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Abstract: Neurodegenerative disorders, including Alzheimer’s disease, belong to the group of the
most difficult and challenging conditions with very limited treatment options. Attempts to find new
drugs in most cases fail at the clinical stage. New tactics to develop better drug candidates to manage
these diseases are urgently needed. It is evident that better understanding of the neurodegeneration
process is required and targeting multiple receptors may be essential. Herein, we present a novel
approach, searching for dual active compounds interacting with acetylcholinesterase (AChE) and
the a7 nicotinic acetylcholine receptor (nAChR) using computational chemistry methods including
homology modelling and high throughput virtual screening. Activities of identified hits were
evaluated at the two targets using the colorimetric method of Ellman and two-electrode voltage-clamp
electrophysiology, respectively. Out of 87,250 compounds from a ZINC database of natural products
and their derivatives, we identified two compounds, 8 and 9, with dual activity and balanced ICs
values of 10 and 5 uM at AChE, and 34 and 14 uM at «7 nAChR, respectively. This is the first
report presenting successful use of virtual screening in finding compounds with dual mode of action
inhibiting both the AChE enzyme and the 7 nAChR and shows that computational methods can be
a valuable tool in the early lead discovery process.

Keywords: virtual screening; multi modal; dual mode of action; nAChR; nicotinic acetylcholine
receptor; AChE; acetylcholinesterase; docking; lead identification; neurodegenerative disorders

1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia affecting, in particular, the
elderly population. So far, the disease is not well understood, and despite huge research efforts by
academia and the pharmaceutical industry to understand the origins of the disease, the identification of
new drugs to treat or alleviate symptoms of memory impairment have proven difficult. The drugs that
are currently on the market are mainly acetylcholinesterase (AChE) inhibitors including galantamine
(1), donepezil (2), and rivastigmine (3), and the NMDA receptor antagonist, memantine (4) (Figure 1).
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These drugs do not slow progression of the disease [1], but they help to alleviate some of the
symptoms. To further enhance their effect, it has been suggested that combining AChE inhibitors
with other “pro-cognitive receptor” drug targets such as NMDA receptors could be a better strategy
to alleviate cognitive impairment in dementia. Thus, combining treatments such as AChE inhibitors
with memantine could improve outcomes [2—4] as reported in clinical trials involving patients with
moderate-to-severe AD [5,6].
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Figure 1. Structures of currently approved Alzheimer’s disease (AD) drugs galantamine (1), donepezil
(2), rivastigmine (3) and memantine (4).

Instead of a poly-pharmaceutical approach where two or more drugs are combined, an
attractive alternative would be to have one compound simultaneously targeting multiple receptors [7].
Recently, it was suggested that a multi-target approach might be a viable tactic to combat complex
neurodegenerative diseases like AD [8,9]. However, identification of lead molecules for development
of multi-modal drugs represents a challenge.

Computational techniques including virtual screening (VS) are attractive technologies for faster
identification of drug leads [8,9] and may also prove to be powerful tools for finding multi-modal
drugs, if sufficient structural information of the desired drug targets is available. In the past decade,
the number of characterized crystal structures has increased significantly along with developments in
docking software and hardware, so it is now possible to filter millions of compounds within a short
timeframe. Further, virtual screening against one target proved to be more efficient for identification of
drug leads versus conventional high throughput screening (HTS) with success rates of 1-40% versus
0.01-0.14%, respectively [10]. However, dual or multi-target screenings are not common and their
success rates differ [11,12].

For the treatment of AD, an interesting multi-modal drug profile would be a compound that
simultaneously acts as an AChE inhibitor and a positive allosteric modulator (PAM) at one of
the pro-cognitive nicotinic acetylcholine receptors (nAChR), especially the «7 or «432 subtype.
This combination would lead to enhanced synaptic acetylcholine (ACh) levels along with a subtype
specific potentiation of nAChRs, which would be a more refined way to modulate the cholinergic
system, compared to increasing the dose of an AChE inhibitor alone. In particular, the a7 subtype of
the nAChR is an interesting target for AD therapy. Specific activation of this receptor is known to be
pro-cognitive [13-17].

In the search for new compounds that simultaneously target AChE and the «7 nAChR, we
embarked on a lead discovery project using high throughput virtual screening (HTVS). As a model
compound we selected galantamine that is marketed as an AD drug and has been described in the
literature as a drug with the desired dual mode of action, i.e., inhibitor of the AChE and a PAM
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at the «7 nAChRs [18,19]. Further, as co-crystal structures with galantamine are available of both
AChE [20] and an acetylcholine binding protein (AChBP) [21], a commonly used structural surrogate
for nAChRs [22], it seemed to be the obvious choice for a structure guided lead discovery project.
We developed a protocol for high throughput virtual screening to identify multi-modal drug leads
utilizing «7 homology models and an AChE X-ray structure and selected compounds that ranked
high in both screens for in vitro evaluation at «7 nAChRs and of the AChE. In the current paper we
present the virtual screening results confirming that virtual screening is an attractive technique that can
successfully be used to identify compounds simultaneously targeting the AChE and the 7 nAChR.

2. Results

In this study we aimed to identify compounds possessing activity at both the «7 nAChRs and
AChE. We chose galantamine as our lead compound and performed virtual screening towards
homology models of the 7 nAChR and an X-ray structure of an AChE. Compounds that scored
well in both screens were subsequently purchased and evaluated by two-electrode voltage-clamp
electrophysiology in vitro at the human «7 nAChR expressed in Xenopus oocytes and against
Electrophorus electricus AChE using the Ellman’s colorimetric assay.

2.1. Virtual Screening

We focused the search on natural products and natural product derivatives, which are a valuable
source of active compounds against both targets. We screened a database consisting of 87,250 natural
products and natural product derivatives from the ZINC database merged with an in-house database
containing 250 lycopodium alkaloids. The compounds were virtually screened, first at two homology
models of the «7 nAChR, and then the top hits were docked to the active site of a co-crystal structure
of the AChE enzyme bound with galantamine. Galantamine was identified amongst the top scoring
hits in all screens. After post-docking filtering, 78 compounds were left out, of which a sub-set of
13 compounds (Table 1), i.e., galantamine analogues (6, 7) and structurally unrelated compounds
(8-18), were selected and purchased for biological assessment.

2.2. Assessment of Activity with AChE and a7 nAChRs

The selected compounds and galantamine were initially evaluated for activity with AChE and the
a7 nAChR using a single concentration of a compound. For assessment of AChE inhibitory activity,
we used a colorimetric microplate assay based on the colour change during reaction of ACh with
Ellman’s reagent. All compounds were evaluated at 100 uM concentration and all selected compounds,
except compound 13 that was inactive, showed inhibition ranging from 7 to 95.4%. Compounds 6
and 7, sanguinine and norgalantamine, which are galantamine analogues, showed 96.4 and 96.5%
inhibition of AChE activity at 100 uM, respectively. Two additional compounds showed inhibition
greater than 70%. These compounds, 8 and 9, which are structurally unrelated to galantamine, at
100 uM inhibited AChE by 78.5 and 88.1%, respectively. Galantamine (10 uM), the known reference
compound, inhibited AChE activity by 91.5%. At a similar concentration (10 uM), compounds 6 and 7
showed 95.5 and 88.6% AChE inhibition, respectively, reaching a plateau at 10 uM.

All compounds were subsequently evaluated at the human o7 nAChR expressed in Xenopus
oocytes using two-electrode voltage-clamp electrophysiology. The oocytes were pre-incubated with
the test compound and subsequently the test compound was co-applied with an ECyy concentration
of ACh, an experimental design adopted to facilitate identification of PAMs. We first confirmed
the ability to identify PAMs by testing NS1738, a well-established «7 PAM [16]. As evident from
Figure 2, robust potentiation (440% at 31.6 uM) of (30 uM) ACh-evoked currents was observed.
Unexpectedly, galantamine did not show any PAM activity at concentrations ranging from 10 nM
to 100 uM, instead, inhibition of the (30 tM) ACh-evoked response was observed. At the highest
concentration, galantamine inhibited ACh by 67.3%. These results triggered an in depth evaluation
of galantamine effects at the &7 and the «432 nAChRs. The outcome of this study was published
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recently [23], with the conclusion that galantamine is not a PAM of the investigated nAChRs. Out of
the 13 tested compounds in the present study, all except compound 18 inhibited the «7 nAChR and
compounds 9-13 showed more than 90% inhibition at 100 uM.
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Figure 2. Representative current traces for NS1738, galantamine, and selected compounds from
a7 nAChRs expressed in Xenopus oocytes. Cells were subjected to two-electrode voltage-clamp
electrophysiology experiments; the oocyte membrane potential was clamped at —60 mV. All experiments
involved a pre-incubation protocol that consisted of 25 s application of the test solution (or a saline
solution for the reference trace) followed by 20 s co-application with 30 pM ACh. The representative
traces were baseline subtracted, and the bars above each trace represent the application periods, and
concentrations of the test solutions appear above the bars. The majority of the washing periods (3 min)
between each trace are omitted.
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For compounds exceeding 70% and 90% inhibition at 100 pM at AChE and the «7 nAChR,
respectively, ICsy values were determined based on full concentration response relationships (Table 1,
Figures 2 and 3A). To verify the AChE assay, we first tested physostigmine (5) and galantamine inhibition
and found ICs values of 0.78 and 0.68 M, respectively, which are in agreement with the previously
published results [24-27]. Two galantamine analogues, 6 and 7, were ca 3-fold more potent than
galantamine itself at the AChE with ICsj values of 0.28 and 0.23 uM, respectively. Compounds 8
and 9 were ca 13- and 6-fold less potent compared to galantamine, with ICsy values of 10.6 and
5.0 uM, respectively. All compounds for which ICs values were determined at the 7 nAChR (8-13)
were stronger inhibitors than galantamine, with compounds 10-12 displaying single digit micromolar
potencies corresponding to 6- to 14-fold higher potency. Compound 13 inhibited 07 nAChRs with an ICs
value of 13.1 uM. Compounds 8 and 9 were less potent with ICs, values of 34.3 and 14.5 uM, respectively.
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Figure 3. Inhibition of ACh-evoked currents from the human «7 nAChR expressed in Xenopus oocytes
of galantamine and selected VS hits. (A) Concentration-response relationships measured by whole-cell,
voltage-clamp experiments (holding potential —60 mV). Inward nicotinic currents were recorded after
25 s incubation with a test or Gal solution followed by 20 s co-application with 30 uM ACh. Peak
current amplitudes were measured and normalized with respect to the amplitude of current elicited by
30 uM ACh, n = 3. (B) Potential-inhibition dependence was determined by conducting experiments
at two holding potentials —50 and —100 mV. Oocytes were pre-incubated with the test solution (25 s)
and the test solution with 30 uM ACh was co-applied. Gal was tested at 30 uM, compounds 8 and 9 at

10 uM. Peak current amplitudes were normalized with respect to the amplitude of current elicited by
30 uM ACh, n = 3-4 cells.

Of the 13 screened compounds, two compounds, 8 and 9, met the criteria for being “dual mode of
action”, corresponding to a virtual screening hit rate of 15% across two targets.

Since galantamine at high concentrations acts as an open channel pore blocker [23], we investigated
if the inhibitory activity of the dual mode of action compounds was dependent on membrane potential.
We designed a simple experiment where application of a single concentration of a drug was applied at
two different membrane holding potentials, —100 and —50 mV. At a lower, more negative potential,
the driving force for ion flow is higher and causes a stronger inhibition of ACh induced currents for
positively charged channel blockers. Currents elicited in the presence of antagonists (compounds
binding elsewhere on the receptor) are independent of the membrane potential.

In this assay, galantamine as well as compounds 8 and 9 showed ~30% inhibition of (30 uM)
ACh-induced currents when tested at —50 mV (note that galantamine was tested at 30 pM and
compounds 8 and 9 due to their higher potency, at 10 uM). Inhibition increased for galantamine and
compound 9 when tested at —100 mV and was different for each compound: 42% for galantamine and
25% for compound 9. Inhibition decreased 13% for compound 8 (Figure 3B). These results indicate
that compound 8 is binding in the ACh pocket; however, compound 9 might work as a pore blocker or
possibly has a mixed mechanism of action.
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Table 1. Structures and corresponding docking scores and in vitro activities of selected hits and reference compounds. All compounds except references galantamine
and physostigmine were initially evaluated at 100 uM. For compounds exceeding 70% inhibition at the AChE and 90% at the 7 nAChR, ICs( values were determined.

AChE «7 nAChR AChE «7 nAChR
G-Score * G-Score ¢ G-Score * G-Score *
No Structure % Inhibition P % Inhibition ? No Structure % Inhibition ¥ % Inhibition ¥
ICs59 (uM) ICsp (uM) ICs59 (uM) ICsp (uM)
(pIC50 + SEM) (pIC50 + SEM) (pIC50 + SEM) (pIC50 + SEM)
N0~ X7 - - ~11.28 —14.33
5 T L ™ 915+ 0.3%° - " 38.3 + 4.2% 95.2 + 2.0%
R ICso = 0.78 - - ICs) = 8.3
Physostigmine (6.13 +0.02) - - (5.08 & 0.04)
o
H o —11.03 —15.10 —10.30 —13.39
1 HO-'-C 915+ 0.1%4 67.3 £ 0.5% 13 0% 76.3 +0.5% °
= 1Cs5¢ = 0.68 IC5p = 54.8 - IC5p =13.1
N\ (6.14 4+ 0.01) (4.26 + 0.04) - (4.88 + 0.02)
Nefopam
OH |
H e} —11.51 —15.10 ~N —12.07 —13.87
6 HO" <: 96.4 + 0.3% 45.4 4+ 2.3% 14 HO 0.0 6.5+ 1.7% 87.4 +1.4%
ICs = 0.28 - P - -
N (6.55 =+ 0.02) - O . .
H o ? —10.28 —13.05 o~ /LN —11.88 —13.03
; “‘“'Q\ 96.5 + 0.1% 64.8 + 0.7% - Nfo/>/Q 30.3 +4.7% 75.8 + 0.4%
= IC50 =0.23 - o} N N - -
(6.13 £ 0.02) - N - -
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Table 1. Cont.
AChE a7 nAChR AChE a7 nAChR
G-Score * G-Score G-Score * G-Score
No Structure % Inhibition ¥ % Inhibition ? No Structure % Inhibition ? % Inhibition ?
ICsq (uM) ICsq (uM) ICso (uM) ICsp (uM)
(pIC5() :l: SEM) (PIC50 :l: SEM) (pIC5() :l: SEM) (PIC50 :l: SEM)
[
N —13.99 —13.03 —10.64 —13.11
5 HO o ‘ 78.5 £ 0.6% 81.8 £+ 1.3% 16 56.7 & 4.2% 79.0 £ 1.6%
S, 1C59 =10.6 IC59 =34.3 - -
o ,J@ (4.96 4+ 0.03) (4.46 + 0.05) - -
o
NJ\N —10.71 —13.11 —12.92 —14.94
9 [O - 88.1 + 0.8% 93.2 + 0.3% 17 239 +5.7% 84.8 +£ 0.7%
N 1C5p = 5.04 IC59 =145 - -
O o (5.29 + 0.03) (4.84 £+ 0.04) - -
o |
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N I
—10.35 —13.27 y N —11.23 —15.05
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i Ny NHz _ -
s (5.44 £ 0.05) |\\1‘NH
Cyamemazine
F
0© —11.29 —14.60
11 = JOH 14.0 £ 9.3% 98.0 &+ 0.1%
O)\(ﬁ - ICs =72
F T - (5.14 £ 0.05)
Flazalone

ide G-score (kcal/mol); ® % inhibition at uM; - indicates “value not determined”; © % inhibition at 5.12 uM; © % o inhibition at 10 uM; ® inhibition at 33 uM.
2 Glide G kcal/mol); P % inhibiti 100 pM; - indi “val d ined”; ¢ % inhibiti 5.12 uM; 4 % of AChE inhibiti 10 pM; € inhibiti 33 uM
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3. Discussion

In the present study we explored the use of HTVS as a tool for identification of lead compounds
targeting two biological targets, AChE and the «7 nAChRs as inhibitors and PAMs, respectively.
A dual-acting compound working at these two targets would be highly interesting in relation to
developing drugs for the treatment of dementias where both targets independently have been shown
to effectively enhance neurotransmission and improve cognitive functions [28].

HTVS is a valuable method; however, it is not devoid of challenges, and hit rates vary significantly
depending on the target and the quality of the crystal structure used [12,29]. Requiring a hit to have
activity at two independent targets is even more challenging, and there are only a few such examples
in the literature. For identification of drug leads against AD, an interesting approach was taken by
Dominguez et al., where compounds with neuroprotective activity previously observed in mice were
investigated against two enzymes: AChE and y-secretase [29]. In another approach, Lepailleur et
al. searched an in-house library of presumed GPCR compounds and looked for additional effects on
histamine H3 and serotonin 5-HT, receptors [30]. These dual-target screening projects proved to be
successful with hit-rates of 12-33%.

We searched for compounds targeting both AChE and the a7 nAChR. These are two structurally
and functionally very different biological targets, an enzyme and a ligand gated ion channel. However,
through evolution, their binding pockets have become optimised to efficiently recognise the same
neurotransmitter, ACh. Both targets contain a characteristic aromatic cassette that efficiently recognises
and binds cations, and identification of dual-action compounds towards these two particular targets
may, therefore, not be as difficult as could be anticipated.

The screening approach presented here proves that finding structures with dual activity at the
AChHE and the a7 nAChR is indeed possible. Most of the compounds identified had some activity
at both targets and two met the cut-off criteria of 70% inhibition at AChE and 90% inhibition at the
nAChHR to merit full evaluation. Interestingly, there appeared to be no correlation between docking
scores and measured ICsj values. Compounds 8 and 9 were identified as dual-target compounds with
a balanced potency at AChE/«7 of 10/34 and 5/14 pM, respectively. Interestingly, the two compounds
are not galantamine-like structures, and they differ from each other, but both contain a large aromatic
portion and a basic tertiary amine. Their docked poses (Figure 4A,B), which can be superimposed in
a way that overlays the protonated nitrogens and aromatic nitrogen heterocycles (Figure 4C), create
interactions with Y195 and Q117. This superimposition may define a pharmacophore for compounds
targeting both AChE and nAChRs.

Of the remaining compounds, an additional two, galantamine analogues 6 and 7, had high
potency at the AChE, meaning that 4/13 or 30% of the tested compounds were potent AChE inhibitors.
At the a7 nAChR, the individual target HTVS hit rate was higher, 6/13 or 46%, which is not surprising
as the VS was biased towards nAChRs in the first place in that only compounds from the top scoring
list for nAChR were virtually screened against the AChE.

In addition to the two dual action inhibitors 8 and 9, four other compounds (10-13) were
identified as potent «7 nAChR antagonists. Their nicotinic activity has not been previously described.
Compounds 8, 9, and 12 are new ligands without any previously known biological activities.
Compounds 10 and 13 are clinically used drugs. Compound 10 is a well-known antipsychotic drug,
cyamemazine, which has anxiolytic properties and is used in the treatment of schizophrenia. It is
known to bind to dopamine, serotonin, muscarinic, and histamine receptors [31] but activity at nAChRs
has not been reported. The «7 nAChR is considered a target for the treatment of schizophrenia.
However, only agonists or PAMs are expected to produce cognition enhancement [32,33]. Compound
13, nefopam, is another clinically used drug that appeared as an «7 antagonist in our screening. It is a
centrally-acting, non-opioid analgesic used for the relief of moderate to severe pain. Its mechanism
of action is thought to be by inhibition of serotonin, dopamine, and noradrenaline reuptake, but is
not well understood [34]. Again, the 7 nAChR is considered as a target in non-opioid pain treatment
with interest in compounds positively affecting the receptor [35]. Compound 11, flazalone, is known
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for its anti-inflammatory properties, but has no clinical use [36]. For the above clinically used drugs,
the antagonism of «7 nAChRs is unlikely to be linked to the desired clinical effect of the drugs, as in
all cases, activation would be required; however, blockade of ®7 nAChRs may be linked to side effects.
Durrieu et al. [34] studied side effects of nefopam (13) and reported occurrence of serious, unexpected
neuropsychiatric side effects like confusion and hallucinations. These were correlated to high doses of
the drug, which is consistent with its micromolar inhibition of «7 nAChRs described here.

Figure 4. Binding mode of the two dual-active compounds in the «7 nAChR homology models and
AChE X-ray structure. Compound 8 in the &7 nAChR (A) and AChE (D) binding pockets. Compound 9
in the 7 nAChR (B) and AChE (E) binding pockets. Both compounds superimposed in the «7 nAChR
(C) pocket showing common pharmacophores. Compound 8 binds to the a7 nAChR (A) through
three hydrogen bonds (yellow dotted lines) to Q57, Q117, and W149; compound 9 exhibits similar
interactions with the same amino acids Q57, Q117, and W149. In the AChE pocket, compound 8 (D)
binds through hydrogen bonds to Y124, Q202, S203, and H447 and a cation-7 interaction to W86 (blue
dotted line). Compound 9 (E) creates hydrogen bonds to Y72, Y337, and R296 and a cation-7t interaction
to Y341. (F) Structure of compounds 8 and 9.

4. Materials and Methods

4.1. Materials

Plant origin galantamine hydrobromide analytical standard was purchased from PhytoLab GmbH
& Co., KG (Vestenbergsgreuth, Germany). Screened compounds were purchased from Ambinter (c/o
Greenpharma, Orléans, France). Restriction enzymes were from New England Bio Labs Inc. (Ipswich,
MA, USA), and DNA and RNA purification kits were from QIAGEN N.V. (Venlo, The Netherlands).
The mMessage mMachine T7 transcription kit was from ThermoFisher Scientific (Waltham, MA,
USA). Acetylcholinesterase from Electrophorus electricus, acetylcholine chloride, acetylthiocholine
iodide, 5,5-dithiobis-(2-nitro-benzoic acid), bovine serum albumin, kanamycin, theophylline, tricaine,
collagenase, HEPES, Trizma, salts, and other chemicals not mentioned specifically were purchased
from Sigma-Aldrich Co., LLC (St. Louis, MI, USA) and were of analytical grade.
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4.2. Homology Modeling and Preparation of Protein Structures

The sequence of the human &7 nAChR was downloaded from the UniProt database (entry P36544,
The UniProt Consortium, 2011, www.uniprot.org) and the signal peptide (residues 1-22) and the
transmembrane domain (residues 231-490) were deleted. Template structures Aplysia californica AChBP
with galantamine bound (PDB ID: 2PH9 [21]) and the mus musculus ol nAChR extracellular subunit
(PDB ID: 2QC1 [37]) were downloaded from the Protein Data Bank (www.rcsb.org, [38]). After removal
of unwanted ligands and heteroatoms, the sequences were initially aligned in T-Coffee [39], and the
alignment was subsequently edited according to the following considerations: both templates were
used in areas where the two templates were structurally similar, otherwise, 2QC1 was the template
of choice, except for regions where this template was distorted due to introduced mutations and
bound antagonists. A detailed alignment highlighting the choice of template for specific regions is
shown in Figure 5. Homology models with galantamine included in the interfacial binding sites were
constructed with MODELLER v.9.9 (Sali-Lab, San-Francisco, CA, USA) [40]. One hundred models
were generated and sorted according to DOPE scores [41]. After visual inspection, the model with the
most favourable DOPE score was selected and modified as follows: two water molecules (HOH 314
and 315) and a third bridging water molecule (HOH 83) were copied across from the 2PH9 and 2QC1
templates, respectively. Subsequently, the model was energy minimized in Macro Model (Schrodinger
Release 2012-1: Macro Model, Schrodinger, LLC, New York, NY, USA, 2017) using the OPLS_2005
force field [42] and the GB/SA water solvation model, after preparation of the structure using the
Protein Preparation workflow in Schrodinger’s MAESTRO where hydrogen atoms were added and
oriented in an energetically favourable manner followed by protonation/deprotonation of acidic/basic
residues and a constrained energy minimization [43]. The water molecules were deemed important
to include to block part of the classical agonist pharmacophore to preclude prototypical nicotine-like
agonists from the top of the scoring list, which were not of interest in this study. Finally, given that the
experimentally determined binding mode of galantamine in the X-ray structure is ambiguous [21], a
series of 20 docking runs using the Schrodinger Induced Fit Docking Protocol [44,45] were performed
in which protein side chains were sampled and backbone atoms were allowed to adapt in vicinity
(10 A) of the docked ligand. After confirming that no outliers in the Ramachandran plot were present
in the vicinity of the binding sites, two top ranked models that differed only by the rotameric state of
Q57 were selected as targets for docking. In these structures, galantamine forms cation- interactions
with residues on the principle side of the interface (Y93, Y188, Y195, and W149) and a hydrogen bond
to Y188. On the complementary side, galantamine is anchored via a 7-7 interaction with W55 and
hydrogen bonds to a water molecule, Q117, and when in the rotameric state facing the binding pocket,
also to Q57 (Figure 6).

For VS in the AChE enzyme, an X-ray structure of human recombinant AChE co-crystalized
with galantamine (PDB ID: 4EY6 [20]) was downloaded from the PDB database and prepared for
virtual screening as follows: water molecules were removed except HOH 860, which bridges from
galantamine to the receptor (5203 and G122). The X-ray structure was subsequently prepared using
the Protein Preparation workflow [43].


www.uniprot.org
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a7 1 GEFQRKLYKELVKNYNPLERPVANDSQPLTVYFSLSLLOIMDVDEKNQVL
2PHY 20 QANLMRLKSDLFNRSPMYPGPTK--DDPLTVTLGFTLODIVKADSSTNEV
20C1 21 SEHETRLVAKLFEDYSSVVRPVEDHREIVQVTVGLQLIQLINVDEVNQIV

a7 51 TTNIWLOMSWTDHYLOWNVSEYPGVKTVREFPDGOQIWKPDILLYNSADERF
2PH9 68 DLVYYEQQORWKLNSLMWDPNEYGNITDFRTSAADIWTPDITAYSSTRP-V
20C1 71 TTNVRLKQOWVDYNLKWNPDDYGGVKKIHIPSEKIWRPDVVLYNNADGDF

a7 101 DATFHTNVLVNSSGHCQYLPPGIFKSSCYIDVRWEPEFDVQHCKLKFGSWS
2PH9 117 QVLSPQIAVVTHDGSVMFIPAQRLSFMCDPTGVD-SEEGATCAVKEGSWV
20C1 121 AIVKFTKVLLDYTGHITWTPPAIFKSYCEIIVTHFPFDEQNCSMKLGTWT

a7 151 YGGWSLDLQ--MQEADISGYIPNGEWDLVGIPGKRSERFYECCK-EPYPD
2PHY9 166 YSGFEIDLKTDTDQVDLSSYYASSKYEILSATQTRQVQHYSCCP-EPYID
20C1 171 YDGSVVAINPESDQPDLSNFMESGEWVIKEARGWKHWVEYSCCPTTPYLD

a7 198 VTFTVTMRRRT----------~
2PH9 215 VNLVVKFRERRAGNGFFRNLFD
2QC1 221 ITYHFVMQRL-------—————-

Figure 5. Sequence alignment. Sequence of the human o7 nAChR and templates, AChBP co-crystalized
with galantamine (PDB ID: 2PH9), and rat «1 subunit (PDB ID: 2QC1) were aligned using T-Coffee and
used to build the homology model. Residues from both templates used in homology modelling are
shown in bold. Conserved residues are marked with grey boxes. The sequence identities counting only
the parts of the templates that were used for modelling constitute 30 and 39%, respectively, for 2PH9
and 2QCI1. For the human «7 nAChR, the sequence was used without the signal peptide.

Figure 6. Interactions of galantamine (orange) in the binding pocket of homology models of the a7
nAChR. Interacting residues are shown as purple sticks. Q57 in alternative rotameric state is shown in
magenta. Galantamine creates three hydrogen bonds with Q57, Q117, and Y188 (yellow dotted lines)
along with several aromatic contacts with the principal receptors: Y93, W149, Y188, and Y195 (blue
dotted lines) and to W55 on the complementary side (grey dotted line).

4.3. Preparation of Databases

A subset of the ZINC database (ZINC version 12, subset Znp98) containing 210,000 natural
products and natural product derivatives was downloaded and merged with an in-house database
containing lycopodium alkaloid structures (~250 compounds, one low energy conformation per
compound). All structures were protonated according to pH 7.4. After calculation of molecular
properties with QikProp (Schrodinger Release 2018-4: QikProp, New York, NY, USA) [46], compounds
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that were not compliant with Lipinski’s rule of five [47], contained reactive or toxic groups, or contained
more than one formal charge were discarded. Post filtering, 87,250 compounds remained for high
throughput virtual screening.

4.4. HTVS and Hits Selection

HTVS was performed on the two &7 nAChR homology models following the Schrodinger VS
protocol (Figure 7). Briefly, three levels of screening were performed (HTVS-, Standard-, and Extra
Precision docking) with GLIDE (version 5.9, Schrodinger, New York, NY, USA, 2013) [48,49]. Default
settings were used, except the number of compounds that were carried forward between stages was 20%
instead of the standard 10%. From the last stage of the nAChR screening, the top 50% of compounds
from each homology model (1714 compounds per model) were kept and subsequently filtered, applying
a 5 kcal/mol conformational energy penalty cut-off and leaving 1018 and 1031 compounds from the
two models, respectively. Then, 1607 unique structures were retrieved from the original database
and docked to the AChE crystal structure using Extra-Precision (XP) GLIDE docking and filtered by
applying the 5 kcal/mol conformational energy penalty cut-off.

Top
soring
hits

Screening

X-ray
structure

Figure 7. Screening workflow. Virtual screening was performed at two «7 nAChR homology models
having different volumes of the binding pocket. Top scoring hits from both models were subsequently
screened at the X-ray structure of AChE (PDB ID: 4EY6). From hits scoring high at both targets,
13 compounds were selected and tested in vitro. HTVS = high throughput virtual screening.

The ranges of docking scores were broad, therefore, hits with docking scores worse than
—10 kcal/mol for AChE and —13 kcal/mol for the nAChR were eliminated. Further, a 400 g/mol
molecular weight cut-off filter was applied, leading to 78 compounds that were clustered in Canvas [50]
based on the Tanimoto score using Daylight’s fingerprints into eight clusters. After visual inspection,
13 compounds, at least one from each cluster, were selected and purchased. Purity of purchased
compounds was >90% as stated by the supplier. The chemical structure and docking scores for the
selected compounds and reference compounds are shown in Table 1.

4.5. Validation of Activity at nAChRs

4.5.1. Molecular Biology

Human o7 nACh receptor subunits were cloned and inserted into expression vectors as described
previously [16]. Plasmid cDNAs were linearized using a downstream Not I restriction site and
purified. cRNA was prepared and capped from the linearized cDNA using the mMessage mMachine
T7 transcription kit according to the manufacturer’s protocol. Purified cRNA was aliquoted and stored
at a concentration of 0.5 pug- uL~1 at —80 °C until further use.
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4.5.2. Expression of nAChR in Xenopus laevis Oocytes

Xenopus laevis oocytes were obtained as described previously [51], briefly, ovary lobes were
removed by surgical incision, sliced into small pieces, and defolliculated by collagenase treatment.

The protocol for this specific study was approved by the Animal Ethics Committee of the
University of Sydney (Protocol number: 2013/5915). Stage V and VI oocytes were injected with
a total of ~25 ng of cRNA encoding human «7 nACh receptor with RIC3 (in 5:1 ratio), a protein
enhancing the expression of the receptor. Injected oocytes were incubated for 2-5 days at 18 °Cin a
saline solution (96 mM NaCl, 2 mM KCl, 1 mM MgCl,, 1.8 mM CaCl,, 5 mM HEPES (hemisodium, pH
7.4)) supplemented with 2.5 mM sodium pyruvate, 0.5 mM theophylline, and 50 uM kanamy-cin.

4.5.3. Oocyte Electrophysiology

ACh and galantamine were initially dissolved in milliQ water as 10 mM stock solutions. Screened
compounds were dissolved as a 10 mM stock solution in DMSO. The maximal DMSO concentration in
the final dilution did not exceed 1%. This DMSO concentration did not evoke any current from the
receptors. Compound dilutions were prepared in a saline solution on the day of the experiment.

Electrophysiological recordings from Xenopus laevis oocytes were performed using the
two-electrode voltage-clamp technique as described previously [23,51]. Briefly, oocytes were placed
in a custom-built recording chamber and continuously perfused with a saline solution. The saline
solution contained 115 mM NaCl, 2.5 mM KCl, 1.8 mM BaCl,, 10 mM HEPES, and was adjusted
to pH 7.4 with NaOH. Pipettes were backfilled with 3 M KCl, and open-pipette resistances ranged
from 0.3-1.5 MQ) when submerged in the saline solution. Oocytes were voltage clamped at a holding
potential of —60 mV unless otherwise stated using an Axon Geneclamp 500B amplifier (Molecular
Devices, San Jose, CA, USA). Rapid solution exchange in the oocyte vicinity (order of a few seconds)
was ensured by application through a 1.5 mm diameter capillary tube placed approximately 2 mm from
the oocyte as described previously [51]. Solution flow rate through the capillary was 2.0 mL-min~.
Experiments were performed as follows: nAChR currents were initially evoked with three AChgptro1
applications (~ECyp, 30 uM), a maximum efficacious concentration of ACh (EC;¢g, 3 mM), followed by
three additional ACh.niro1 applications. Thereafter, test compounds in increasing concentration were
applied following a pre-incubation protocol. This involved pre-incubation with the test compound for
~25 s followed by co-application of the test compound with AChggntro) for 20 s and a wash period of at
least 2 min before the next application.

Initially, the effect of application of 100 uM of a test compound was evaluated, and for the
most potent compounds (inhibition at 100 uM > 90%), full concentration response relationships were
determined using six concentrations of test compounds from 0.4-100 uM. A detailed description of
the protocol was published recently [23]. For experiments evaluating the magnitude of the response
as a function of membrane potential, experiments were conducted at two holding potentials: —50
and —100 mV. These experiments also involved a pre-incubation protocol where, first, oocytes were
pre-incubated with the test solution (25 s), and secondly, the test solution was applied together with
30 uM ACh (20 s). Galantamine was tested at 30 pM, all other compounds at 10 uM. Concentrations
were selected based on the potency of compounds. Peak current amplitudes were normalized with
respect to the amplitude of current elicited by 30 uM ACh. All experiments were conducted in triplicate
using oocytes from at least two batches from different frogs.

4.6. Validation of Activity at AChE

In vitro AChE inhibitory activity was studied using the colorimetric method of Ellman [52] using
the AChE enzyme from Electrophorus electricus. To a 96-well microplate, test solutions were applied
along with 0.2 mg/mL bovine serum albumin, 1 mM 5,5-dithiobis-(2-nitro-benzoic acid), and 0.05 mM
acetylthiocholine iodide. The reaction was initiated by addition of 0.20 units/mL AChE enzyme and
followed by colorimetric detection performed at 405 nm. Experiments were conducted in triplicate.
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All compounds were dissolved in methanol (maximum 2% methanol at assay conditions that did not
affect the enzyme activity) and screened at 100 pM with physostigmine (5) as a positive control.

For compounds exhibiting more than 70% inhibition of ACh degradation, IC5y values were
determined using six concentrations within the 20-90% inhibition range.

4.7. Data Analysis

Electrophysiological data were analysed using pClamp 10.2 (Molecular Devices, San Jose, CA,
USA). During analysis, traces were baseline subtracted and responses to individual applications
quantified as peak-current amplitudes. All fitting and statistical calculations were performed using
GraphPad Prism 7 (GraphPad, San Diego, CA, USA). A monophasic Hill equation was used in
all the non-linear regression calculations. For evaluation of the inhibitory activity, the percentage
of remaining peak-current amplitudes relative to that of the AChgnto] application was calculated.
Data were then fitted with the slope set to 1 and the remaining current amplitude at infinitely high
compound concentrations set to 0. AChE inhibition data were analysed using GraphPad Prism 7.
Absorption readings from the AChE inhibition assay were plotted versus time and linear regression
was performed. From the obtained slopes, percentages of inhibition were calculated, and ICs values
were determined from non-linear regression calculations.

5. Conclusions

We have shown that HTVS can successfully be used to identify compounds with activity at both
AChHE and the «7 nAChR. Hit rates obtained at both targets significantly exceeded those generally
reported in the literature. The choice of galantamine as a lead compound has biased the screening
towards antagonists, since galantamine during the course of the project was shown to be an antagonist
rather than a PAM. However, finding compounds interacting with two separate targets presents a
success in itself and an achievement from a virtual screening technology perspective. The current
project can serve as an encouragement for further, more detailed study of the required interactions and
more sophisticated designs of HTVS projects providing dual active structures positively affecting the
o7 nAChR and inhibiting AChE.
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