New Hydrazinothiazole Derivatives of Usnic Acid as Potent Tdp1 Inhibitors

Aleksander S. Filimonov ^{1,3}, Arina A. Chepanova ², Olga A. Luzina ¹, Alexandra L. Zakharenko ², Olga D. Zakharova ², Ekaterina S. Ilina ², Nadezhda S. Dyrkheeva ², Maxim S. Kuprushkin ², Anton V. Kolotaev ⁴, Derenik S. Khachatryan ⁴, Jinal Patel ⁵, Ivanhoe K.H. Leung ⁵, Raina Chand ⁵, Daniel M. Ayine-Tora ⁵, Johannes Reynisson ⁶, Konstantin P. Volcho ^{1,3,*}, Nariman F. Salakhutdinov ^{1,3} and Olga I. Lavrik ^{1,3}

- ¹ N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation
- ² Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russian Federation
- ³ Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russian Federation
- ⁴ The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Centre, Kurchatov Institute, Moscow 107076, Russia
- ⁵ School of Chemical Sciences, The University of Auckland, New Zealand
- ⁶ School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK
- * Correspondence: volcho@nioch.nsc.ru (V.K.P.), lavrik@niboch.nsc.ru (O.I.L.); Tel.: +7-383-3308870 (V.K.P.); +7-383-3635195 (O.I.L.)

Content

- 1. Tables S1-S16
- 2. NMR spectra of the products
- 3. Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compounds
- 4. Tables S17-S21

Table S1: Spectra NMR¹H of **12a-12f** (DMSO-d₆, δ):

N⁰	12a	12b	12c	12d	12e	12f
H-2	s 8.00	s 8.01	s 8.01	s 8.00	s 8.01	s 8.01
Ц 5	m 7.00 7.15	m 7 09 7 20	d 7.09	d 7.07	d 7.01	d 7.01
п-3	III 7.00-7.13	III 7.06-7.50	(J=8.7 Hz)	(J=8.6 Hz)	(J=8.6 Hz)	(J=8.6 Hz)
H-6	m 7.72	m 7.75	m 7.77	m 7.72	m 7.75	m 7.77
H-7	s 3.86	s 3.86	s 3.85	s 3.85	s 3.86	s 3.86
H-8	s 8.12	s 8.13	s 8.16	s 8.14	s 8.13	s 8.15
H-9	s 5.00	s 5.09	s 5.09	s 5.02	s 5.04	s 5.09
TT 11	7.00 7.15	7.00 7.20		t 7.35		
H-11	m /.00-/.15	m /.08-/.30		(J=9.1 Hz)		
H-12	m 7.00-7.15		m 7.21		m 6.77	m 7.42
H-13		m 7.08-7.30	m 7.28			
TT 14	7 00 7 15	7.00 7.20	t 7.11	7.07		7.00
H-14	m /.00-/.15	m /.08-/.30	(J=7.7 Hz)	m 7.27	m 6.//	m 7.28
H-15	m 7.00-7.15	m 6.95	m 6.95	m 7.02	m 6.77	m 7.17
NH	s 11.32	s 11.33	s 11.35	s 11.34	s 11.33	s 11.33
NH_2	m 7.90	m 7.89	m 7.90	m 7.92	m 7.93	m 7.87

N⁰	12a	12b	12c	12d	12e	5f
C-1	125.39	124.99	124.57	124.94	124.53	124.93
C-2	129.11	129.54	129.12	129.27	129.57	129.20
C-3	126.95	126.97	126.56	126.99	127.01	126.98
C-4	159.03	159.18	158.78	159.07	159.17	159.10
C-5	111.60	111.74	111.32	111.65	111.68	111.78
C-6	129.85	129.99	129.57	130.08	130.30	129.83
C-7	56.23	56.27	55.86	56.25	56.26	56.29
C-8	142.52	142.41	141.99	142.42	142.33	142.44
C-9	65.62	66.17	65.75	66.03	66.12	66.78
C 10	155 22	d 146.83	d 146.42	d 155.62	t 161.17	d 151.14
C-10	155.55	(J=10 Hz)	(J=11 Hz)	(J=2.4 Hz)	(J=14 Hz)	(J=2.4 Hz)
C-11	d 116.37(J=4 Hz)	115.69	d 150.60 (J=248 Hz)	d 115.53 (J=7 Hz)	d 162.40 (J=244 Hz)	d 122.50 (J= 10Hz)
C-12	d 116.19(J=1 1 Hz)	d151 (J=244 Hz)	d 115.96(J=1 8 Hz)	d 120.08 (J=17 Hz)	t 96.65 (J=27 Hz)	d 117.51 (J=28 Hz)
C-13	d 155.83(J=2 40 Hz)	d 116.38(J=1 8 Hz)	d 121.21 (J=7 Hz)	d 151.12 (J=247 Hz)	d 162.25 (J=244 Hz)	d 155.08 (J=247 Hz)
C-14	d 116.19(J=1 1 Hz)	d 125.30 (J=3 Hz)	d 124.88 (J=3 Hz)	d 117.56 (J=22 Hz)	m 99.15	d 115.01 (J=21 Hz)
C-15	d 116.37(J=4 Hz)	d 121.63 (J=7 Hz)	115.27	116.63	m 99.43	d 115.54 (J=9.4 Hz)
C-16	178.04	178.06	177.64	178.06	178.07	178.09

Table S2: Spectra NMR ¹³C of **12a-12f** (DMSO-d₆, δ):

N⁰	12g	12h	12i	12j	12k
H-2	s 7.91	s 7.99	s 8.00	s 8.00	s 7.89
11.5	d 7.00	m 7.04	m 7.02	d 7.05	d 7.03
н-э	(J=9.3 Hz)	III 7.04	m 7.02	(J=8.5 Hz)	(J=8.5 Hz)
H-6	m 7.62	m 7.72	m 7.69	bs 7.75	m 7.63
H-7	s 3.80	s 3.85	s 3.83	s 3.83	s 3.81
H-8	s 8.14	s 8.14	s 8.11	s 8.15	s 7.97
H-9	s 4.09	s 5.00	s 3.55	s 3.68	s 5.21
H-10			bs 2.57	bs 2.69	
H-11	s 1.19 (t-Bu)		bs 3.07	bs 2.93	
H-12	s 7.09	s 2.28 (Me)			
H-13	s 7.18	m 7.06	m 6.90	m 6.87-6.94	2.34
H-14	s 2.21 (Me)	m 7.28	m 7.02	m 6.87-6.94	2.67
H-15	s 7.09	m 6.86		m 6.87-6.94	
H-16			m 7.02	m 6.87-6.94	
II 17			m 6 00	s 3.74	
п-1/			III 0.90	(OMe)	
NH	s 11.32	s 11.33	s 11.29	s 11.34	s 11.33
NLL.	s 7.62 and	s 7.89 and	m 7.69 and	bs 7.72 and	s 7.75 and
1112	s 7.80	s 7.93	s 7.85	bs 7.90	s 7.78

Table S3: Spectra NMR¹H of **12f-12k** (DMSO-d₆, δ):

N⁰	12g	12h	12i	12j	12k
C-1	125.87	124.88	127.95	126.36	123.74
C-2	129.13	129.36	126.19	128.64	129.05
C-3	126.31	126.52	127.95	126.36	126.59
C-4	158.47	158.57	159.03	159.28	158.26
C-5	111.11	111.19	111.16	111.38	111.30
C-6	129.59	129.50	129.64	130.46	129.37
C-7	55.77	55.80	55.67	55.89	55.83
C-8	142.02	142.12	142.24	142.42	141.87
C-9	31.52	64.84	48.73	49.30	48.10
C-10	134.24	157.29	55.06	55.05	145.04
	148.8 (C, Ar)				
C-11	30.88 (Me t-Bu)	117.36	52.36	52.55	130.02
	34.14 (C, t-Bu)				
C-12	128.25	128.60 (C, Ar)	147.75	152.02	141.38
		19.19 (1010)	117.02		
C-13	125.88	136.52	(I=7 Hz)	111.92	11.39
	134.58 (C. Ar)		115.06		
C-14	19.32 (Me)	124.70	(J=22 Hz)	118.13	13.90
			d 155.00		
C-15	123.05	113.82	(J=232 Hz)	122.77	
0.16	177.50	100 44	115.06	100.00	
C-16	177.58	177.66	(J=22 Hz)	120.92	1/7.67
C 17			117.02	140.00	
C-17			(J=7 Hz)	140.08	
C-18			177.60	177.64	

Table S4: Spectra NMR ¹³C of **12f-12k** (DMSO-d₆, δ):

Spectra NMR ¹H (**CDCl**₃, δ): 1.67 (3H, s, H-15), 2.13 (3H, s, H-10), 2.61 (3H, s, H-12), 5.88 (1H, s, H-4). Spectra NMR ¹³C (**CDCl**₃, δ): 8.3 (C-10), 27.6 (C-12), 32.0 (C-15), 59.3 (C-9b), 97.2 (C-4), 97.3 (C-9a), 103.3 (C-6), 104.4 (C-14), 105.0 (C-2), 108.8 (C-8), 143.4 (C-13), 151.3 (C-7), 151.4 (C-9), 156.3 (C-5a), 166.4 (C-16), 180.4 (C-4a), 191.5 (C-3), 197.9 (C-1), 201.2 (C-11). Spectra NMR ¹H (**DMSO-d**₆, δ): 1.70 (3H, s, H-15), 2.03 (3H, s, H-10), 2.60 (3H, s, H-12), 6.20 (1H, s, H-4). Spectra NMR ¹³C (**DMSO-d**₆, δ): 8.3 (C-10), 27.6 (C-12), 32.0 (C-15), 59.0 (C-9b), 96.9 (C-9a), 97.3 (C-4), 103.3 (C-6), 105.1 (C-2), 105.6 (C-14), 107.3 (C-8), 143.0 (C-13), 151.3 (C-7), 151.4 (C-9), 156.3 (C-5a), 166.4 (C-16), 180.4 (C-4a), 191.5 (C-3), 197.9 (C-1), 201.2 (C-11).

Table S5: Spectra NMR¹H of **16a-16e** (DMSO-d₆, δ):

N⁰	16a	16b	16c	16d	16e
Structure	HBr 21 20 19 18	21 N HBr 20 19 18	HBr 21 N 22 20 19 18	O ₂ N ₂₁ 20 19 18	22 21 32 20 19 18
H-14	s 7.39	s 7.39	s 7.38	s 7.27	s 7.23
H-17	s 8.16	s 8.15	s 8.22	s 8.08	s 8.16
H-19	d 8.10 (J=5.5 Hz)	d 8.07 (J=8.0 Hz)	s 9.13	d 7.34 (J=4.5 Hz)	d 7.19 (J=4.9 Hz)
H-20	d 8.84 (J=5.5 Hz)	t 7.66 (J=5.9 Hz)	d 8.85 (J=5.1 Hz)	d 7.98 (J=4.5 Hz)	m 6.79
H-21	d 8.84 (J=5.5 Hz)	t 8.21 (J=5.1 Hz)	m 8.21		
H-22	d 8.10 (J=5.5 Hz)	d 8.71 (J=5.1 Hz)	d 8.70 (J=5.1 Hz)		s 2.46
NH	bs 12.37	bs 12.45		s 12.78	
ОН-3		bs 18.82	bs 18.76	bs 18.78	bs 18.82
ОН-7	s 13.28	s 13.05	s 12.96	s 12.49	s 12.27
ОН-9		bs 10.30	bs 10.30	s 10.23	s 10.27

Table S6: Spectra NMR 13 C of **16a-16e** (DMSO-d₆, δ):

N⁰	16a	16b	16c	16d	16e
Structure	HBr 21 N 22 20 19 18	21 N HBr 20 19 18	HBr 21 N 22 20 19 18	O ₂ N ₂₁ 20 19	22 21 30 19 18
C-17	137.15	146.33	137.05	135.56	138.62
C-18	148.81	150.12	133.07	146.60	136.51
C-19	122.41	124.82	141.66	130.58	130.36
C-20	143.16	138.72	143.08	128.13	126.38
C-21	143.16	121.21	126.76	149.84	142.34
C-22	122.41	140.70	139.95		15.35

N⁰	16f	16g	16h	16i	16j
Structure	Br 21 20 5 19 18	20 21 S 19 18	Br 19 18	$20 \sqrt{\frac{21}{19}} \frac{18}{22}$	20 S 19 21 18
H-14	s 7.11	s 7.08	s 7.04	s 7.09	s 7.12
H-17	s 7.58	s 7.81	bs 8.12	s 7.73	s 7.78
H-19	d 6.77 (J=3.8 Hz)	d 7.08 (J=3.4 Hz)	s 7.04		s 7.43
H-20	d 6.86 (J=3.8 Hz)	m 6.94		d 6.72 (J=5.3 Hz)	d 7.46 (J=4.9 Hz)
H-21		d 7.27 (J=5.0 Hz)	s 7.19	d 7.14 (J=4.9 Hz)	m 7.31
H-22				s 2.23	
NH	bs 9.06	bs 9.48		bs 9.11	bs 8.99
OH-3	s 18.79	s 18.78	s 18.79	s 18.78	s 18.79
OH-7					
ОН-9	s 10.29	s 10.27	s 10.40	s 10.26	s 10.28

Table S7: Spectra NMR¹H of **16f-16j** (CDCl₃, δ):

Table S8: Spectra NMR ¹³C of **16f-16j** (CDCl₃, δ):

Nº	16f	16g	16h	16i	16j
Structure	Br 21 20 19 18	20 21 S 19 18	Br 19 18	20 19 19 22	20 5 19 21 18
C-17	135.97	142.67	138.68	136.47	137.90
C-18	139.39	138.12	138.72	131.71	136.51
C-19	128.64	137.70	131.84	138.95	124.77
C-20	129.92	127.87	110.30	126.73	126.09
C-21	115.29	129.21	125.35	130.60	126.59
C-22				13.95	

N⁰	16k	16 l	16m	16n	160
Structure	20 19 18	$20 \underbrace{\begin{array}{c} 0 \\ 21 \end{array}}^{19}$	20 NH 19 18	20 21 N 22 20 19 18	20 HBr NH N 19 18
H-14	s 7.15	s 7.11	s 7.24	s 7.09	s 7.37
H-17	s 7.60	s 7.63	s 7.94	s 7.68	s 8.09
H-19	d 6.65 (J=2.5 Hz)	s 7.59	s 6.46	m 6.39	s 8.00
H-20	m 6.45	s 7.39	s 6.14	m 6.11	s 9.17
H-21	d 7.49 (J=2.2 Hz)	m 6.75	s 6.92	s 6.72	
H-22				s 3.91	
NH	s 8.88	bs 8.93		bs 8.68	
NH			o 11 2 0		a 12 60
(HetAr)			\$ 11.50		\$ 12.00
ОН-3	s 18.77	s 18.79	bs 18.77	s 18.79	
OH-7	bs 12.40		s 12.05		s 12.71
ОН-9	s 10.26	s 10.95	s 10.28	s 10.28	s 10.31

Table S9: Spectra NMR¹H of **16k-16o** (CDCl₃ for 16k,l,n and DMSO-d₆ for 16m,o; δ):

Table S10: Spectra NMR ¹³C of **16k-160** (CDCl₃ for 16k,l,n and DMSO-d₆ for 16m,o; δ):

N⁰	16k	16 l	16m	16n	160
Structure	20 19 18	20 0 19 21 18	20 NH 19 18	20 19 18 / 22	20 HBr NH 19 18
C-17	132.37	135.09	136.59	136.37	130.90
C-18	148.62	121.97	126.80	126.39	128.58
C-19	112.28	143.42	109.33	115.74	119.55
C-20	111.72	144.00	112.13	108.03	132.36
C-21	144.26	107.19	122.14	128.01	
C-22				37.09	

N⁰	16 p	16q	16r
Structure	$HN = 19 \\ 21 \\ 22 \\ 23 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24$	$ \begin{array}{c} \text{HN} & 19 & 26 \\ 21 & 20 & 25 & 22 \\ 22 & 23 & 24 & 24 \end{array} $	$\begin{array}{c} 27 & 26 \\ 18 & 0 & 22 \\ 19 & 20 & 23 & 24 \\ 19 & 20 & 23 & 24 \\ \end{array}$
H-14	s 7.24	s 7.22	s 7.12
H-17	s 8.30	s 8.33	s 7.68
H-19	m 8.21		d 6.69 (J=3.3 Hz, AB-system)
H-20			d 6.66 (J=3.3 Hz, AB-system)
H-21	s 7.45	m 7.34	
H-22	m 7.21	m 7.13	
H-23	m 7.21	m 7.13	s 7.62
H-24	d 7.83 (J=2.7 Hz)	m 8.10	
H-25			d 7.52 (J=7.5 Hz)
H-26		s 2.51	m 7.21-7.30
H-27			m 7.21-7.30
NH	s 12.08	s 12.00	
NH (HetAr)	s 11.59	s 11.51	
ОН-3	bs 18.82	bs 18.82	s 18.76
OH-7	s 13.03	bs 13.05	
ОН-9	s 10.30	s 10.31	s 10.26

Table S12: Spectra NMR ¹³C of **16p-16r** (CDCl₃ for 16o and DMSO-d₆ for 16p,q; δ):

N⁰	16n	160	16r
Structure		$ \begin{array}{c} $	$\begin{array}{c} 27 & 26 \\ 18 & 0 & 22 \\ 19 & 21 & 23 & 24 \\ 19 & 20 & 23 & 24 \\ \end{array}$
C-17	140.39	140.29	132.95
C-18	111.35	107.42	148.80
C-19	130.13	135.76	108.17
C-20	137.11	139.52	114.29
C-21	111.95	110.99	153.82
C-22	121.59	120.63	131.35
C-23	120.59	120.46	123.92
C-24	122.64	121.83	134.78
C-25	124.02	124.02	127.90
C-26		11.53	129.91
C-27			122.03

17a R¹=H R²=H R³=F **17b** R¹=H R²=F R³=H **17c** R¹=F R²=H R³=H **17d** R¹=H R²=CI R³=F **17e** R¹=F R²=H R³=F **17f** R¹=CI R²=H R³=F

Table S13: Spectra NMR¹H of 17a-17f (CDCl₃, δ):

N⁰	17a	17b	17c	17d	17e	17f
H-14	s 7.09	s 7.02	m 7.05	s 7.06	s 7.09	s 7.07
H-17	m 7.45-	a 7 91	s 7.68	s 7.64	s 7.60	s 7.85
	7.65	8 7.01				
H-19	m 7.45-	o 7 71	s 7.62	s 7.61	s 7.56	s 7.71
	7.65	8 7.71				
11.22	m 6.82-	d 6.77	d 6.78	m 6 97	d 6.51	m 6.90
H-22	6.97	(J=8.6 Hz)	(J=7.0 Hz)	111 0.82	(J=7.9 Hz)	
H-23	m 7.45-	d 7.44	d 7.44	d 7.48	d 7.48	d 7.41
	7.65	(J=8.6 Hz)	(J=7.0 Hz)	(J=7.3 Hz)	(J=8.3 Hz)	(J=8.1 Hz)
H-24	s 5.00	s 5.07	s 5.09	s 4.97	s 5.00	s 5.04
H-25	s 3.83	s 3.79	s 3.79	s 3.82	s 3.84	s 3.83
11.07	m 6.82-	6 00 7 10	6.01			d 8.47
п-27	6.97	III 0.90-7.10	8 0.91	III 7.01		(J=8.5 Hz)
ц २ ०	m 6.82-	m 6 90_7 10	m 7.05		d 6.82	m 6 00
11-20	6.97	III 0.90-7.10	III 7.03		(J=7.9 Hz)	III 0.90
H-29		m 6.90-7.10	m 7.05			
H-30	m 6.82-		m 7.05	m 7.01	t 6.41	m 7 10
	6.97				(J=8.4 Hz)	m 7.12
H-31	m 6.82-	m 6 00 7 10		m 6 97		
	6.97	III 0.90-7.10		111 0.82		
NH	bs 8.92		bs 9.45	bs 9.45	bs 8.93	bs 9.60
OH-3	s 18.78	s 18.77	s 18.76	s 18.77	s 18.78	s 18.75
OH-7					bs 12.21	
OH-9	s 10.24	s 10.29	s 10.23	s 10.24	s 10.23	s 10.22

№	17a	17b	17c	17d	17e	17f
C-17	142.43	143.82	143.09	142.48	142.30	142.35
C-18	125.64	125.43	125.30	125.01	124.84	125.12
C-19	127.14	127.14	127.13	127.07	127.11	127.14
C-20	126.07	125.93	126.00	126.04	126.20	126.28
C-21	158.06	158.19	158.08	158.03	158.10	158.05
C-22	110.26	110.21	110.14	110.25	110.41	110.34
C-23	127.69	128.96	127.93	127.96	128.06	128.65
C-24	65.26	65.91	65.88	65.32	65.16	65.22
C-25	55.47	55.46	55.36	55.46	55.53	55.78
$C \mathcal{D}$	d 154.74	d 146.61	d 146.61	d 154.81	t 160.57	d 150.14
C-20	(J=2.2 Hz)	(J=10 Hz)	(J=11 Hz)	(J=2.4 Hz)	(J=13.4 Hz)	(J=2.4 Hz)
C 27	d 115.56	115 50	d 151.42	116 //	d 162.68	d 121.50
C-27	(J=12 Hz)	115.50	(J=247 Hz)	110.44	(J=244 Hz)	(J=10Hz)
C-28	d 115.83	d 151.84	d 116	120.83	t 96.47	d 118.51
	(J=3.2 Hz)	(J=249 Hz)	(J=16 Hz)	(J=19 Hz)	(J=29 Hz)	(J=28 Hz)
C-29	d 155.68	d 116.00	d 121.24	d 151.54	d 162.55	d 156.08
	(J=239 Hz)	(J=19 Hz)	(J=7 Hz)	(J=247 Hz)	(J=244 Hz)	(J=247 Hz)
C-30	d 115.83	d 124.08	d 124.10	d 116.51	m 98 50	d 114.06
	(J=3.2 Hz)	(J=3.5 Hz)	(J=3.4 Hz)	(J=22 Hz)	111 90.50	(J=21 Hz)
C-31	d 115.56	d 121.25	115.41	d 114.30	m 98 50	d 114.67
	(J=12 Hz)	(J=8 Hz)		(J=6.7 Hz)	III 98.30	(J=9.4 Hz)

Table S14: Spectra NMR 13 C of **17a-17f** (CDCl₃, δ):

17g R¹=t-Bu R²=H R³=H R⁴=Me X=S **17h** R¹=H R²=Me R³=CI R⁴=H X=O

17i R¹=H R²=F **17j** R¹=OMe R²=H

Table S15: Spectra NMR¹H of $17g-17k(CDCl_3 \text{ for } g-j \text{ and } DMSO-d_6 \text{ for } k, \delta)$:

N⁰	17g	17h	17i	17j	17k
H-14	s 7.08	s 7.07	s 7.00	s 6.98	s 7.23
H-17	s 7.49	s 7.69	bs 7.98	s 8.13	s 7.26
H-19	s 7.32	s 7.64	bs 7.98	s 8.05	s 7.67
H-22	d 6.76	m 6 76	d 6.56	d 6.46	d 7.08
	(J=8.5 Hz)	111 0.70	(J=8.0 Hz)	(J=8.1 Hz)	(J=8.4 Hz)
Н-23	m 7.40	d 7.51	m 7.34	$m \in 84, 7, 02$	d 7.50
	III 7 . 40	(J=8.3 Hz)		III 0.84-7.03	(J=8.4 Hz)
H-24	s 4.04	s 4.99	s 4.11	s 4.19	s 5.27
H-25	s 3.77	s 3.84	s 3.61	bs 3.51	s 3.85
H-26			s 3.29	bs 3.51	
11.07	a 1 22 († D 11)	d 6.88	s 3.48	m 3.85	
11-27	s 1.22 (t-Du)	(J=2.4 Hz)			
H-28	m 7.23	s 2.34 (Me)			
H-29	m 7.08		m 6.83-6.94	m 6.84-7.03	s 2.40
H-30	s 2.33 (Me)	d 7.21	m 6.83-6.94	m 3.85 (OMe)	a 2 50
		(J=8.6 Hz)			8 2.39
H-31	m 7.32	d 6.83		m 6.84-7.03	
		(J=8.5 Hz)			
H-32			m 6.83-6.94	m 6.84-7.03	
H-33			m 6.83-6.94	m 6.84-7.03	
NH	bs 9.09	bs 9.56	bs 11.22	bs 11.22	bs 12.28
OH-3	s 18.79	s 18.79	bs 18.7	bs 18.76	bs 18.80
OH-7			bs 12.64	bs 12.63	bs 12.77
OH-9	s 10.26	s 10.27	s 10.24	s 10.23	s 10.30

N⁰	17g	17h	17i	17j	17k
C-17	142.74	143.61	141.77	141.03	142.40
C-18	125.70	125.47	127.27	127.72	123.52
C-19	127.77	127.19	129.01	129.77	126.09
C-20	126.47	125.90	127.27	127.72	126.99
C-21	158.61	158.08	158.70	158.36	157.16
C-22	110.38	110.21	110.52	110.89	110.26
C-23	128.79	129.46	131.17	131.96	128.05
C-24	32.56	64.74	48.25	47.48	47.97
C-25	55.50	55.45	55.35	55.26	55.41
C-26	134.44	157.12	54.52	54.64	140.77
C-27	149.06 (C _{Ar}) 31.09 (t-Bu)	113.28	51.98	52.05	145.97
C-28	129.57	127.92 20.25 (Me)	146.65	151.77	130.90
C-29	128.79	136.97	d 115.45 (J=22 Hz)	139.11 (C _{Ar}) 54.96(O-Me)	11.32
C-30	135.72 (C _{Ar}) 19.73 (Me)	126.01	d 118.53 (J=7.43 Hz)	110.89	14.07
C-31	123.63	117.22	d 156.02 (J=240 Hz)	118.75	
C-32			d 118.53 (J=7.43 Hz)	124.02	
C-33			d 115.45 (J=22 Hz)	121.04	

Table S16: Spectra NMR ¹³C of **17g-17k**(CDCl₃ for **g-j** and DMSO-d₆ for **k**, δ):

Figure S1: NMR ¹H spectra of 11h

Figure S2: NMR ¹³C (J-MOD) spectra of 11h

Figure S3: NMR ¹H spectra of 11r

Figure S4: NMR ¹³C (J-MOD) spectra of 11r

Figure S5: NMR ¹H spectra of 12a

Figure S6: NMR ¹³C spectra of 12a

Figure S7: NMR ¹H spectra of 12b

Figure S 8: NMR ¹³C spectra of **12b**

Figure S9: NMR ¹H spectra of 12c

Figure S10: NMR ¹³C spectra of 12c

Figure S11: NMR ¹H spectra of 12d

Figure S12: NMR ¹³C spectra of 12d

Figure S13: NMR ¹H spectra of 12e

Figure S14: NMR ¹³C spectra of 12e

Figure S15: NMR ¹H spectra of 12f

Figure S16: NMR ¹³C spectra of 12f

Figure S17: NMR ¹H spectra of 12g

Figure S18: NMR ¹³C (J-MOD) spectra of 12g

Figure S19: NMR ¹H spectra of 12h

Figure S20: NMR ¹³C (J-MOD) spectra of 12h

Figure S21: NMR ¹H spectra of 12i

Figure S22: NMR ¹³C spectra of 12i

Figure S23: NMR ¹H spectra of 12j

Figure S24: NMR ¹³C (J-MOD) spectra of 12j

Figure S25: NMR ¹H spectra of 12k

Figure S26: NMR ¹³C spectra of 12k

Figure S27: NMR ¹H spectra of 16a

Figure S28: NMR ¹³C (J-MOD) spectra of 16a

Figure S29: NMR ¹H spectra of 16b

Figure S30: NMR ¹³C (J-MOD) spectra of 16b

Figure S31: NMR ¹H spectra of 16c

Figure S32: NMR ¹³C (J-MOD) spectra of 16c

Figure S33: NMR ¹H spectra of 16d

Figure S34: NMR ¹³C (J-MOD) spectra of 16d

Figure S35: NMR ¹H spectra of 16e

Figure S36: NMR ¹³C (J-MOD) spectra of 16e

Figure S37:NMR ¹H spectra of 16f

Figure S38:NMR ¹³C (J-MOD) spectra of 16f

Figure S39:NMR ¹H spectra of 16g

Figure S40: NMR ¹³C (J-MOD) spectra of 16g

Figure S41: NMR ¹H spectra of 16h

Figure S42:NMR ¹³C (J-MOD) spectra of 16h

Figure S43:NMR ¹H spectra of 16i

Figure S44:NMR ¹³C (J-MOD) spectra of 16i

Figure S45:NMR ¹H spectra of 16j

Figure S46:NMR ¹³C (J-MOD) spectra of 16j

Figure S47:NMR ¹H spectra of 16k

Figure S48:NMR ¹³C (J-MOD) spectra of 16k

Figure S49:NMR ¹H spectra of 16l

Figure S50:NMR ¹³C (J-MOD) spectra of 16l

Figure S51:NMR ¹H spectra of 16m

Figure S52:NMR ¹³C (J-MOD) spectra of 16m

Figure S53:NMR ¹H spectra of 16n

Figure S54:NMR ¹³C (J-MOD) spectra of 16n

Figure S55:NMR ¹H spectra of 160

Figure S56:NMR ¹³C (J-MOD) spectra of 160

Figure S57:NMR ¹H spectra of 16p

Figure S58:NMR ¹³C (J-MOD) spectra of 16p

Figure S59:NMR ¹H spectra of 16q

Figure S60:NMR ¹³C (J-MOD) spectra of 16q

Figure S61:NMR ¹H spectra of 16r

Figure S62:NMR ¹³C (J-MOD) spectra of 16r

Figure S63: NMR ¹H spectra of 17a

Figure S64: NMR ¹³C (J-MOD) spectra of 17a

Figure S65: NMR ¹H spectra of 17b

Figure S66: NMR ¹³C (J-MOD) spectra of 17b

Figure S67: NMR ¹H spectra of 17c

Figure S68: NMR ¹³C (J-MOD) spectra of 17c

Figure S69: NMR ¹H spectra of 17d

Figure S70: NMR ¹³C (J-MOD) spectra of 17d

Figure S71: NMR ¹H spectra of 17e

Figure S72: NMR ¹³C (J-MOD) spectra of 17e

Figure S73: NMR ¹H spectra of 17f

Figure S74: NMR ¹³C (J-MOD) spectra of 17f

Figure S75: NMR ¹H spectra of 17g

Figure S76: NMR ¹³C (J-MOD) spectra of 17g

Figure S77: NMR ¹H spectra of 17h

Figure S78: NMR ¹³C (J-MOD) spectra of 17h

Figure S79: NMR ¹H spectra of 17i

Figure S80: NMR ¹³C (J-MOD) spectra of 17i

Figure S81: NMR ¹H spectra of 17j

Figure S82: NMR ¹³C (J-MOD) spectra of 17j

Figure S83: NMR ¹H spectra of 17k

Figure S84:NMR ¹³C (J-MOD) spectra of 17k

Figure S85: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16a(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 139 \pm 32 μ M. Experiment were conducted in triplicate.

Figure S86: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16b(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 77 ± 24 μ M. Experiment were conducted in triplicate.

Figure S87: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16c(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 262 ± 25 μ M. Experiment were conducted in triplicate.

Figure S88: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16d(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 597 \pm 98 μ M. Experiment were conducted in triplicate.

Figure S 89: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16f(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 95 ± 11 μ M. Experiment were conducted in triplicate.

Figure S90: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16f(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 148 ± 9 μ M. Experiment were conducted in triplicate.

Figure S91: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16g(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 281 \pm 25 μ M. Experiment were conducted in triplicate.

Figure S92: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16h(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 355 \pm 50 μ M. Experiment were conducted in triplicate.

Figure S93: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16j(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 65 \pm 7 μ M. Experiment were conducted in triplicate.

Figure S94: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16j(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 771 ± 46 μ M. Experiment were conducted in triplicate.

Figure S95: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16k(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 67 \pm 9 μ M. Experiment were conducted in triplicate.

Figure S96: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16k(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 250 \pm 24 μ M. Experiment were conducted in triplicate.

Figure S97: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16l(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 233 \pm 9 μ M. Experiment were conducted in triplicate.

Figure S98: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16m(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 354 \pm 40 μ M. Experiment were conducted in triplicate.

Figure S99: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16n(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 719 \pm 17 μ M. Experiment were conducted in triplicate.

Figure S100: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 160(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 38 ± 2 μ M. Experiment were conducted in triplicate.

Figure S101: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16o(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 51 ± 4 μ M. Experiment were conducted in triplicate.

Figure S102: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16p(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 268 ± 11 μ M. Experiment were conducted in triplicate.

Figure S103: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16q(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 58 ± 4 μ M. Experiment were conducted in triplicate.

Figure S104: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 16r(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 113 ± 52 μ M. Experiment were conducted in triplicate.

Figure S105: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17a(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 212 ± 25 μ M. Experiment were conducted in triplicate.

Figure S106: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17b(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 131 ± 15 μ M. Experiment were conducted in triplicate.

Figure S107: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17c(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 204 \pm 23 μ M. Experiment were conducted in triplicate.

Figure S108: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17c(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 74 \pm 4 μ M. Experiment were conducted in triplicate.

Figure S109: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17d(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 130 \pm 29 μ M. Experiment were conducted in triplicate.

Figure S110: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17d(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 76 \pm 5 μ M. Experiment were conducted in triplicate.

Figure S111: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17e(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 213 \pm 4 μ M. Experiment were conducted in triplicate.

Figure S 112: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17e(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 130 \pm 8 μ M. Experiment were conducted in triplicate.

Figure S113: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17f(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 127 \pm 14 μ M. Experiment were conducted in triplicate.

Figure S114: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17f(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 536 \pm 90 μ M. Experiment were conducted in triplicate.

Figure S115: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17g(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 223 ± 42 μ M. Experiment were conducted in triplicate.

Figure S116: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17h(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 188 ± 22 μ M. Experiment were conducted in triplicate.

Figure S117: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17i(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 161 \pm 22 μ M. Experiment were conducted in triplicate.

Figure S 118: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17j(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 69 ± 14 μ M. Experiment were conducted in triplicate.

Figure S 119: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17k(+) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 156 ± 8 μ M. Experiment were conducted in triplicate.

Figure S120: Changes in intrinsic fluorescence intensity of Tdp1 (10 μ M) upon the addition of compound 17k(-) (25 μ M, 50 μ M, 75 μ M, 100 μ M, 125 μ M, 150 μ M and 200 μ M). Buffer was 20 mM Tris and 250 mM NaCl (pH 8). Excitation wavelength was 280 nm and intrinsic fluorescence was measured at 350 nm. The K_D was 142 ± 11 μ M. Experiment were conducted in triplicate.

		ASP		CHE	MPLP	CHEMS	CORE	GOLI	DSCORE
			NO		NO		NO		NO
POSE		WATER							
	1	2.890	2.912	2.748	4.825	0.568	8.145	9.505	4.019
	2	2.869	2.906	2.956	4.774	0.631	2.773	9.486	3.922
	3	2.929	2.785	2.752	3.668	0.639	2.751	9.797	4.132
Average	•	2.896	2.868	2.818	4.422	0.613	4.557	9.596	4.024

Table S17: RMSD values of for heavy atoms between the co-crystallized benzene-1,2,4-tricarboxylic acid (6DIE) and the docked molecule.

Table S18: Scores of the scoring function from the docked ligands with and without water.

	ASP		CHEMP	LP	CHEMS	CORE	GOLDSC	CORE
		NO		NO		NO		NO
COMPOUND	WATER	WATER						
(+) - 16a	38.9	36.1	69.7	64.5	28.9	27.9	66.6	69.0
(-) - 16a	38.0	33.2	66.3	54.5	29.3	23.7	71.1	69.5
(+) - 16b	39.4	33.1	66.9	57.9	30.0	28.6	67.7	66.5
(-)-16b	33.2	33.8	70.9	61.0	27.7	23.1	74.7	67.9
(+) - 16c	38.8	34.0	64.8	55.4	29.2	28.7	66.0	66.6
(-)-16c	37.2	33.1	73.2	63.3	30.5	23.1	67.6	70.1
(+)-16d	40.4	37.6	63.7	63.7	30.8	26.2	72.8	68.6
(-)-16d	41.0	38.7	71.3	68.7	29.1	28.6	81.3	59.9
(+) - 16e	38.7	34.4	65.6	67.7	31.4	26.9	73.9	68.6
(-)-16e	38.8	35.5	71.6	65.6	31.2	29.2	78.4	66.9
(+) - 16f	38.4	32.8	65.7	62.5	31.7	28.2	78.7	67.8
(-)-16f	38.6	34.8	73.0	67.4	30.9	28.3	79.4	72.5
(+) - 16g	38.1	32.9	69.5	61.6	29.8	26.3	71.5	67.0
(-)-16g	39.1	34.6	71.9	67.8	31.6	29.0	77.3	60.3
(+)-16h	37.6	33.0	68.9	64.7	32.0	28.4	71.8	70.5
(-)-16h	39.7	36.3	70.5	75.9	31.8	27.0	78.6	61.6
(+) - 16i	38.2	33.1	65.5	62.5	31.2	28.0	72.8	68.7
(-)-16i	38.4	35.5	70.8	66.8	32.2	28.4	75.3	65.5
(+) - 16j	37.9	31.3	68.4	60.2	28.3	25.1	68.8	65.3
(-)-16j	35.4	35.2	65.4	68.9	30.3	29.0	74.5	63.0
(+) - 16k	39.7	32.4	64.7	56.7	31.1	26.6	69.4	65.0
(-)-16k	38.6	34.8	68.2	65.4	30.5	27.8	74.2	59.7
(+)-16l	41.0	33.3	64.4	60.2	30.4	24.7	66.1	63.0
(-)-16l	38.7	36.0	67.8	63.4	28.6	26.3	73.7	61.0
(+) - 16m	38.0	32.5	66.7	63.2	31.9	26.8	66.6	63.6
(-)-16m	39.5	35.4	70.7	65.9	30.9	29.6	75.4	59.2

(+) - 16n	40.4	33.0	72.2	63.5	29.2	26.6	71.3	63.5
(-)-16n	38.3	35.4	74.0	67.6	31.4	27.1	74.9	65.5
(+)-160	42.7	37.1	64.3	56.4	29.2	23.2	67.6	64.6
(-)-160	40.7	39.3	66.0	60.0	30.5	28.5	75.2	57.8
(+) - 16p	42.7	37.0	75.9	71.4	34.1	29.2	76.3	74.1
(-) - 16p	41.7	38.9	79.1	79.2	28.8	32.5	79.9	59.0
(+)-16q	43.1	35.8	67.4	68.5	30.4	28.9	70.9	77.6
(-)-16q	41.8	38.6	74.8	75.7	31.2	32.3	84.1	74.8
(+)-16r	42.2	35.6	76.7	68.7	33.0	28.2	89.9	79.3
(-)-16r	44.8	39.6	76.1	81.7	33.7	31.5	89.2	85.5
(+) - 17a	46.7	40.2	82.8	79.2	33.7	24.5	79.4	79.7
(-)-17a	49.0	40.2	81.2	81.4	30.5	35.8	90.0	78.0
(+)-17b	47.9	38.2	88.7	75.1	31.2	26.9	82.6	74.0
(-)-17b	46.9	41.9	81.1	82.6	29.2	35.1	92.1	76.5
(+)-17c	47.1	38.1	82.7	78.5	29.2	28.2	78.0	81.0
(-)-17c	46.9	42.7	79.4	79.8	30.8	30.7	91.8	84.9
(+)-17d	47.7	38.4	84.2	76.9	31.8	28.1	88.5	75.1
(-)-17d	47.5	43.7	85.9	83.5	29.2	36.0	94.7	78.1
(+)-17e	47.4	40.9	82.8	80.4	28.5	26.5	81.1	75.6
(-)-17e	51.4	40.9	82.5	83.0	28.9	31.8	87.4	70.8
(+)-17f	48.3	39.2	78.1	76.5	33.2	26.7	90.4	75.5
(-)-17f	46.9	42.3	79.9	81.3	30.9	31.2	96.0	73.8
(+)-17g	46.7	35.8	85.1	81.7	33.4	30.2	88.7	78.3
(-)-17g	48.4	41.6	85.6	80.0	32.1	35.0	93.4	95.8
(+)-17h	46.3	37.3	85.5	79.2	33.5	30.2	78.5	80.6
(-)-17h	48.3	39.1	85.1	78.5	34.4	32.3	90.1	89.2
(+)-17i	49.2	41.8	93.3	83.8	30.9	31.5	81.1	78.4
(-)-17i	49.9	39.0	84.1	74.3	31.6	31.3	83.4	78.1
(+)-17j	53.6	40.4	88.4	86.7	33.2	28.3	83.0	82.4
(+)-17k	47.6	43.1	78.7	73.9	30.4	24.9	76.9	84.9
(-)-17j	47.7	38.0	83.8	80.8	30.9	28.4	94.8	87.1
(-)-17k	48.5	41.4	83.5	77.3	27.9	30.5	77.5	80.1

Compound	MW	HB Donor	HB Acceptor	LogP	PSA	Rot. bonds
(+)-16a	504.5	3	11.3	2.0	147.5	8
(-) - 16a	504.5	3	11.3	2.0	146.0	8
(+)-16b	504.5	3	10.8	2.4	146.7	8
(-)-16b	504.5	3	10.8	2.3	145.0	8
(+)-16c	504.5	3	11.3	2.0	147.5	8
(-)-16c	504.5	3	11.3	2.0	145.9	8
(+)-16d	554.5	3	10.8	2.1	181.6	9
(-)-16d	554.5	3	10.8	2.0	180.4	9
(+) - 16e	523.6	3	9.8	3.0	136.2	8
(-)-16e	523.6	3	9.8	3.0	134.5	8
(+) - 16f	588.4	3	9.8	3.3	136.2	8
(-)-16f	588.4	3	9.8	3.2	134.4	8
(+) - 16g	509.6	3	9.8	2.7	136.3	8
(-)-16g	509.6	3	9.8	2.7	134.6	8
(+)-16h	588.5	3	9.8	3.3	136.2	8
(-)-16h	588.4	3	9.8	3.2	134.6	8
(+) - 16i	523.6	3	9.8	3.0	136.2	8
(-)-16i	523.6	3	9.8	2.9	134.5	8
(+) - 16j	509.6	3	9.8	2.7	135.7	8
(-)-16j	509.6	3	9.8	3.0	132.5	8
(+) - 16k	493.5	3	10.3	2.4	144.1	8
(-)-16k	493.5	3	10.3	2.4	142.5	8
(+)-161	493.5	3	10.3	2.2	143.5	8
(-)-16l	493.5	3	10.3	2.2	141.9	8
(+) - 16m	492.5	4	9.8	2.4	148.2	8
(-)-16m	492.5	4	9.8	2.4	146.7	8
(+)-16n	506.5	3	9.8	3.1	135.8	8
(-)-16n	506.5	3	9.8	3.2	134.4	8
(+)-160	493.5	4	11.3	1.5	162.2	8
(-)-160	493.5	4	11.3	1.5	160.7	8
(+) - 16p	542.6	4	9.8	2.9	147.3	8
(-) - 16p	542.6	4	9.8	2.8	145.9	8
(+)-16q	556.6	4	9.8	3.2	146.7	8
(-)-16q	556.6	4	9.8	3.2	145.4	8
(+) - 16r	604.0	3	10.3	3.8	138.0	8
(-)-16r	604.0	3	10.3	4.7	151.2	8
(+) - 17a	657.7	3	11.3	4.4	140.9	12
(-)-17a	657.7	3	11.3	4.5	140.9	12
(+)-17b	657.7	3	11.3	4.4	141.3	12
(-)-17b	657.7	3	11.3	4.5	141.0	12
(+)-17c	657.7	3	11.3	4.3	141.7	12

 Table S19: The calculated molecular descriptors for the ligands.

(-)-17c	657.7	3	11.3	4.5	140.7	12
(+)-17d	692.1	3	11.3	4.7	140.9	12
(-)-17d	692.1	3	11.3	5.0	140.4	12
(+)-17e	675.7	3	11.3	4.5	141.7	12
(-)-17e	675.7	3	11.3	4.7	140.7	12
(+) - 17f	692.1	3	11.3	4.7	142.5	12
(-)-17f	692.1	3	11.3	4.8	141.2	12
(+)-17g	725.9	3	11.0	5.6	134.3	13
(-)-17g	725.9	3	11.0	7.1	152.0	13
(+)-17h	688.2	3	11.3	4.8	140.6	12
(-)-17h	688.2	3	11.3	6.0	160.4	12
(+)-17i	740.8	4	14.0	3.7	151.3	12
(-)-17i	725.8	3	13.5	5.4	160.5	11
(+)-17j	752.8	4	14.8	3.6	156.6	13
(-)-17j	737.8	3	14.3	5.2	168.7	12
(+)-17k	701.7	4	15.0	2.1	189.2	13
(-)-17k	701.7	4	15.0	2.5	198.4	13

Table S20: Definition of lead-like, drug-like and Known drug space (KDS) in terms of molecular descriptors. The values given are the maxima for each descriptor for the volumes of chemical space used.

	Lead-like Space	Drug-like Space	Known Drug Space
Molecular weight (g mol ⁻¹)	300	500	800
Lipophilicity (Log P)	3	5	6.5
Hydrogen bond donors (HD)	3	5	7
Hydrogen bond acceptors (HA)	3	10	15
Polar surface area (Å ²) (PSA)	60	140	180
Rotatable bonds (RB)	3	10	17

Compound	KDI-2A	KDI-2B
(+)-16a	4.41	0.12
(-)-16a	4.41	0.12
(+)-16b	4.52	0.15
(-)-16b	4.42	0.13
(+)-16c	5.50	0.57
(-)-16c	4.51	0.15
(+)-16d	4.42	0.13
(-)-16d	4.48	0.16
(+)-16e	4 67	0.20
(-)-16e	4 47	0.16
(+)-16f	4 73	0.22
(-)-16f	4 64	0.22
$(+)-16\sigma$	4.04	0.13
$(-)_{-16g}$	4.42	0.13
$(+)_{-16h}$	т. т. 1 63	0.15
(-)-16h	т .05 Д 65	0.19
(-)-1011 (+)-16i		0.19
(+)-101 (-)-16i	J.41 4 73	0.01
(-)-101 (+)-16i	3 92	0.22
(+)-10j () 16j	<i>J.J2</i> <i>A AA</i>	0.00
(-)-10j	4.44	0.13
(+)-10k	4.42	0.13
(-)-10K	4.08	0.21
(-)-10111	4.73	0.23
(+)-10111 (+) 161	3.92	0.00
(+)-101	4.07	0.20
(-)-101	4.08	0.21
(+)-1011	4.03	0.19
(-)-1011	4.23	0.11
(+)-100	4.2)	0.12
(-)-100	4.74	0.23
(+)-10p	2.40	0.00
(-)-10p	2.40 4.73	0.00
(+)-10q	4.73	0.22
(-)-10q	3 20	0.12
(+)-101	2.23	0.01
$(-)^{-101}$	2.91	0.01
(+)-17a (_)_17a	4.00 2.28	0.00
(-)-1/a (_)_17h	J.20 2 /1	0.01
(+)-17b) 6)	0.01
(-)-170 (+)-170	2.02	0.00
(+) - 1/0	2.43 4.07	0.00
(-)-1/0	4.07 212	0.00
(+)-1/u () 17d	3.42 3.40	0.01
(-) - 1/u	2.40 2.00	0.01
(+) - 1/e	5.09 2.05	0.00
(-)-1/e	5.25 2.20	0.01
(+)-1/1	5.5U 2.22	0.01
(-)-1/1 (+) 17~	3.33 2.19	0.01
(+)-1/g	5.18	0.01

 Table S21: Known drug index calculated

(-)-17g	3.39	0.01
(+)-17h	3.35	0.01
(-)-17h	2.87	0.00
(+)-17i	3.40	0.01
(-)-17i	2.67	0.00
(+)-17j	3.28	0.01
(-)-17j	4.03	0.07
(+)-17k	4.25	0.09
(-)-17k	4.72	0.22

RMSD of other crystal structures of Tdp1 (docked without water)

1. 6dim

Pose	ASP	ChemPLP	CS	GS
1	0.623	2.799	1.624	5.881
2	0.832	2.710	2.184	5.846
3	1.910	2.835	1.717	5.986
Average	1.122	2.781	1.842	5.904

2. 6djd

Pose	ASP	ChemPLP	CS	GS
1	2.792	2.839	2.788	5.969
2	2.800	2.816	2.862	5.923
3	2.593	2.739	2.949	6.407
Average	2.728	2.798	2.867	6.100

3. 6dje

Pose	ASP	ChemPLP	CS	GS
1	1.878	0.920	2.508	5.469
2	2.011	0.508	1.686	5.488
3	2.326	0.757	1.713	5.831
Average	2.071	0.728	1.969	5.596

4.6djf

Pose		ASP	ChemPLP	CS	GS
1	l	1.800	5.279	5.167	5.830
2	2	1.702	5.216	5.191	5.792
3	3	2.070	5.260	5.273	5.828
Average	e	1.857	5.252	5.210	5.817

5. 6djg

Pose		ASP	ChemPLP	CS	GS
	1	2.037	5.187	1.891	5.892
	2	2.178	5.198	1.881	5.824

3	1.917	5.209	2.266	5.837	
Average	2.044	5.198	2.012	5.851	

6. 6djh

Pose		ASP	ChemPLP	CS	GS
	1	1.622	0.800	5.400	5.680
,	2	1.999	0.796	5.281	5.633
	3	1.949	0.857	5.272	5.527
Averag	e	1.857	0.818	5.318	5.614

7. 6dji

Pose		ASP	ChemPLP	CS	GS
	1	3.563	3.547	5.185	2.860
	2	3.551	3.533	5.164	2.705
	3	3.607	3.603	5.205	2.627
Averag	ge	3.574	3.561	5.184	2.730

8. 6mj5

Pose		ASP	ChemPLP	CS	GS
	1	1.868	0.862	1.781	5.789
	2	1.901	0.782	1.917	5.861
	3	1.957	0.794	1.571	5.857
Averag	ge	1.908	0.813	1.756	5.836

9. 6n17

Pose	ASP	ChemPLP CS		GS
1	12.490	13.368	12.501	11.456
2	12.192	13.356	12.329	11.535
3	12.498	12.616	12.432	11.886
Average	12.393	13.113	12.421	11.626

10. 6n19

Pose		ASP	ChemPLP	CS	GS
	1	8.577	2.595	2.340	3.821
	2	2.385	2.472	2.448	4.010
	3	7.805	1.610	2.137	4.011
Averag	ge	6.256	2.226	2.309	3.947