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Abstract: Cannabis sativa L. is one of the most-studied species for its phytochemistry due to the
abundance of secondary metabolites, including cannabinoids, terpenes and phenolic compounds.
In the last decade, fiber-type hemp varieties have received interest for the production of many
specialized secondary metabolites derived from the phenylpropanoid pathway. The interest in
these molecules is due to their antioxidant activity. Since secondary metabolite synthesis occurs
at a very low level in plants, the aim of this study was to develop a strategy to increase the
production of such compounds and to elucidate the biochemical pathways involved. Therefore,
cell suspensions of industrial hemp (C. sativa L. var. Futura) were produced, and an advantageous
elicitation strategy (methyl jasmonate, MeJA) in combination with precursor feeding (tyrosine, Tyr)
was developed. The activity and expression of phenylalanine ammonia-lyase (PAL) and tyrosine
aminotransferase (TAT) increased upon treatment. Through 1H-NMR analyses, some aromatic
compounds were identified, including, for the first time, 4-hydroxyphenylpyruvate (4-HPP) in
addition to tyrosol. The 4-day MeJA+Tyr elicited samples showed a 51% increase in the in vitro assay
(2,2-diphenyl-1-picrylhydrazyl, DPPH) radical scavenging activity relative to the control and a 80%
increase in the cellular antioxidant activity estimated on an ex vivo model of human erythrocytes.
Our results outline the active metabolic pathways and the antioxidant properties of hemp cell extracts
under the effect of specific elicitors.

Keywords: Cannabis sativa; elicitation; plant cell cultures; metabolite profiling; NMR spectroscopy;
secondary metabolism

1. Introduction

Cannabis sativa L. is one of the oldest plants known in medicine and as a fiber crop and one
of the most studied species for its phytochemistry [1]. Hemp is characterized by an extremely
complex secondary metabolism with compounds belonging to different classes: terpenoids, alkaloids,
stilbenoids, quinones and specific metabolites, the cannabinoids [2]. The hemp varieties can be
distinguished into drug-type and fiber-type varieties based on their tetrahydrocannabinol (THC)
content, with the THC content being high in the drug-type and low in the fiber type varieties [3].
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Most studies have focused on drug-type C. sativa, which has been investigated for the presence
of cannabinoids with pharmacological activity [4]. To date, approximately 120 cannabinoids have
been isolated [5,6]. In recent decades, there has been an emerging interest in the fiber-type varieties
approved for commercial use by the European Union. Indeed, these hemp plants produce many other
specialized secondary metabolites that are directly or indirectly derived from the phenylpropanoid
pathway [7,8]. The interest in these molecules is due to their bioactivities on human health, especially
their antioxidant potential, and their ability to reduce some chronic diseases, such as cardiovascular
and neurodegenerative problems [8]. Moreover, the search for natural antioxidants to be used for other
purposes, such as bioactive packaging, is a field that has been attracting great interest from the scientific
community because of the lower toxicity and higher safety compared to synthetic antioxidants [9].
The utilization of plant extracts incorporated into a film as active packaging has been investigated in
several food applications, such as meat or fish [10].

Secondary metabolites are usually produced at very low levels, less than 1% dry weight [11].
Moreover, even among the plant material belonging to the same species, the chemical content
may vary. This lack of reproducibility may depend on many factors, such as genetic variability,
differences in growing conditions, age, tissue type and storage conditions [3]. For these reasons,
research on phytochemicals is mainly directed to find alternative strategies for large-scale production.
Chemical synthesis has become a feasible approach for obtaining plant natural compounds with
simple molecular structures; however, it is often not economically convenient to obtain products
with more complex structures or specific stereochemical requirements [12]. Moreover, the use of
harsh solvents makes these chemical procedures environmentally unfavorable. The drawbacks of
chemical synthesis could be overcome by the use of a biological system. The plant cell culture approach
represents an attractive alternative to whole plants since it overcomes frequent agricultural problems
such as seasonal dependency, length of the plant life cycle, and adverse environmental factors [13].
Furthermore, in cell culture systems, the production of secondary metabolites can be enhanced by
treatment with elicitors and precursor feeding. An elicitor may be defined as a substance that, when
introduced in small concentrations to a living cell system, initiates or improves the biosynthesis
of specific compounds [14]. According to their nature, elicitors can be divided into abiotic and
biotic. Abiotic elicitors can be considered substances of non-biological origin, which predominantly
consist of inorganic compounds such as salts or physical factors (high pH, UV light, extremes of
temperature, fungicides, antibiotics, heavy metals, high salt concentrations, etc.), whereas biotic
elicitors are substances with a biological origin, including polysaccharides derived from plant cell walls
(pectin or cellulose) or microorganisms (chitin or glucans). A further advantage to stimulate secondary
metabolite production is represented by precursor feeding combined with elicitation, based on the idea
that introduction of an intermediate compound of a biosynthetic route can increase the yield of the final
product. Currently, many highly valuable metabolites belonging to polyphenols, alkaloids, terpenes,
and lignans are commercially produced via plant cell cultures [15]. Nevertheless, some problems
still have to be solved with this technology, resulting from the instability of the cell lines, low yields,
and scale-up processes. As far as cannabinoids are concerned, callus and cell suspension cultures are
not able to produce these kinds of molecules probably because their synthesis is restricted to specialized
tissues, the trichomes [16]. However, other interesting secondary metabolites are synthesized by
different hemp plant tissues and could be obtained by plant cell cultures [15,17,18]. In a previous study
on several hemp varieties, we reported the presence of flavonoid compounds from leaves, mainly
apigenin- and luteolin-7-O-glucoside [7]. The aim of this study was to evaluate the ability of hemp cell
suspensions to synthesize valuable metabolites and to increase their production using different kinds of
elicitors. The metabolite production was followed by NMR spectroscopy, and the metabolic pathways
involved in the synthesis of the major identified compounds were also investigated following the
activities of the enzymes phenylalanine ammonia-lyase (PAL) and tyrosine aminotransferase (TAT)
and their expression profiles. Moreover, the antioxidant abilities of the cell suspension extracts were
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estimated through in vitro and ex vivo assays to verify whether the hemp suspension cell system
showed antioxidant activity.

2. Results

2.1. Cell Suspension Growth and Elicitor Treatments

C. sativa L. (var. Futura) cell suspensions were grown for a maximum of 15 days. During this
period, the cells showed a typical growth curve, with the lag phase up to the 5th day and the exponential
phase from the 5th to the 11th day (Figure 1). During the lag and exponential phases, the cell viability
was greater than 88%; then, a decrease in the growth rate was observed together with the browning of
the cultures and the development of clumps, both of which are symptoms of ageing (data not shown).
The cell volume after sedimentation (CVS) was used to follow the growth in each flask. Upon inoculum
in liquid medium, the cell biomass reached the maximum growth rate between days 5–11, as measured
both by CVS (Figure 1, Ct) and by fresh weight (data not shown).
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Figure 1. Growth curve of hemp cell suspensions (var. Futura) not elicited (Control, Ct), elicited with
methyl jasmonate (MeJA), MeJA + tyrosine (MeJA + Tyr), or treated with tyrosine (Tyr). CVS: cell
volume after sedimentation. Each value represents the average of five biological replicates ± SD.

The elicitor treatments were applied to the hemp cells after cell growth entered the exponential
growth phase (5th/7th day), as secondary metabolites are mostly synthesized during this period [19,20].

Before starting elicitor treatment, the cell viability, as estimated by Evans Blue dye, ranged between
80 and 90%. This percentage was considered mandatory to proceed with the treatments.

Several elicitor treatments were tested: salicylic acid (SA), chitosan (CHT), jasmonic acid (JA),
methyl jasmonate (MeJA), and a combination of MeJA and precursor feeding with L-phenylalanine
(Phe) or L-tyrosine (Tyr). Cell growth was differentially affected by the different treatments. Namely,
CHT and SA did not impair either the growth rate or the cell viability (data not shown), whereas JA
and MeJA caused a decrease in the growth rate. The MeJA-elicited cells showed a 20–23% decrease in
the growth rate after 4 days of treatment (Figure 1). A similar decrease was observed with JA (data not
shown). Conversely, the addition of Tyr alone did not have any inhibitory effect on the growth rate
(Figure 1).

To evaluate which elicitor was more effective at enhancing secondary metabolite production in
hemp cell cultures, the total phenolic acid accumulation was measured during a time course experiment
that lasted nine days after elicitation. As reported in Figure 2, SA and CHT treatments gave rise to only
a slight increase in total phenolic accumulation, whereas JA and MeJA showed a more significant effect.
In particular, the strongest effect of the two elicitors was evident on day 4 after addition, accounting
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for approximately 42% and 52% more phenolic accumulation, respectively (Figure 2). Based on these
results, a 4-day elicitation with MeJA was chosen for subsequent experiments, where a combination
of MeJA and precursor feeding using either Phe or Tyr was adopted. Namely, the combination of
MeJA with Phe during 4 days of treatment led to a 56% increase in total phenolics compared to the
control, whereas the combination of MeJA with Tyr amounted to 82% more phenolics than the control,
thus leading to a further increase of 20% compared to the treatment with only MeJA. Based on these
data, the 4-day treatment with a combination of MeJA + Tyr was chosen for all subsequent experiments.
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Figure 2. Total phenolic accumulation in hemp suspension cultures during nine days of elicitation.
Each bar represents the average of three biological replicates ± SD. SA: salicylic acid; CHT: chitosan; JA:
jasmonic acid; MeJA: methyl jasmonic acid; MeJA + Phe: MeJA + phenylalanine; MeJA + Tyr: MeJA +

tyrosine. Ct: control; d: days of elicitation; DW: dry weight; GAE: gallic acid equivalent. Comparisons
of differences between the means of the treated and Ct samples were performed using Student’s t-tests
(* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).

2.2. NMR Metabolite Profiling

NMR metabolite profiling of hemp cell suspension cultures was used to identify secondary
metabolic pathways that are induced during elicitation and that may be linked with the above-described
total phenolic acid accumulation. To this end, the methanol/water extracts from the control and 4-day
MeJA + Tyr treated cells were investigated by NMR spectroscopy (Figure 3).
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Figure 3. Aliphatic (A), anomeric (B), and aromatic (C) regions of 1H-NMR spectra of the methanol/water
extracts from hemp cell suspension culture control samples. The resonance assignments of the
main compounds are reported. GABA: γ-aminobutyric acid; 4-HPP: 4-hydroxyphenylpyruvate;
4-HPL: 4-hydroxyphenyllactate.
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The aliphatic region of the 1H-NMR spectra of the extracts from the control samples showed
the presence of amino acids (alanine, γ-aminobutyric acid (GABA), glutamate, glutamine, threonine,
valine), fatty acids (oleic, linoleic, and linolenic), and other organic compounds such as citrate, malate,
and choline (Figure 3A). In the anomeric region, signals related to α-glucose, β-glucose, and sucrose
were detected (Figure 3B).

In the aromatic region, the presence of fumarate, histidine, phenylalanine,
4-hydroxyphenylpyruvate (4-HPP), 4-hydroxyphenyllactate (4-HPL), 2-(4-hydroxyphenyl)ethanol
(tyrosol), and 2-(4-hydroxyphenyl)ethanolamine (tyramine) are highlighted (Figure 3C). In particular,
1H-NMR signals due to 4-HPP and 4-HPL were prevalent with respect to the other aromatic compounds.

The main differences between the elicited cells and control samples were observed in the aromatic
region. In particular, in the elicited samples, the signal intensities of 4-HPP and 4-HPL, after normalization
performed with the methanol integral, showed a 2.84- and a 2.65-fold increase compared to the control,
respectively (Table 1). The elicitation treatment also produced a 3.3-fold increase in tyrosol and a
1.77-fold increase in tyramine content.

Table 1. Quantification of aromatic compounds determined by 1H NMR analyses.

Compound Ct (µg/mg DW) 4 d MeJA + Tyr (µg/mg DW) Fold Increase

4-HPP 14.47 41.08 2.84
4-HPL 5.05 13.37 2.65
Tyrosol 0.66 2.19 3.32

Tyramine 1.02 1.80 1.77

Ct: control cell extracts; 4 d: 4 days; MeJA: methyl jasmonate; Tyr: tyrosine; 4-HPP: 4-hydroxyphenylpyruvate,
4-HPL: 4-hydroxyphenyllactate; DW: dry weight. Each value represents the average of three biological replicates.

Among the aromatic compounds, the resonance assignment was easily confirmed for phenylalanine
(signals centered at 7.32 ppm), histidine (signal at 7.66 ppm), and fumarate (signal at 6.59 ppm) on the
basis of the Biological Magnetic Resonance Data Bank database (BMRB, http://www.bmrb.wisc.edu/).
Tyrosol (7.05 and 6.73 ppm) and tyramine (7.30 and 6.83 ppm) resonances were also confirmed by
comparison with bidimensional heteronuclear experiments of standard compounds. The resonance
assignment strategy of 4-HPP and 4-HPL was achieved by using a combination of two-dimensional
(2D) homo- and heteronuclear NMR experiments performed on samples treated with MeJA and
isotopically enriched Tyr (L-13C3-Tyrosine). The overlay of Heteronuclear Multiple Bond Correlation
(HMBC, blue) and Heteronuclear Single Quantum Coherence (HSQC, black) spectra and Distortionless
Enhancement by Polarization Transfer (DEPT) spectra included as an F1 projection (Figure 4) showed
a strong direct correlation centered at 43.4 ppm and 4.26 ppm for the carbon and proton frequencies,
respectively, due to the methylene signal, with two occasionally isochronous protons, as evidenced by
the DEPT experiment. The heteronuclear long-range correlation in the HMBC experiment centered
at 43.4 ppm and 4.26 ppm (indicated with a red arrow) with the 2′,6′ aromatic protons occurring at
7.12 ppm, confirmed the 4-HPP spin system assignment. The 4-HPL spin system assignment was
performed by the same strategy. Figure 4 reports the direct 13C-1H correlation at 37 ppm and 2.97 ppm
and 3.21 ppm (indicated with a red arrow centered at 3.08 ppm) for the methylene group of 4-HPL
with two diastereotopic protons. The long-range heteronuclear correlation, centered at 37 ppm with
the 2′,6′ aromatic protons at 7.15 ppm and the aliphatic protons at 3.75 ppm, confirmed the spin system
assignment. Additionally, the monodimensional DEPT experiment confirmed signals at 43.4 and
37 ppm as methylene carbons, being in the opposite phase with respect to the other methyne signals in
the aromatic region; the strong intensity of the two direct correlations observed in the HSQC spectrum
confirmed that 4-HPP and 4-HPL were derived from the metabolism of 13C-enriched tyrosine.

http://www.bmrb.wisc.edu/
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2.3. Free Radical Scavenging Activity

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) method was used to estimate the antioxidant activity
of the cell extracts before and after elicitation with MeJA and MeJA + Tyr. The treatment with MeJA led
to an increase in scavenging activity of 20% and 26% after 1 day and 4 days of elicitation, respectively
(Figure 5). The treatment with MeJA + Tyr produced a stronger effect on in vitro scavenging activity
after 4 days of elicitation, resulting in a 51% increase relative to the control (Figure 5).

The antioxidant capacity results also correlated with the corresponding phenolic compound
concentrations determined by the Folin-Ciocalteu method, giving rise to a correlation coefficient of
R = 0.9299.

The biological effects of the cell extracts were also evaluated on an ex vivo model of human
erythrocytes under oxidative insult in terms of both cellular antioxidant activity (CAA) and oxidative
hemolysis inhibition.

The CAA was determined in human erythrocytes that were pre-treated for 1 h with 12.5 µg
of cell extracts per mL of reaction volume and then exposed to a peroxyl radical generator
(2,2′-azobis(2-amidinopropane) hydrochloride, AAPH), which causes oxidative stress. The effects
of the cell extracts were compared to 50 µM Trolox, an analogue of vitamin E, which was used as a
standard. As shown in Figure 6, the cell extracts after elicitation conferred stronger protection than
non-treated samples, showing an antioxidant activity of 32.9 ± 6.4 CAA units after 1 day of elicitation
and 37.1 ± 6.3 after 4 days of treatment, representing a 60% and 80% increase compared to the untreated
cell samples.
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Figure 5. DPPH radical scavenging activity of the extracts from hemp cell suspensions subjected to
different elicitation treatments. Ct: control; 1 d: 1 day; 4 d: 4 days; MeJA: methyl jasmonate; Tyr:
tyrosine; DPPH: 2,2-diphenyl-1-picrylhydrazyl; DW: dry weight. Comparisons of differences between
the means of the treated and Ct samples were performed using Student’s t-tests (* p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001). Each value represents the average of three biological replicates ± SD.
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Figure 6. Cellular antioxidant activity (CAA) of hemp cell extracts evaluated in an ex vivo human
erythrocyte system. Trolox was used as a reference standard. Values represent the mean ± SD of five
measurements. Ery + AAPH: erythrocytes exposed to AAPH; Ct: control; 1 d: 1 day; 4 d: 4 days;
MeJA: methyl jasmonate; Tyr: tyrosine. One-way ANOVA with Bonferroni’s post hoc test was applied:
* indicates significance versus Ery + AAPH (*** p ≤ 0.001); # indicates significance versus the Ct sample
(## p ≤ 0.01; ### p ≤ 0.001); and & indicates significance versus 50 µM Trolox (&& p ≤ 0.01; &&& p ≤ 0.001).

To conveniently evaluate the free radical-induced membrane damage and the antioxidant activity
of the samples, hemp cell extracts were assayed in an AAPH-induced hemolysis model of human
erythrocytes. This assay showed that all hemp extracts exerted significant erythrocyte hemolysis
inhibition compared to the AAPH-treated erythrocytes (CNT), although they were less effective than
50 µM Trolox, as expected (Figure 7). In particular, the 1-day and 4-day elicited samples exhibited a
higher anti-hemolytic effect compared to the untreated samples, which is in agreement with the CAA
results in erythrocytes.
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PAL activity was investigated since PAL represents the crucial branch point between primary 
and secondary metabolism, being the first enzyme involved in phenylpropanoid derivative 
biosynthesis. In particular, in this study, the effect of elicitation and precursor feeding was 
considered. The PAL specific activity of non-elicited cells remained stable throughout the period of 
the experiment. The addition of MeJA for 1 and 4 days resulted in a 1.81- and 2.23-fold increase, 
respectively (Table 2). Elicitation with MeJA + Phe resulted in a 1.89-fold increase after 1 day and a 
2.4-fold increase after 4 days of treatment compared to the control, whereas the addition of MeJA in 
combination with Tyr resulted in a 2.74-fold increase after 1 day and a 3.64-fold increase after 4 days 
relative to the control.  

Since the NMR data highlighted the accumulation of 4-HPP, the activity of the TAT enzyme, 
which catalyzes Tyr deamination to generate 4-HPP, was also evaluated after elicitation with MeJA 
in combination with Phe or Tyr. As shown in Table 2, after 1 day of treatment with MeJA, the TAT 
activity was enhanced 1.48 times and the TAT activity was further enhanced 3.12 times after 4 days. 
When MeJA was added along with Phe, the enzymatic activity increased 2.24-fold after 1 day and 
4.47-fold after 4 days of treatment. A further increase in TAT activity equal to 3.72- and 8.28-fold was 
observed using MeJA and Tyr as precursor for 1 and 4 days, respectively. 

 
 

Figure 7. Anti-hemolytic activity of hemp cell extracts (12.5 µg/mL). Trolox was used as a reference
standard. Values represent the mean ± SD of three measurements. Ery-AAPH: negative control without
AAPH; Ery + AAPH: positive control with AAPH; Ct: control cell extracts; 1 d: 1 day; 4 d: 4 days;
MeJA: methyl jasmonate; Tyr: tyrosine. One-way ANOVA with Bonferroni’s post hoc test was applied:
* indicates significance versus Ery + AAPH (*** p ≤ 0.001); # indicates significance versus the Ct sample
(## p ≤ 0.01; ### p ≤ 0.001); and & indicates significance versus 50 µM Trolox (&& p ≤ 0.01; &&& p ≤ 0.001).

2.4. Effects of Elicitors on PAL and TAT Enzymatic Activities and Transcript Levels

PAL activity was investigated since PAL represents the crucial branch point between primary and
secondary metabolism, being the first enzyme involved in phenylpropanoid derivative biosynthesis.
In particular, in this study, the effect of elicitation and precursor feeding was considered. The PAL specific
activity of non-elicited cells remained stable throughout the period of the experiment. The addition of
MeJA for 1 and 4 days resulted in a 1.81- and 2.23-fold increase, respectively (Table 2). Elicitation with
MeJA + Phe resulted in a 1.89-fold increase after 1 day and a 2.4-fold increase after 4 days of treatment
compared to the control, whereas the addition of MeJA in combination with Tyr resulted in a 2.74-fold
increase after 1 day and a 3.64-fold increase after 4 days relative to the control.

Table 2. Specific activities of phenylalanine ammonia-lyase (PAL) and tyrosine aminotransferase (TAT)
of hemp cell extracts before and after different elicitation treatments.

Sample PAL Specific Activity (nmol mg−1 min−1) TAT Specific Activity (nmol mg−1 min−1)

Ct 3.25 ± 0.80 0.58 ± 0.06
1 d MeJA 5.87 ± 0.71 0.86 ± 0.11
4 d MeJA 7.26 ± 0.33 1.81 ± 0.22

1 d MeJA + Phe 6.15 ± 0.20 1.30 ± 0.14
4 d MeJA + Phe 7.79 ± 0.39 2.59 ± 0.13
1 d MeJA + Tyr 8.90 ± 0.33 2.16 ± 0.24
4 d MeJA + Tyr 11.83 ± 0.75 4.80 ± 0.43

Values are expressed as the mean ± SD of three biological replicates. Ct: control cell extracts; 1 d: 1 day; 4 d: 4 days;
MeJA: methyl jasmonate; Tyr: tyrosine.

Since the NMR data highlighted the accumulation of 4-HPP, the activity of the TAT enzyme,
which catalyzes Tyr deamination to generate 4-HPP, was also evaluated after elicitation with MeJA in
combination with Phe or Tyr. As shown in Table 2, after 1 day of treatment with MeJA, the TAT activity
was enhanced 1.48 times and the TAT activity was further enhanced 3.12 times after 4 days. When
MeJA was added along with Phe, the enzymatic activity increased 2.24-fold after 1 day and 4.47-fold
after 4 days of treatment. A further increase in TAT activity equal to 3.72- and 8.28-fold was observed
using MeJA and Tyr as precursor for 1 and 4 days, respectively.
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Considering that the PAL and TAT enzymes showed the highest increase after MeJA + Tyr
elicitation, a quantitative expression analysis (qPCR) of PAL and TAT genes was performed on these
samples. As shown in Figure 8, the expression of both genes was induced by this treatment. In particular,
PAL gene expression was enhanced by approximately four-fold compared to the control samples after
both 1 and 4 days of elicitation. The TAT gene expression was strongly induced (approximately 11-fold)
after 1 day of elicitation compared to the control samples, whereas a lower induction was observed
after 4 days of elicitation (approximately five-fold).
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metabolism and to elucidate the metabolic pathways activated by the elicitation. The elicitors were 
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Figure 8. Expression analysis of the PAL and TAT genes from hemp cell suspensions after 1 and
4 days of treatment with MeJA + Tyr. Values represent the mean ± SD of three biological replicates.
Comparisons of differences between the means of the treated and Ct samples were performed using
Student’s t-tests (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).

3. Discussion

Elicitation has been widely used to enhance secondary metabolism in plant cell suspension
cultures [21]. In this work, several compounds were tested on cell suspensions obtained from the
industrial hemp variety Futura to identify the best elicitor treatment that is able to induce secondary
metabolism and to elucidate the metabolic pathways activated by the elicitation. The elicitors were
chosen based on results achieved both on cannabis cell cultures [18] and on other species ([19] and
references therein). Namely, CHT, SA, JA, and MeJA were tested in this study, as well as a combination
of elicitation and precursor feeding. The elicitor treatments were performed during the exponential
growth phase of cell suspensions between the 5th and 11th day. Indeed, it has been reported that
secondary metabolites are mostly synthesized after the cell growth enters into the exponential phase,
probably because during the lag phase, the plant cells need to adjust to the new environment [20,22].
Among the elicitors used, MeJA was the most effective, enhancing the polyphenol content by 52%
over the control cells after 4 days of treatment. However, the biomass of cell cultures showed a
reduction in growth rate upon MeJA supplementation. Several authors have highlighted that JA and
MeJA treatments, although they lead to an increase in secondary metabolite accumulation, cause
stunted growth in both plants and cell cultures through the suppression of mitosis [23–25]. It has also
been reported that in plant cell cultures, precursor feeding in combination with elicitor treatments
can enhance secondary metabolite synthesis. Therefore, the hemp cell suspensions were treated
with MeJA + Phe or with MeJA + Tyr. Phe was chosen because it represents the substrate of PAL,
the first committed enzyme of secondary metabolism, and Tyr was chosen since it is the precursor
for thousands of specialized compounds [26,27]. Based on the amount of phenols that accumulated,
the best combination proved to be MeJA + Tyr during 4 days of treatment, with an 82% phenol increase
over the control cells. Likewise, MeJA + Phe produced an accumulation of phenols higher than the
untreated samples (+ 56%) but lower than the MeJA + Tyr treatment. These data are in agreement
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with those reported for cell suspensions of other species such as Withania somnifera, Papaver bracteatum,
Catharanthus roseus, and Vitis vinifera [26,28,29].

From the analyses of the aromatic region of the NMR spectra, the main compounds detected were
4-HPP and 4-HPL (here described for the first time in hemp cell suspension system), in addition to
tyrosol and tyramine. Moreover, the levels of all these compounds were increased by the elicitation
treatment with MeJA + Tyr. These results suggested that two biosynthetic pathways are mainly active
in cultured hemp cells and that these pathways are enhanced by the elicitor/precursor treatment.
The first is a Tyr-derived pathway leading to 4-HPP and 4-HPL, the two major compounds highlighted
by the NMR spectra; the second is the pathway leading to tyrosol. As far as the first pathway is
concerned, the elicitation treatment enhanced the amount of 4-HPP and 4-HPL by approximately
three-fold with respect to the untreated samples. Tyrosine deamination to 4-HPP, a reaction catalyzed
by the TAT enzyme, represents the entry point of many Tyr-derived compounds, such as plastoquinone,
tocopherols, rosmarinic acid, and benzylisoquinoline alkaloids [27,30]. Indeed, TAT activity has been
detected in hemp cell cultures together with its gene expression, and both its activity and expression
are induced by all the elicitation treatments performed, with MeJA + Tyr being the most effective.
Even if Phe is not the direct substrate of TAT, induction of TAT activity was also observed in MeJA
+ Phe-treated cells. This induction was higher than that observed after treatment with MeJA alone.
This effect might be attributed to the direct conversion of Phe to Tyr due to an aromatic amino acid
aminotransferase, similar to that observed in Atropa belladonna [31,32]. These authors reported that the
Tyr and Phe pathways are biochemically coupled by specific aminotransferases.

Moreover, the presence of 4-HPL, derived from the reduction of 4-HPP, indicates that the hemp cell
suspensions could follow the route of rosmarinic acid biosynthesis [33]. Nevertheless, no rosmarinic
acid was found, suggesting that the last enzymatic steps needed for its synthesis are lacking in the hemp
cell system. Indeed, it has been reported that rosmarinic acid is the prominent secondary metabolite of
the Lamiaceae and Boraginaceae plant families [34].

The second pathway that is active in hemp cell cultures is the one that leads to the synthesis of
tyrosol. In fact, the concentration of tyrosol after 4 days of elicitation with MeJA + Tyr was three times
higher than that of the control. Two different biosynthetic routes for the synthesis of tyrosol have been
proposed: one involves the reaction catalyzed by PAL with Phe as the substrate, and the other involves
the decarboxylation of Tyr to tyramine [35]. In our cell suspensions, both PAL gene expression and
enzymatic activity were induced by all the elicitation treatments. In particular, treatment with MeJA +

Phe was more effective than treatment with MeJA alone, and a further increase was achieved with
MeJA + Tyr. This induction might be due in part to the intrinsic tyrosine ammonia lyase activity of the
PAL enzyme and partly to a cytosolic aminotransferase able to link Tyr catabolism to Phe biosynthesis,
which might be active in our cell system, as described in Petunia hybrida [36]. Regarding the second
route towards tyrosol, a slight increase of tyramine, the product of the first reaction, was observed after
elicitation with MeJA + Tyr.

The presence of tyrosol, an antioxidant compound mainly found in olive oil and in plants of the
Rhodiola species, was described for the first time in cell suspensions of a drug-type hemp variety
by Peč et al. [18]. These authors obtained two types of cell lines, green and greenish-brown cells,
that produced more tyrosol than olive oil after JA elicitation. In our experiments, the 4-day elicited
hemp cell suspensions accumulated 2.19 µg tyrosol/mg dry weight (DW), a concentration similar to
that observed by Peč et al. [18]. These results confirm that the hemp cell cultures represent a good
system for tyrosol production. Further optimization could be achieved through suitable selection of
genotypes and elicitation strategies.

The presence of the four aromatic compounds might be responsible for the antioxidant activity
observed in hemp cell extracts. Indeed, our results on the hemp cell extracts showed an in vitro free
radical scavenging activity increase with the use of specific elicitors and with the time of elicitation as
estimated by the DPPH assay. The correlation observed between the DPPH assay and total phenolic
content indicates that these compounds significantly contribute to the antioxidant potential of the
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hemp cell extracts, which is in agreement with previous papers reporting the link between phenolic
content and antioxidant potential [37,38].

Moreover, the elicited cell extracts exhibited antioxidant activity on an ex vivo model of human
erythrocytes under oxidative stress that was approximately double that of the untreated samples.

Taken together, our results outline the metabolic pathways that are active in the cell suspension of
the hemp variety Futura under specific elicitation treatment and highlight the antioxidant properties
of these cell extracts. Phenolic compounds from plant sources have been receiving great attention as
natural antioxidants for many applications, such as pharmaceuticals, dyes, nutraceuticals, fragrances,
flavors and pesticides. Currently, they are receiving great attention as natural antioxidants for food
preservation, since concerns are increasing over the safety of synthetic preservatives. An example is
the production of active food packaging through the incorporation of antioxidant compounds into the
packaging material. Recently, active packaging using chitosan and kombucha tea or olive leaf extracts
has been demonstrated to protect fresh meat oxidation, extending the shelf life [39,40]. Whole hemp
cell extracts could represent a good candidate for such a purpose.

4. Materials and Methods

4.1. Plant Material and Cell Suspension Cultures

C. sativa L. (var. Futura) seeds were soaked in a 0.05% Tween 20 solution for 5 min, rinsed
several times with sterile water, and incubated at 25 ◦C onto 3MM Whatman wet paper for 3-4 days
until germination. Seedlings were sterilized for 30 sec in 70% ethanol followed by 5 min in 1:5 (v/v)
commercial bleach. After several rinses in sterile water, seedlings were transferred on Murashige &
Skoog (MS) agar medium [41], and after 2–3 weeks, leaves were used to induce cell cultures. For callus
induction, leaf pieces were cultured on MS agar medium supplied with 0.5 µM 1-naphthaleneacetic
acid (NAA), 1 µM thidiazuron (TDZ), 3% (w/v) sucrose, 0.8% agar (w/v), adjusted to pH 5.8 [42].

One month later, calli were transferred on fresh medium, subcultured every 3 weeks and
maintained in the dark for several months. The cell suspension cultures were started by inoculating
about 1 gr of friable callus in a 250 mL Erlenmeyer flask containing 50 mL of liquid medium and kept
on a gyratory shaker at 110 rpm under a light intensity of 14–23.8 µmol/m2sec. To determine the cell
growth, CVS was measured using 250 mL Erlenmeyer flasks with a graduated beak. This method
was chosen as it has been shown to be a rapid and simple method for the routine estimation of cell
biomass, without the destruction of cells [43]. Moreover, CVS is highly correlated with the fresh weight
of cells [43].

4.2. Elicitor Treatments

Exponentially growing cells (5/7 days after subculturing) were treated with different elicitors: SA,
CHT, JA, MeJA and a combination of MeJA + Phe or MeJA + Tyr.

SA was dissolved in deionized water, filter sterilized, and added to the cell suspensions to the
final concentration of 100 µM. CHT was dissolved in 0.1% acetic acid under continuous stirring; then,
the pH was adjusted to 5.6 using 0.1 M NaOH. The stock solution (10 mg/mL) was kept at −20 ◦C
and diluted, before use, to a final concentration of 100 µg/mL. JA and MeJA were dissolved in 100%
ethanol, sterilized by filtration (0.22 µm) and added to the cultures to a final concentration of 100 µM.
Cell suspensions supplemented with ethanol at the same final concentration were used as control.
L-Tyr was added to the cell suspensions at a final concentration of 1 mM. The elicited and control
cells were collected after 1, 4, 7, and 9 days after treatment, ground in a mortar under liquid nitrogen,
freeze-dried, and stored at −80 ◦C until extraction.

4.3. Cell Viability

Cell viability was assessed by Evans blue (Sigma-Aldrich, St. Louis, MO, USA) vital exclusion
dye as reported by Iriti et al. [44]. Cell suspensions were incubated for 10 min with 0.15 mg/mL of
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Evans blue in distilled water (1:1). The excess of stain was removed from the medium with distilled
water, whereas the stain bound to dead cells was solubilized in 50% aqueous methanol containing 1%
SDS and quantified spectrophotometrically by measuring the absorbance at 600 nm. Heat treated cells
(10 min, 100 ◦C) were used as control of 100% cell death.

4.4. Metabolite Extraction and NMR Measurements

The freeze-dried samples were extracted in 80% methanol. Briefly, the dried fractions (10 mg)
were dissolved in 1 mL of 80% methanol, vortexed, sonicated for 10 min, and extracted overnight on
an orbital shaker at room temperature in the dark. Extracts were centrifuged for 20 min at 13,000× g
and the clear supernatants were used for total phenolics determination and DPPH radical scavenging
assay. The sample extraction procedure for NMR analysis was the same as above but methanol-d4 and
KH2PO4 buffered in D2O at pH 6.0 were used [45]. The samples were centrifuged and 600 µL of the
supernatant were directly analyzed. All NMR spectra (1H, 13C DEPT, Total Correlation Spectroscopy
(TOCSY), HSQC, Heteronuclear two-Bond Correlation (H2BC), HMBC, and HSQC-TOCSY) were
recorded on a Bruker DRX 600 spectrometer (Bruker Biospin GmbH Rheinstetten, Karlsruhe, Germany)
operating at 14.1 T, equipped with a 5 mm probe and z axis gradient unit. Spectra were acquired at
300 K, with a spectral width of 10,000 Hz and 32 K data points. The residual water suppression was
achieved by applying a presaturation scheme with low-power radiofrequency irradiation for 1.2 sec.
A resolution enhancement function with an exponential multiplication of 0.5 Hz for the line broadening
was applied. Spectra were referenced to the residual solvent signal at 3.31 and 49.0 ppm for proton
and carbon dimension, respectively. All 1H NMR spectra were carefully phased and baseline-adjusted
with the TOPSPIN 3.0 software (Bruker Biospin GmbH Rheinstetten, Karlsruhe, Germany). Spectra
assignment was performed also with the aid of standard compounds (Sigma-Aldrich, St. Louis, MO,
USA). L-Tyrosine-13C3 enriched was purchased by Sigma Aldrich (Sigma-Aldrich, St. Louis, MO, USA).

4.5. Assay of Total Phenolics

Total phenolic content of the samples was determined spectrophotometrically according to the
Folin-Ciocalteu method [46], using gallic acid as a standard. The extract (20 µL) was mixed with 1.58 mL
water and 0.1 mL Folin-Ciocalteu reagent previously diluted 1:10, incubated for 8 min, then 0.3 mL of
20% sodium carbonate solution were added and the reaction was incubated at room temperature for
2 h. The absorbance was measured at 765 nm against a reagent blank without extract. The results were
expressed as ng of Gallic Acid Equivalent (GAE) per mg of dry weight.

4.6. DPPH Radical Scavenging Assay

The effect of extracts on DPPH radical was determined following the method described by Cheng
et al. [47]. A working solution of 0.208 mM fresh DPPH in methanol was made daily and mixed with
different concentrations of the extracts. The reaction mixture was vortexed and left in the dark at
room temperature for 30 min. The absorbance of the mixture was measured spectrophotometrically at
517 nm against a blank of 80% methanol; then, the ability to scavenge DPPH radical was calculated
as follows:

(%) DPPH radical scavenging activity= [(Act − Asa)/Act] × 100 (1)

where Act is the absorbance of DPPH radical + methanol and Asa is that of DPPH radical + sample extract.

4.7. Cellular Antioxidant Activity (CAA) Assay in Red Blood Cells

Human erythrocytes were collected from healthy blood donors upon informed consent for
the use of residual blood for research purposes, according to the regulations of “Fondazione G.
Monasterio CNR-Regione Toscana”. Human blood samples from volunteers were collected in
ethylenediaminetetraacetic acid (EDTA)-treated tubes and centrifuged for 10 min at 2300× g at 4 ◦C.
Plasma and buffy coat were discarded and erythrocytes were washed twice with phosphate buffered
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saline (PBS), pH 7.4. The antioxidant activity sample extracts was evaluated in an ex vivo erythrocyte
system as described by Frassinetti et al. [48]. The fluorescence was read at 485 nm excitation and
535 nm emission by using a VictorTM X3 Multilabel Plate Reader (Waltham, MA). Each value was
expressed as follows:

CAA unit = 100 − (
∫

SA⁄
∫

CA) × 100 (2)

where
∫

SA is the integrated area of the sample curve and
∫

CA is the integrated area of the control
curve [49].

4.8. Erythrocyte Oxidative Hemolysis

The erythrocyte hemolysis was measured according to the method described by Mikstacka
et al. [50] and the oxidative stress was generated by thermal decomposition of AAPH to peroxyl
radicals. The erythrocyte oxidative hemolysis was spectrophotometrically evaluated at 540 nm as
hemoglobin released in the supernatant. Control and blank samples were used and refer to erythrocytes
exposed to AAPH or PBS, respectively. Each value was expressed as a percentage of hemolysis relative
to the control.

4.9. PAL and TAT Enzymatic Assays

PAL: the freeze-dried samples were suspended in ice-cold extraction buffer containing 0.1 M
phosphate buffer (pH 7.5), 0.1 mM EDTA, 1 mM DTT, 5 mM ascorbic acid, 1 mM PMSF and 0.15% w/v
polyvinyl-pyrrolidone, vortexed and centrifuged at 13,000× g for 20 min at 4 ◦C and the supernatant
was used for assaying PAL activity. PAL activity was determined spectrophotometrically at 290 nm
measuring the appearance of cinnamic acid [7].

TAT: the freeze-dried samples were suspended in ice-cold extraction buffer containing
0.1 M phosphate buffer (pH 7.5), 0.1 mM EDTA, 1 mM DTT, 8 mM α-ketoglutarate, 0.2 mM
pyridoxal-5-phosphate. After centrifugation at 6000× g, the supernatant was made 0.1% v/v with Triton
X100, incubated 15 min on ice and then centrifuged at 13,000× g for 20 min at 4 ◦C. The supernatant was
used to determine the enzyme activity following the method of [51]. The end product of the reaction
was measured spectrophotometrically at 331 nm using the extinction coefficient of 24,900 L mol−1 cm−1.

The amount of soluble proteins was determined by the Bradford method using bovine serum
albumin (BSA) as a standard [52]. Briefly, different amounts of the extracts were added to the Comassie
dye reagent, incubated for 10 min at room temperature and the absorbance was measured at 595 nm.
The sample concentration was determined by interpolation with a standard curve prepared with BSA.

4.10. RNA Extraction and Real Time PCR

Total RNA was extracted from 20 mg of lyophilized suspension cultures using the TRIzol®

RNA Purification Kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions.
RNA purity was checked spectrophotometrically (NanoDrop 2000c, Thermo Fisher Scientific, Waltham,
MA, USA), and only samples with a 260⁄280 nm ratio of absorbance comprised between 1.7 and
2.1 were further used. The integrity of the RNA was verified on agarose gels and stained with
ethidium bromide. The cDNA was synthesized using 0.7 µg of total DNase I-treated RNA using the
SuperScript III First-Strand Synthesis SuperMiX for quantitative RT-PCR (qRT-PCR), according to the
manufacturer’s instructions (Invitrogen, Carlsbad, CA). Quantitative RT-PCR was performed using
20 µL triplicate reactions on a 7300 Real-Time PCR System (Applied Biosystems, USA) containing
5 µL of 1:10 diluted cDNA, a 300 nM final concentration of each primer, and 10 µL of SYBR Green
PCR Master Mix (Applied Biosystems, USA). The cycling program was as follows: 50 ◦C for 2 min
(1 cycle), 95 ◦C for 10 min (1 cycle), 95 ◦C for 30 sec, and 60 ◦C for 1 min (40 cycles). The primer sets
were tested by dissociation curve analyses and verified for the absence of nonspecific amplification.
The dissociation curves were constructed using the following conditions: denaturation at 95 ◦C for
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15 sec, cooling to 60 ◦C for 30 sec, and then gradual heated at 0.01 ◦C/sec to a final temperature of
95 ◦C. For each primer pair, calibration curves were generated with different dilutions and were
accepted when the correlation coefficient was ≥0.99 and the efficiency was 1 ± 0.1. Relative expression
levels were calculated using the 2−∆∆Ct method [53]. Negative controls without cDNA were routinely
included. For the design of specific primers to produce amplicons of 150–250 bp, the Primer3 software
(v. 0.4.0; http://primer3.wi.mit.edu) [54,55] was used.

A putative ubiquitin gene (AJ864397.1) of C. sativa, which was found to have a stable expression
in all tested conditions, served as an endogenous reference. The following primers, producing
an amplicon of 147 bp, were used: UBIfor 5′-GCCAGGATGGCAATGAAGTA-3′ and UBIrev
5′-GAGTCTGCTCAGCTCGAAGG-3′. Results were confirmed using actin as a second housekeeping
gene (data not shown); for the amplification of the actin gene, the primers described by Stout et al. [56]
were used. For the TAT gene, the following primers, producing an amplicon of 174 bp, were used:
TATfor 5′-GGCCTGGTTTTCCCATTTAT-3′ and TATrev 5′-CATTCCCACAAGGATTACCG-3′. These
primers were designed on a putative TAT sequence (FN13105.1), which was obtained from BLAT
searches against the draft genome sequence of C. sativa var. Finola (http://genome.ccbr.utoronto.ca)
using TAT sequences from Arabidopsis as a query. For the PAL gene, the primers for qRT-PCR
described in [7] were used.
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