a number of lignans [75]. The substrates underwent oxidation to an o-quinone structure, followed
by reduction by sodium hydrosulfite to the catechol products. The reaction was selective towards
demethylation of phenolic methoxyl groups, leaving methyl esters intact. Scheme 18 shows the IBX
oxidation of a methyl ester norlignan (34). The reaction mixture was acetylated prior to purification
through silica gel column chromatography, giving 35. The same reaction was also successful on the
lignans hydroxymatairesinol (product yield = 55%), conidendrin (product yield = 70%), and lariciresinol
(product yield = 40%), yielding demethylated products.

Molecules 2019, 24, x 11 of 38 

 

 
Scheme 17. Total synthesis of (±)-tanegool involving BAIB mediated oxidative ring opening. 

2.7.2. 3-Iodobenzoic Acid (IBX) 

A green and selective demethylation reaction, using IBX as the primary oxidant, has been 
reported for a number of lignans [75]. The substrates underwent oxidation to an o-quinone structure, 
followed by reduction by sodium hydrosulfite to the catechol products. The reaction was selective 
towards demethylation of phenolic methoxyl groups, leaving methyl esters intact. Scheme 18 shows 
the IBX oxidation of a methyl ester norlignan (34). The reaction mixture was acetylated prior to 
purification through silica gel column chromatography, giving 35. The same reaction was also 
successful on the lignans hydroxymatairesinol (product yield = 55%), conidendrin (product yield = 
70%), and lariciresinol (product yield = 40%), yielding demethylated products. 

 
Scheme 18. Selective 3-Iodobenzoic Acid (IBX)-mediated demethylation of a norlignan. 

When an aliphatic or benzylic alcohol was present, alcohol oxidation to a carbonyl outweighed 
the demethylation reaction [76]. Scheme 19 shows the selective oxidation of the benzylic alcohol in a 
synthetic lignan (37) to the corresponding ketone (38). Alternatively, after removal of the protective 
group, the product was oxidized to the diketone (36). Both of these reactions left the methoxyl groups 
intact [77]. Benzylic alcohol oxidations by IBX have also been reported on other lignans under similar 
reaction conditions. Both epi-aristoligone and magnolone have been prepared by this method [78,79] 
(Scheme 19). 

Scheme 18. Selective 3-Iodobenzoic Acid (IBX)-mediated demethylation of a norlignan.

When an aliphatic or benzylic alcohol was present, alcohol oxidation to a carbonyl outweighed
the demethylation reaction [76]. Scheme 19 shows the selective oxidation of the benzylic alcohol in
a synthetic lignan (37) to the corresponding ketone (38). Alternatively, after removal of the protective
group, the product was oxidized to the diketone (36). Both of these reactions left the methoxyl groups
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intact [77]. Benzylic alcohol oxidations by IBX have also been reported on other lignans under similar
reaction conditions. Both epi-aristoligone and magnolone have been prepared by this method [78,79]
(Scheme 19).Molecules 2019, 24, x 12 of 38 
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2.7.3. Dess-Martin Periodinane (DMP)

DMP has been reported as an agent for mild and selective oxidation of alcohols to aldehydes and
ketones. It has a higher solubility compared to its precursor IBX, and lacks the danger of explosion [80].

Oxidation of lignans baring benzylic or aliphatic hydroxyls to the corresponding ketones by DMP
have been described for various lignans [81–86]. An example is shown in Scheme 20 for oxidation of
isopicrosteganol to the atropisomers of picrosteganone [87]. Scheme 21a shows the oxidation of an
aliphatic primary diol (39) with DMP [88]. The reaction quantitatively forms a lactol known as cis-cubebin
through subsequent ring closure of the aldehyde. A similar ring closure has been reported by DMP
oxidation of a lignan baring a hydroxyl group and a carboxylic acid (40), forming a hydroxy-butyrolactone
(41, Scheme 21b) [89].
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2.7.4. Sodium Periodate (NaIO4)

In 1955, Adler et al. [90] reported NaIO4 mediated oxidation of guaiacyl or syringyl groups,
giving demethylation followed by formation of o-quinones. When a syringyl lignan (42) with aliphatic
hydroxyls was oxidized with NaIO4, it formed a 5-methoxyl o-quinone structure (43) with an ether
bridge to the ortho-position (Scheme 22) [91]. For lignans without aliphatic hydroxyls, as for 44,
the o-quinone structures were formed without the ether bridge (45, Scheme 23) [92–94].
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In the total synthesis of sylvone, the final steps consisted of the so-called Lemieux–Johnson
oxidation. A vicinal diol (47) was formed from an alkene (46) by OsO4, and then a NaIO4-mediated
oxidative cleavage of the vicinal diol gave the ketone (sylvone) and formaldehyde (Scheme 24) [95].
Lemieux-Johnson oxidation has been used on other lignans as well, giving ketone products in high
yields, as shown in Scheme 24 [96–100].
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2.8. N-Bromosuccinimide (NBS)

The Wohl-Ziegler reaction using NBS and a radical initiator to promote arylic or benzylic
bromination has been widely used, and also applied to lignans. Tomioka et al. reported a benzylic
bromination of (−)-stegane by NBS in CCl4, using benzoyl peroxide (BPO) as the radical initiator [101].
The formed 4-bromostegane yielded (−)-steganone after hydrolysis in aqueous THF, with an overall
yield of 85% (Scheme 25). By further acetylation, the desired product (−)-steganacin was obtained in
72% yield. Similar results were also achieved starting from stegane, a stereoisomer of (+)-isostegane [35].
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By using a solvent with increased polarity, NBS can also be used to oxidize alcohols to aldehydes
and ketones [102]. This has been imposed on a photolytic NBS-mediated oxidation of lignan 48,
using dioxane as the solvent, forming a benzylic ketone (49) product in high yield (Scheme 26) [103].
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The reaction was proposed to proceed through bromination of the benzylic position, followed by
hydrolysis by water to a hydroxyl, and finally oxidation to the corresponding ketone.
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When a similar method was applied to deoxypodophyllotoxin by a reaction with NBS in DMF,
only arylic bromination occurred (50, Scheme 27) [104]. To get the benzylic ketone, NBS-BPO oxidation
in CCl4 followed by hydrolysis was employed. The product epipodophyllotoxine was further
oxidized by pyridinium chlorochromate (PCC) to podophyllotoxone. Interestingly, in addition to
epipodophyllotoxine, the NBS-mediated reaction also yielded dehydroxypodophyllotoxin through
oxidative aromatization [105].
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epipodophyllotoxine by PCC to the corresponding ketone (podophyllotoxone).

A similar naphthalene type lignan, known as justicidin B, was formed through NBS-treatment of
jatrophan in CCl4 (Scheme 28) [106,107]. The reaction includes trans-cis-isomerization, oxidative ring
closure, and dehydrogenation.
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Reports from the 1950s and 1960s show oxidative degradation of lignans to vanillin, vanillic acid, 
and syringaldehyde, using nitrobenzene as the oxidant. Nitrobenzene oxidation of thujaplicatin and 
dihydroxythujaplicatin, which are lignans found in western red cedar, gave vanillin as the sole 
product, but only in approximately 2% yield [109,110]. Thujaplicatin methyl ether, with the meta-
hydroxyl protected as a methoxyl group, gave around 4% of both vanillin and syringaldehyde upon 
nitrobenzene oxidation. Another study systematically oxidized a range of lignans under the 
following conditions: 180 °C, 60 ml of 2 M NaOH and 8 mL nitrobenzene per gram of lignan. The 
reaction time was 2 h. The results are listed in Table 2 [111]. Similarly, nitrobenzene has also been 
used for the production of vanillin from industrial lignin [167].  

Table 2. Results of nitrobenzene-mediated oxidative degradation of lignans. 

Lignan Vanillin 
% 

Vanillic Acid 
% 

Conversion 
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Pinoresinol 31 9 81 
Lariciresinol 63 5 100 

Olivil 83 3 100 
Matairesinol 15 2 100 
Conidendri

n 
1 - - 

Isoolivil 3 - - 

Scheme 28. Synthesis of justicidin B by NBS-oxidation of jetrophan.

2.9. Dimethyldioxirane (DMDO or DMD)

A highly selective ring opening of asarinin to a diastereomerically pure product (52) when using
DMDO has been reported (Scheme 29) [108]. With one equivalent of DMDO, a selective ring opening
was achieved at the C-7 with R configuration, while the other furan ring remained unaltered (51).
DMDO was highly reactive towards the substrate, and the reaction needed to be performed at −20 ◦C.
If more than one equivalent of DMDO was used, the reaction was believed to go through a radical
mechanism yielding a mixture of products. However, after acetylation of the product, ring opening of
the second furan ring was achieved under the same conditions as previously used, only with a slightly
lower yield.
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2.10. Nitrobenzene

Reports from the 1950s and 1960s show oxidative degradation of lignans to vanillin, vanillic acid,
and syringaldehyde, using nitrobenzene as the oxidant. Nitrobenzene oxidation of thujaplicatin and
dihydroxythujaplicatin, which are lignans found in western red cedar, gave vanillin as the sole product,
but only in approximately 2% yield [109,110]. Thujaplicatin methyl ether, with the meta-hydroxyl
protected as a methoxyl group, gave around 4% of both vanillin and syringaldehyde upon nitrobenzene
oxidation. Another study systematically oxidized a range of lignans under the following conditions:
180 ◦C, 60 ml of 2 M NaOH and 8 mL nitrobenzene per gram of lignan. The reaction time was 2 h.
The results are listed in Table 2 [111]. Similarly, nitrobenzene has also been used for the production of
vanillin from industrial lignin [167].

Table 2. Results of nitrobenzene-mediated oxidative degradation of lignans.

Lignan Vanillin % Vanillic Acid % Conversion %

Pinoresinol 31 9 81
Lariciresinol 63 5 100

Olivil 83 3 100
Matairesinol 15 2 100
Conidendrin 1 - -

Isoolivil 3 - -
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3. Metal-Mediated Oxidations

Oxidation of lignans using metal reagents could be divided into methods which use equimolar
amounts or catalytic amounts of the metal oxidant.

Catalytic reactions usually employ transition metals in heterogenous or homogenous conditions
and may be sensitive for different functional groups or heteroatoms. Equimolar metal oxidants
are widely used for all types of oxidation of lignans, and may involve one-electron oxidations or
ionic mechanisms.

3.1. Chromium (VI) Oxidations

There are many examples of Chromium (VI) oxidation of benzylic alcohols to ketones in different
lignan structures. Acyclic matairesinol derivatives, [112–114], cyclooctadiene structures (53–56) [87,115],
and podophyllotoxin derivatives have all been oxidized by CrO3 or PCC to the corresponding ketone
in relatively high yields (60–95%) [103,105,116,117] (Scheme 30).
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Cr(VI) mediated oxidation of primary alcohols in the lignan structures (57) has also been performed.
Oxidation by PCC or CrO3 led to lactones and carboxylic acids (58 and 59) [118–120] (Scheme 31).

There are no literature examples where chromium (VI) oxidants have successfully been used
for oxidation of lignans in the presence of free phenolic groups. Therefore, it can be concluded that
chromium mediated oxidations cannot be performed when phenolic groups are present in the structure.
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3.2. Palladium and Gold Mediated Oxidations

Oxidation of benzylic alcohols in the presence of free phenolic groups has been achieved
by transition metal catalysis. Hydroxymatairesinol (HMR) has been shown to undergo catalytic
dehydrogenation in mild conditions, using palladium on different supporting materials [121]
(Scheme 32). The major oxidation product was oxomatairesinol, however, hydrogen formed during
the dehydrogenation partially reacted with HMR by hydrogenolysis to give a significant amount
of matairesinol as a side product. Later on, it was shown that the same transformation could
also be performed using gold as a catalyst [121]. This method was much more selective towards
oxomatairesinol [123] and showed faster conversion in the presence of oxygen [124–126]. It is
noteworthy that one diastereomer of HMR gave oxomatairesinol much more selectively and with
higher conversion rates, but some conidendrin was also formed as a side product depending on the
conditions of the reaction.

Molecules 2019, 24, x 18 of 38 

 

. 

Scheme 31. Oxidation of the primary alcohols by Cr(VI) oxidants. The dotted line corresponds to 
either the existence of the bond or the absence of the bond. 

There are no literature examples where chromium (VI) oxidants have successfully been used for 
oxidation of lignans in the presence of free phenolic groups. Therefore, it can be concluded that 
chromium mediated oxidations cannot be performed when phenolic groups are present in the 
structure. 

3.2. Palladium and Gold Mediated Oxidations 

Oxidation of benzylic alcohols in the presence of free phenolic groups has been achieved by 
transition metal catalysis. Hydroxymatairesinol (HMR) has been shown to undergo catalytic 
dehydrogenation in mild conditions, using palladium on different supporting materials [121] 
(Scheme 32). The major oxidation product was oxomatairesinol, however, hydrogen formed during 
the dehydrogenation partially reacted with HMR by hydrogenolysis to give a significant amount of 
matairesinol as a side product. Later on, it was shown that the same transformation could also be 
performed using gold as a catalyst [121]. This method was much more selective towards 
oxomatairesinol [123] and showed faster conversion in the presence of oxygen [124–126]. It is 
noteworthy that one diastereomer of HMR gave oxomatairesinol much more selectively and with 
higher conversion rates, but some conidendrin was also formed as a side product depending on the 
conditions of the reaction. 

 
Scheme 32. Palladium and gold catalyzed oxidation (dehydrogenation) of hydroxymatairesinol. 

3.3. Molybdenium Mediated Oxidations 

Hydroxylation at the α-position of butyrolactone lignans (60) has been performed directly on 
the deprotonated ester by molecular oxygen [127,128]. However, this reaction proceeded much faster 
and with better selectivity when molybdenum reagents were used. For this purpose, 
oxodiperoxymolybdenum (pyridine) (hexamethylphosphoric triamide), MoO5·Py·HMPA(MoOPH), 

Scheme 32. Palladium and gold catalyzed oxidation (dehydrogenation) of hydroxymatairesinol.

3.3. Molybdenium Mediated Oxidations

Hydroxylation at the α-position of butyrolactone lignans (60) has been performed directly
on the deprotonated ester by molecular oxygen [127,128]. However, this reaction proceeded
much faster and with better selectivity when molybdenum reagents were used. For this purpose,
oxodiperoxymolybdenum (pyridine) (hexamethylphosphoric triamide), MoO5·Py·HMPA(MoOPH),
also known as Vedejs’ reagent was used [113,129–131]. The stereoselectivity of the oxidation was very
much dependent on the base and the conditions used for the deprotonation. For example, if KHMDS was
used, the diastereomeric excess of one isomer was just 11% [113,130]. At the same time, when KHMDS
was used together with 18-crown-6, the selectivity raised to 64–99% [130,131] (Scheme 33).
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Molybdenum reagents have also been used for the preparation of 2-2′-cyclolignan structures.
Oxidative coupling of two aryls was performed with molybdenum pentachloride (MoCl5) [132,133].
The formation of the cyclooctadiene structure proceeded with excellent yields when the substrates
were non-functionalized aliphatics, but the yields decreased dramatically with increasing degree of
functionalization (Scheme 34).
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The formation of the cyclooctadiene structure proceeded with excellent yields when the substrates 
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3.4. Vanadium, Thallium and Ruthenium Oxidations

Oxidative coupling has also been reported using V, Tl, and Ru. Vanadinum oxofluoride in the
presence of trifluoroacetic acid has shown good selectivity for the Ar-Ar oxidative coupling, forming
the cyclooctadiene lignan structure Isostegnane in high yield [134] (Scheme 35).
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In many of these reactions, 2-7′-cyclolignans (74) and (77) were formed as minor products by
oxidation of the benzylic positions [140,142–144] (Scheme 37).

Interestingly, these reactions also proceeded in the presence of a free phenolic group. Yields up to
90% of 79 were obtained with matairesinol derivatives (78) [137,144–146] (Scheme 38).

It has also been reported by Planchenault et al. [145,147] that some metal oxidants other than Mo,
V, Ru, and Tl, such as Mn(OAc)3, Ce(OH)4, Re2O7, Fe(OH)(OAc)2, Co3O4, Ag(OCOCF3)2, CrO3, IrO2,
Pr6O11, SeO2, TeO2 etc., are possible to use for high yield preparations of cyclooctadiene-lignans.
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3.5. Methyl Trioxo-Rhenium (MTO) Catalyzed Oxidations

MTO catalyzed oxidations are interesting because of the diversity of possible transformations.
For example, podophyllotoxin and related structures (81) were oxidized to quinone structures (80 and 82)
by MTO [148] (Scheme 39). The reaction proceeded via demethylation, hydroxylations, and at the
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When asaranin and sesaminin were treated with MTO in similar conditions, the reaction resulted
in cleavage at the benzylic position to yield lactones (83 and 84) [149]. (Scheme 40).
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MTO catalyzed reactions with lariciresinol, matairesinol and hydroxymatairesinol resulted in
multiple benzylic hydroxylations, demethylations, oxidations, and cleavage of water [150] (Scheme 41,
structures 85–90).Molecules 2019, 24, x 23 of 38 
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3.6. Other Metal Mediated Lignan Oxidations

Oxidative acetoxylation of matairesinol derivatives 91 and 93 has been accomplished using lead
acetate [151] (Scheme 42). In the reactions of the trans-butyrolactone derivatives (91), one diastereomer
of the 7-acetoxy product (92) was formed in high yield (60–73%). In the reaction of the cis lactone
(93) in the same conditions, the reaction resulted in a mixture of the 7-acetoxy product (94) and the
2′-7-cyclolignan (95).
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In addition to molybdenum initiated α-hydroxylation of esters, cerium trichloride catalyzed
α-hydroxylation has also been reported [152]. This method did not require deprotonation of theα-position.
Coordination of cerium to two α-carbonyls directed the position of the oxidation. (Scheme 43).
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4. Other Oxidation Methods

4.1. Enzymatic Oxidations

Although enzymatic oxidations have mostly been studied for elucidation of biosynthetic routes
for many lignans, some attempts for targeted oxidations in vitro have been reported.

Laccases are copper-containing oxidases which have been used in, among others, wood, pulp,
and paper industries [168]. They play a key role in the dimerization of 4-hydroxycinnamic acids in
the biosyntheses of natural lignans [22,169]. Lignans have also been used as substrates in laccase
activity studies [170,171]. Laccase oxidations of lignans baring guaiacyl groups have led to efficient
polymerization [172–174]. The mechanism is believed to involve hydrogen atom abstraction to form
phenoxyl radicals, which then undergo intermolecular radical couplings [175].

Peroxidases are another group of oxidases which are also involved in the biosynthesis of lignans
through β-β coupling of two phenylpropanoid units [22,169,176,177]. They typically use hydrogen
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peroxide as cofactor in the oxidation reactions. A range of different peroxidases has been used for
selective ring closure of butyrolactone lignans (ex. 100) with up to quantitative yields of the aryltetralin
product (ex. 101) (Scheme 44). The reactions were performed with both immobilized cell cultures
and freely suspended plant cell cultures, and in absence of foreign hydrogen peroxide. Although the
reaction worked also in hexane, quantitative ring closure only occurred when the reaction was done in
B5 medium [153,154]. A similar reaction, but with H2O2 as a cofactor and ethanol as solvent, has also
been reported on the same lignan [155].
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A study of 4-O-5 units in softwood lignin used pinoresinol, among others, as a lignin model
compound. A pinoresinol dimer (102) coupled through a 4-O-5 bond, was synthesized using horseradish
peroxidase (HRP) and a hydrogen peroxide-urea complex (Scheme 45) [156]. Although sufficient for
the study, the isolated yield was very low.
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In the biosynthesis of matairesinol, secoisolariciresinol is oxidized by an enzyme known as
secoisolariciresinol dehydrogenase (SDH) [178,179]. The reaction proceeds through an oxidative ring
closure of the diol to a lactol, and further oxidation to the lactone. In a study on the mode of catalysis
of SDH, the reaction was done in vitro, in a 5 mM scale, using isolated SDH and NAD+ in a Tris-HCl
buffer (Scheme 46) [157].

Enzymatic oxidation of sesamin has been studied in vitro, using yeast cells expressing some of
the enzymes found in sesame seeds [158]. Yeast strains containing a combination of a P450 enzyme
(CYP92B14) and Sesamum indicum cytochrome P450 oxidoreductase 1 (CPR1) in a synthetic defined (SD)
medium gave, via oxidation and rearrangement, sesaminol and sesamolin (Scheme 47), two lignans
found in sesame seeds.

Escherichia coli expressing human hepatic enzymes (CYP) have been used for the bioconversion
of deoxypodophyllotoxin into epipodophyllotoxin (Scheme 48) [159]. The objective of the study was
to investigate a possible route for industrial production of epipodophyllotoxin, which is a valuable
precursor for the pharmaceutical industry. High conversions were achieved, but the reactions were done
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in scales up to only 0.5 µmols. The high cost of up scaling was presented as the bottleneck that needed
to be tackled before a possible industrial production. A large scale isolation of deoxypodophyllotoxin,
from wild chervil (Anthriscus sylvestris), had already been accomplished [180].
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4.2. Electrochemical Oxidations

An acetoxy lignan (104) (Scheme 49) has been electrochemically oxidized to an o-quinone (105) at
a constant anode potential of 0.725 V using a platinum gauze working electrode, a platinum wire counter
electrode and an Ag/Ag+ reference electrode. The electrolyte was a solution of 0.01 M tetrabutylammonium
tetraboroflourate in acetonitrile, with solid potassium carbonate as a buffer. The product was not isolated,
but further reduced to a catechol, which was isolated and characterized [160].

Dibenzocyclooctadienes have been synthesized by electrochemical oxidation of butyrolactone
lignans (106) (Scheme 50). A platinum working electrode, a platinum counter electrode, a Ag/AgBr,
Et4NBr reference electrode, and a 0.1 M Et4NClO4-CH3CN supporting electrolyte was used. The products
(107) were obtained in high yields, more than 80% in both cases [161].

The lignan hibalactone has been electrochemically oxidized using voltammetry with
a three-electrode system, consisting of a glassy carbon working electrode, a platinum counter electrode,
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and a Ag/AgCl counter electrode. The lignan showed a single quasi-reversible electro-oxidation, with
the alkene bonded to the lactone ring being the most probable site of oxidation [181]. The lignans
epi-guaiacin, guaiacin, verrucosin, and nectandrin B have been isolated from Iryanthera juruensis fruits
and electrochemically oxidized during an investigation of their antioxidative properties (Figure 1).
A glassy carbon working electrode, a carbon counter electrode, and a Ag/AgCl reference electrode
were used [182]. Honokiol and magnolol were electrochemically oxidized using an acetylene black
nanoparticle-modified glassy carbon electrode as a working electrode, with a platinum wire counter
electrode and a saturated calomel reference electrode. The results indicated that the oxidation of
honokiol was reversible and involved two electrons. The oxidation of magnolol was irreversible [183].
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Foodstuff and plant extracts containing phenolic compounds including lignans have been
electrochemically oxidized during the determination of the phenolic content [184–187] and the
antioxidant capacity [188,189]. The drug etoposide, which is a semisynthetic epipodophyllotoxin
glycoside, has been oxidized electrochemically using a carbon paste working electrode, a Ag/AgCl/3
M KCl reference electrode, and a platinum wire counter electrode, with a supporting electrolyte of
varying pH. The oxidation involves the transfer of two electrons and proceeds in one voltammetric
oxidation step at a pH < 4.0 and two voltammetric oxidation steps at a pH > 4.0. In the first and
reversible oxidation step, one electron is transferred, resulting in a stable radical. The product in
the second oxidation step is an unstable cation, which rapidly converts into the o-quinone [190].
The flavonolignan silybin and its derivatives has been electrochemically oxidized using various
methods [191–195].

4.3. Photooxidations

The lignans hydroxymatairesinol, allohydroxymatairesinol, α-conidendrin, and oxo-matariresinol
have been used as substrates for light-irradiation experiments in different solvents. The products of
light-irradiation of hydroxymatairesinol that were either isolated or detected were allohydroxymatairesinol,
oxomatairesinol, α-conidendrin, allo-7′-methoxymatairesinol, 7′-methoxymatairesinol, and vanillin
(Scheme 51). The irradiation of allo-hydroxymatairesinol formed the reaction products hydroxymatairesinol,
oxomatairesinol, α-conidendrin, allo-7′-methoxymatairesinol, 7′-methoxymatairesinol, and vanillin.
Oxomatairesinol was formed from the irradiation of hydroxymatairesinol, and vanillin from the irradiation
of oxomatairesinol [162].Molecules 2019, 24, x 28 of 38 
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5. Conclusions

Lignans are oxidatively transformed in a number of processes and conditions. In nature, oxidations
are mostly related to biosynthetic pathways, or processes where lignans act as primary antioxidant
scavenging free radicals. When it comes to targeted oxidative transformations or studies between
lignans and oxidants, the reports in the literature can be divided into non-metal mediated and metal
mediated oxidations. The oxidative transformations include the oxidation of alcohols, both primary and
benzylic, or benzylic functionalization by halogenation, hydroxylation, dehydrogenation, or by ring
closing reactions. Oxidative Ar-Ar couplings forming cyclooctadienes have been extensively reported
and can be quite selectively accomplished with several reagents in high yields. α-Hydroxylations
and epoxidations have also been reported, although to a much lesser extent and these reactions may
warrant further investigations. Radical mediated oxidations often result in polymerization or radical
addition reactions giving a wide range of products with poor selectivity, especially in the presence of
free phenolic groups. Although there are over 200 papers reporting the oxidative transformations of
lignans, we can conclude that there is still room for further investigations, especially concerning the
selectivity. In addition, electrochemical oxidations and photooxidations are rather unexplored and
could be a future area of research.
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