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Abstract: Weinreb amides are a privileged, multi-functional group with well-established utility
in classical synthesis. Recently, several studies have demonstrated the use of Weinreb amides as
interesting substrates in transition metal-catalyzed C-H functionalization reactions. Herein, we review
this part of the literature, including the metal catalysts, transformations explored so far and specific
insights from mechanistic studies.
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1. Introduction

The pursuit of efficient methods for the direct, catalytic substitution of otherwise inert C-H bonds
in organic molecules has become a major area of research focus in recent years [1]. Tremendous
advances have been made in the development of previously impossible transformations [2–5],
mechanistic understanding [6–9], milder and safer protocols [10], and selectivity [11–14]. The ubiquity
of C-H bonds in organic molecules makes their regioselective activation and substitution particularly
attractive, but also challenging. To this end, the use of directing groups–parts of an organic
substrate that can coordinate to and position a metal center over the desired C-H bond–has met
with enormous success [15]. The use of ortho-directing groups especially has provided the basis of
many new homogeneous catalytic C-H functionalization reactions [16]. Directing groups able to
deliver meta [17,18] and para [19] selectivity in C-H functionalization catalysis have also been described,
although the generality of that approach is still some way off in the future.

Ideally, directing groups should not require separate and/or laborious installation/removal or
otherwise be inutile in later steps of a synthesis. It is preferable that they should either be part of
the desired target compound or that they could be converted to another useful group once their role
during the C-H functionalization step is over. A plethora of strategies to realize the latter objective has
been pursued. The invention of various removable or modifiable [20–22], traceless [23], or otherwise
transient [24–29] directing groups has formed a sizeable category in and of itself within the field of
C-H functionalization catalysis.

Amides are an incomparably important class of compounds. The development of methods
for their selective synthesis and derivatization is, therefore, a key pursuit in synthetic methodology.
That the amide group can serve as a ligand for transition metals enables various new approaches to
this via catalytic C-H functionalization [30]. Most commonly, the amide group has been called upon to
direct the catalytic substitution of neighboring Ar-H bonds but, as discussed below, they also enable
C(sp3)-H bond manipulation.

N-methoxy-N-methyl amides (1, Figure 1), or Weinreb amides [31], are a valuable branch of the
amide family. They provide the ‘textbook’ route to mono-addition products (especially ketones
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and aldehydes) via nucleophilic attack on the carbonyl group. Such attacks give rise to stable
five-membered tetrahedral cyclic intermediates (2) to which a second addition (“over-addition”)
is precluded. Weinreb amides may be prepared with ease from carboxylic acids or their chlorides,
esters, aldehydes or ketones [32].
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presented a challenge to the development of their use in C-H functionalization reactions, although 
many carbonyl-directed reactions are now known [33]. 
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This review describes progress in the use of Weinreb amides as directing groups in catalytic C-
H functionalization. A variety of reactions falls under this category. We have chosen to group these 
according to the transition metal center responsible for the C-H functionalization catalysis, rather 
than the overall transformation, in order to maximize the ease of comparison between researchers 
working in similar areas, and to track the different rates at which progress has occurred and insights 
in to the underlying mechanisms. Overwhelmingly, the focus of the studies reviewed herein falls on 
the utility of Weinreb amides as directing groups for the C-H functionalization step. Therefore, whilst 
several publications describe subsequent manipulation of the Weinreb amide group, this is usually 
to illustrate the possibility, rather than a key development. We have opted therefore not to include 
many examples of the latter; we take the possibility of a posteriori conversion of Weinreb amides using 
conventional approaches (e.g. to ketones or aldehydes), for the most part, to be a safe assumption. 

2. Ru-catalyzed Reactions 

The versatility of Ru, as well as its considerably lower price compared to other 2nd and 3rd-row 
transition metals, make it an appealing candidate around which to develop economical C-H 
functionalization methodology [34,35]. Moreover, considerable advances have been made in Ru-
catalyzed C-H functionalization directed by weakly coordinating groups, including amides [33]. In 
2013, Ackermann and co-workers described the Weinreb amide-directed C-H ortho-oxygenation of 

Figure 1. The ‘textbook’ application of Weinreb amides: generation of mono-addition products resulting
from nucleophilic attack on their carbonyl groups.

That Weinreb amides can also steer the regioselectivity of transition metal-catalyzed C-H
functionalizations (Figure 2) qualifies them as noteworthy multi-functional directing groups.
Remarkably, and despite the various synthetic advantages of this (for example that it can obviate the
need for lithiation strategies and make available previously impossible reactions), Weinreb amides
have only recently attracted attention as substrates for C-H functionalization. In part, this is due
to the amide oxygen’s weaker coordination ability to most transition metal centers. The latter has
presented a challenge to the development of their use in C-H functionalization reactions, although
many carbonyl-directed reactions are now known [33].
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Figure 2. A generic representation of a Weinreb amide-directed catalytic C-H functionalization
(TM = transition metal).

This review describes progress in the use of Weinreb amides as directing groups in catalytic C-H
functionalization. A variety of reactions falls under this category. We have chosen to group these
according to the transition metal center responsible for the C-H functionalization catalysis, rather than
the overall transformation, in order to maximize the ease of comparison between researchers working
in similar areas, and to track the different rates at which progress has occurred and insights in to the
underlying mechanisms. Overwhelmingly, the focus of the studies reviewed herein falls on the utility
of Weinreb amides as directing groups for the C-H functionalization step. Therefore, whilst several
publications describe subsequent manipulation of the Weinreb amide group, this is usually to illustrate
the possibility, rather than a key development. We have opted therefore not to include many examples
of the latter; we take the possibility of a posteriori conversion of Weinreb amides using conventional
approaches (e.g., to ketones or aldehydes), for the most part, to be a safe assumption.

2. Ru-catalyzed Reactions

The versatility of Ru, as well as its considerably lower price compared to other 2nd and
3rd-row transition metals, make it an appealing candidate around which to develop economical
C-H functionalization methodology [34,35]. Moreover, considerable advances have been made in
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Ru-catalyzed C-H functionalization directed by weakly coordinating groups, including amides [33].
In 2013, Ackermann and co-workers described the Weinreb amide-directed C-H ortho-oxygenation of
arenes 3 using a Ru(II)-based system [36]. [RuCl2(p-cymene)]2 served as the catalyst precursor and
PhI(OAc)2 as the most effective oxidant. Representative results from the study are shown in Scheme 1a.
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Scheme 1. Ru(II)-catalyzed C-H oxidation of arenes directed by a Weinreb amide group.
(a) Representative scope of the reaction with respect to arene substituents; (b) Reduction of the Weinreb
amide to reveal aldehyde functionality.

The reaction showed a high selectivity for mono-oxygenated products 4, a preference for
electron-rich substrates in competition experiments, and a kinetic isotope effect (KIE) of kH/kD = 3.0 [6].
The authors proposed that an irreversible C-H activation event was a key step en route to the products.
It is notable that the N-alkyl substituent could also be varied substantially without any loss of reaction
efficiency. The Weinreb amide group could be reduced in high yield (4a to 5) to reveal the corresponding
aldehyde (Scheme 1b). A single Weinreb amide substrate was also shown to work as part of a
study by Jeganmohan and co-workers on the ortho-directed C-H benzoyloxylation of various amides.
The reaction system closely resembled that reported above by Ackermann, except for the use of
(NH4)S2O8 as the terminal oxidant, higher temperatures and use of 1,2-dichloroethane as solvent [37].

Subsequently, Das and Kapur produced a report demonstrating the Ru-catalyzed olefination
of various amides, including Weinreb amide-decorated arenes [38]. The protocol closely resembles
the Pd-catalyzed oxidative Heck reaction [39] (also known as the Fujiwara-Moritani reaction) and
other related Ru-catalyzed C-H alkenylations [34]. However, for the majority of their entries
(selected examples are shown in Scheme 2a), the authors observed cleavage of the Weinreb amide
N-O bond; N-methyl amides were obtained as the main products. It is instructive to consider
the proposed mechanism, an adapted version of which is shown in Scheme 2b. Presumably, the
N-O bond serves as an oxidant with Cu(OAc)2·H2O as the carboxylate source to facilitate repeated
C-H functionalization [40] The use of similar “internal oxidant” strategies in C-H functionalization,
including using N-methoxy amides, has been recently reviewed by Cui and co-workers [41]. Exceptions
wherein the N-O bond was preserved presumably resulted from Cu(II) (or Cu(III) species arising
via disproportionation) outcompeting N-O as an internal oxidant. The importance of such examples
is under-appreciated, in our view. That an exogenous oxidant may divert reactivity away from
damaging a group under otherwise identical conditions is a key aspect of modulating functional
group tolerance; a factor that will govern the extent to which C-H activation–and other catalytic
methods–gain acceptance as generalizable routes to construct molecular complexity.

Das and Kapur reported that five-membered cyclic amides of the type 7 (n = 0) typically
underwent N-O bond cleavage, affording ring-opened products. To prevent this, and thereby retain
the Weinreb amide functionality, they subsequently sought to show that N-O bond cleavage could
be prevented through judicious substrate design [42]. Increasing the Weinreb amide size to six- and
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seven-membered rings (7, n = 1 or 2, respectively) rendered the N-O bond cleavage energetically
unfavorable. Under otherwise unchanged conditions, the oxidative C-H olefination afforded products
8 (Scheme 3), restoring Cu(II) to its role as the terminal oxidant. Further manipulation of the cyclic
Weinreb amide moieties in 8, for example in their conversion to the corresponding aldehyde or ketones,
was demonstrated to proceed in high yield.Molecules 2019, XX, x FOR PEER REVIEW  4 of 23 
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An explanation for the greater relative stability of the 6- and 7-membered cyclic Weinreb amide
groups in this protocol was proposed: In the course of the reaction, oxidative addition of the Ru center
to the N-O bond would furnish intermediates of type 9. Of these, only the formation of 9a would be
favorable; the 7- and 8-membered ruthenacycles (9b and 9c, respectively) are presumably too high in
energy to be accessed.

3. Co-catalyzed Reactions

The expense and eventual scarcity of second- (4d) and third-row (5d) transition metals has, in
recent years, motivated a shift towards exploring the potential of their more abundant first-row (3d)
cousins for catalytic C-H functionalization [43]. Cobalt stands out in this context as a comparatively
cheap, abundant option that comes with a proven track record in broad areas of homogenous catalysis,
including several industrially important reactions [44–46].

In 2013, Yoshino and Matsunaga disclosed the first C-H ortho-directed functionalization catalyzed
by Cp*Co(III) species [47,48]. In a subsequent study on the Co-catalyzed C-H allylation of aryl
purines and benzamides using allylic alcohol, they demonstrated the new reaction also on Weinreb
amide 3a [49]. Here, the bench-stable complex Cp*Co(CO)I2, which was previously shown by
Matsunaga and Kanai to be highly efficient for indole C2-H amidation [50], served as the pre-catalyst
(Scheme 4). Hexafluoroisopropanol (HFIP) [51,52] was needed for the C-H allylation, as were acetate
salts. The authors interpreted the latter as an indication that the C-H activation proceeded via a
Concerted-Metalation-Deprotonation (CMD) mechanism [53], as has been elucidated in more detail for
second row transition metals [8,40,54]. The moderate yield of product 9a in this reaction was attributed
to the weaker coordinating ability of the Weinreb amide group compared to its simpler benzamide
relatives or, indeed, to that of the purine Nsp

2 centers.Molecules 2019, XX, x FOR PEER REVIEW  6 of 23 

 

 
Scheme 4. An initial example of the Weinreb amide-directed Co(III)-catalyzed ortho-C-H allylation. 

In a later study, the group published a considerably expanded range of Co-catalyzed C-H 
functionalizations using aromatic Weinreb amides (Scheme 5) [55]. These included C-H allylation 
using allylic carbonates (Scheme 5A), C-H alkenylation under oxidative conditions (Scheme 5B), C-
H iodination using N-iodosuccinimide (Scheme 5C) [56] and C-H amidation using dioxazolones 
(Scheme 5D). These systems relied on similar combinations of [Cp*Co(CO)I2] pre-catalyst, a cationic 
silver additive (AgNTf2 or AgSbF6) and AgOAc. Unlike in the Ru-catalyzed case (see Scheme 2), the 
N-O bond of the Weinreb amide moiety was preserved. Competition and kinetic isotope exchange 
experiments showed that the C-H activation event in the case of the allylation reaction was both rate-
limiting and all but irreversible, supplying further evidence for the CMD pathway Yoshino and 
Matsunaga proposed in their earlier study [49]. Their proposed mechanism for the Co(III)-catalyzed 
C-H allylation is shown in Figure 3. In related recent work, Whiteoak and Hamilton have elucidated 
the mechanistic details governing the oxidative Co-catalyzed C-H alkenylation of amides, and 
specifically whether and why alkyl or alkenyl products are obtained depending on the choice of 
alkene substrate [57]. 

Scheme 4. An initial example of the Weinreb amide-directed Co(III)-catalyzed ortho-C-H allylation.

In a later study, the group published a considerably expanded range of Co-catalyzed C-H
functionalizations using aromatic Weinreb amides (Scheme 5) [55]. These included C-H allylation
using allylic carbonates (Scheme 5A), C-H alkenylation under oxidative conditions (Scheme 5B),
C-H iodination using N-iodosuccinimide (Scheme 5C) [56] and C-H amidation using dioxazolones
(Scheme 5D). These systems relied on similar combinations of [Cp*Co(CO)I2] pre-catalyst, a cationic
silver additive (AgNTf2 or AgSbF6) and AgOAc. Unlike in the Ru-catalyzed case (see Scheme 2),
the N-O bond of the Weinreb amide moiety was preserved. Competition and kinetic isotope exchange
experiments showed that the C-H activation event in the case of the allylation reaction was both
rate-limiting and all but irreversible, supplying further evidence for the CMD pathway Yoshino and
Matsunaga proposed in their earlier study [49]. Their proposed mechanism for the Co(III)-catalyzed
C-H allylation is shown in Figure 3. In related recent work, Whiteoak and Hamilton have elucidated
the mechanistic details governing the oxidative Co-catalyzed C-H alkenylation of amides, and
specifically whether and why alkyl or alkenyl products are obtained depending on the choice of
alkene substrate [57].
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of Weinreb amides.

The relevance to wider synthetic contexts of the transformations reported by Yoshino and
Matsunaga was demonstrated through the conversion of the Weinreb amide group in their various
products to the corresponding ketones, aldehydes and alkenes. This thus delivers several motifs whose
preparation might otherwise be longer and more demanding.

4. Pd-catalyzed Reactions

Palladium is perhaps the most firmly established metal for coupling chemistry [58–62], and
this has translated to its high level of popularity for C-H functionalization reactions [16,63–66].
Many Pd-based catalysts are well-defined [67,68], permitting systematic tuning of their properties,
and are understood, most usually, to work via Pd(0)/Pd(II) or Pd(II)/Pd(IV) manifolds [62,64,66].
Despite the prevalence of many ortho-directing groups, including several closely related amides [30],
there have been relatively few examples of Pd-catalyzed reactions using Weinreb amides.

In 2015, Wang and co-workers reported the first Weinreb amide-directed C-H functionalization
catalyzed by Pd. The reaction took place between either aryl Weinreb amides 3 (Scheme 6a) or benzyl
amides 13 and iodoarenes using Pd(OAc)2 as the pre-catalyst in DCE solvent [69]. Both Weinreb
types showed high tolerance towards electron-donating and electron-withdrawing substituents,
as well as halogens (e.g., the bromide in 15d). However, benzyl amides showed considerably worse
mono-selectivity, except if meta substituents were present (e.g., 15c and 15d) presumably to impart
steric hindrance.
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Figure 4 shows one of the proposed mechanisms, adapted for the specific case of substrate 3a.
A kinetic isotope effect (KIE) of 1.1 suggested that the C-H activation step itself (forming 16 from 3)
was not rate-determining. Oxidative addition of the aryl iodide to 16 was postulated to form 17 from
which the product 14a is formed via reductive elimination. The authors reported that AgOTf, as well
as acting as an oxidant, was crucial for the reaction and hypothesized that in situ generated Pd(OTf)2

is a key aspect of the catalytic cycle. (We note that the various roles Ag plays in Pd-catalyzed reactions
have recently been reviewed by Pérez-Temprano and co-workers [70].)
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Figure 4. Mechanism proposed by Wang and co-workers for the C-H ortho-arylation of Weinreb amides
proceeding via Pd(IV) intermediates.

To the best of our knowledge, the only other example of a Pd-catalyzed Weinreb amide-directed
C-H arylation comes from a single entry in a study by Bhanage and workers on the use of anilines as
arylating reagents for N-methoxybenzamides (Scheme 7) [71]. Conditions were largely analogous to
those described for Wang’s reaction above, with the principal exception that aniline underwent in situ
oxidation using tBuONO to generate the electrophilic coupling partner. However, the yield for the
Weinreb amide specifically was low, indicating that although this approach holds some promise, it is
harder to optimize for the Weinreb amide compared to the using more conventional coupling partners.
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Scheme 7. Bhanage’s C-H arylation using aniline as the electrophile source.

Also in 2015, Yu and co-workers described conditions for the efficient alkenylation and
acetoxylation of Weinreb amides (Scheme 8) [72], overcoming the additional entropic penalty imposed
by the extra methylene unit present in the directing group (and thus the challenge of forming
seven-membered palladacyclic intermediates). In keeping with related protocols reported by Yu and
co-workers, the presence of Ac-Gly-OH was found to be crucial to facilitate the C-H functionalization
step [73].

Yu and co-workers found the olefination reaction to have moderate to excellent yields, exclusively
mono C-H olefination with ortho and meta-substituted benzyl Weinreb amides, but reduced selectivity
if the substituents were positioned para with respect to the directing group (Scheme 8).
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methodology development, owing the great versatility of C-halogen bonds in synthesis [74]. In 2017, 
the group of Kapur disclosed the Pd-catalyzed C-H halogenation (iodination, bromination and 
chlorination) of Weinreb amides (Scheme 10) [75]. The reaction relied on a combination of Pd(OAc)2 
and Cu(OTf)2 with N-halo-succinimide (NXS; X = I, Br or Cl) as the halogen source. The reaction 
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Scheme 8. Yu and co-workers’ protocol for the oxidative ortho C-H acetoxylation of benzylic Weinreb
amides. Yields in parentheses refer to the amount of di-olefinated products detected.

The acetoxylation of benzyl amides (Scheme 9) used PhI(OAc)2 as the oxidant in the presence
of either Ac2O or tert-butyl peroxyacetate (MeC(O)OOtBu). Yields and tolerance towards various
substituents were good (examples 19a–c). Furthermore, it was possible to expand the scope by an extra
methylene unit (i.e., the reaction can proceed with good efficiency via an 8-membered palladacycle) to
give product 19d.
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The introduction of halogens to organic substrates is an inherently valuable pursuit in
methodology development, owing the great versatility of C-halogen bonds in synthesis [74]. In 2017,
the group of Kapur disclosed the Pd-catalyzed C-H halogenation (iodination, bromination and
chlorination) of Weinreb amides (Scheme 10) [75]. The reaction relied on a combination of Pd(OAc)2

and Cu(OTf)2 with N-halo-succinimide (NXS; X = I, Br or Cl) as the halogen source. The reaction
worked well with a variety of substituents, except for nitro groups, which switch off the reaction from
either of the ortho or para position.
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2018 saw Yu and co-workers extend the utility of the Weinreb amide directing group further 
[80]. This time, the Yu group used it as the basis for directing Pd-catalyzed Csp3-H arylation of alkyl 
groups (Scheme 11). The discovery of general and efficient methods that allow selective substitution 
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Scheme 10. Kapur and co-workers’ reaction for the ortho C-H halogenation of aromatic Weinreb amides.

Mechanistic studies suggested that the C-H activation step was irreversible, but not rate-limiting.
The catalytic cycle (Figure 5) was proposed to proceed via a route closely related to that of the
corresponding arylation reaction (Figure 4, above): carbonyl directed cyclometallation to give
22 precedes oxidative addition into NXS, the latter of which produces Pd(IV) species 23 (a bimetallic
Pd(III) species [76–79]—not shown—is also possible). Thereafter, reductive elimination releases the
desired product.
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Figure 5. An adapted version of the mechanism proposed by Kapur and co-workers for the
Pd-catalyzed ortho C-H halogenation of aromatic Weinreb amides. X = Cl−, Br− or I−.

2018 saw Yu and co-workers extend the utility of the Weinreb amide directing group further [80].
This time, the Yu group used it as the basis for directing Pd-catalyzed Csp

3-H arylation of alkyl groups
(Scheme 11). The discovery of general and efficient methods that allow selective substitution of
C(sp3)-H at transition metal centers is a long-standing challenge. For Pd, progress has been notably
rapid in in the past few years [63,81–83], and its various aspects have been reviewed recently [65,84,85].
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Scheme 12. A Rh(III)-catalyzed, Weinreb amide-directed alkene hydroarylation. 

Wang and co-workers reported a closely-related but more elaborate system, involving Cu(OAc)2 
as a catalytic oxidant regenerated under air to retain olefin functionality at the end of a cycle coupling 
aromatic Weinreb amides with alkenes (Scheme 13) [92]. An ample scope demonstrated the reaction’s 
tolerance towards various functional groups, including halogens, various ortho-substituents and a 
range of electron-donating and electron-withdrawing groups. Competition experiments revealed 
that electron-rich arenes reacted faster than their electron-poor counterparts.  

Scheme 11. Selected scope from Yu and co-workers’ Pd-catalyzed C(sp3)-H arylation protocol enabled
by Weinreb amide directing groups.

Yu and co-workers found that the inclusion of 3-pyridinesulfonic acid was crucial to the
reaction, both Weinreb and other amides. Computational studies at the DFT level revealed that
3-pyridinesulfonic acid stabilizes cationic Pd intermediates during the reaction and that it promotes
the dissociation of acetate ligands, which is required for the C(sp3)-H bond cleavage to occur [80].

5. Rh-catalyzed Reactions

The first two decades of this century have seen an explosion of interest in the use of Rh(III)
catalysts for selective C-H functionalization. Substantial progress has been made in both scope [86,87]
and attendant mechanistic understanding [7,88–90]. As part of their efforts to answer key questions
relating to the regioselectivity of Rh(III)-catalyzed transformations, Rovis and co-workers reported
in 2013 an intramolecular alkene hydroarylation directed by Weinreb amide 26 in excellent yield
(Scheme 12) [91].
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Scheme 12. A Rh(III)-catalyzed, Weinreb amide-directed alkene hydroarylation.

Wang and co-workers reported a closely-related but more elaborate system, involving Cu(OAc)2

as a catalytic oxidant regenerated under air to retain olefin functionality at the end of a cycle coupling
aromatic Weinreb amides with alkenes (Scheme 13) [92]. An ample scope demonstrated the reaction’s
tolerance towards various functional groups, including halogens, various ortho-substituents and a
range of electron-donating and electron-withdrawing groups. Competition experiments revealed that
electron-rich arenes reacted faster than their electron-poor counterparts.
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wherein their C(O)NH-OMe bond as an “internal oxidant” for transition metal centers. Thus, C-H 

Scheme 13. Selected examples from Wang and co-workers’ oxidative Rh-catalyzed C-H alkenylation
directed by Weinreb amides. a [Cp*RhCl2]2 (2.5 mol%) and AgSbF6 (10 mol%) loadings were used.
b A reaction temperature of 130 ◦C was used.

The mechanism proposed by Wang and co-workers (Figure 6) involved coordination of the
Rh(III) center to the carbonyl moiety of the Weinreb amide, insertion of the alkene to the rhodacyclic
intermediate (27), β-hydride elimination and regeneration of the active catalyst by Cu(OAc)2.
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Whilst, strictly speaking, it represents a slight departure from the current focus on the Weinreb
amide group, it is noteworthy that a very closely related class of substrates, has been used extensively
wherein their C(O)NH-OMe bond as an “internal oxidant” for transition metal centers. Thus,
C-H functionalization reactions may be performed without exogenous oxidants. This strategy has
worked with a number of transition metals, Rh(I/III) catalytic cycles have dominated in this area [41].

In 2018, Qin and co-workers disclosed a near identical set of conditions to those used by Wang
above, but using ethenesulfonyl fluoride (ESF) as the alkene coupling partner and 1,4-dioxane as
the solvent [93]. However, the Qin group further observed that increasing the loading of AgSbF6 to
1 equivalent favored the formation of cyclic lactones. Residual water introduced from the hygroscopic
AgSbF6 was proposed to promote the in situ hydrolysis of the Weinreb amide group to account for the
lactone formation, though mechanistic work proved inconclusive. In switching away from Weinreb
amides to N-methoxybenazmides (ArC(O)NH-OMe), Qin and co-workers were able to cause a similar
oxidative cyclization involving insertion of the ESF double bond into the amide N-H unit.

Recent years have witnessed the rediscovery and subsequent explosion of interest in
functionalizations enabled by photoredox catalysis. The photoexcitation of transition metal complexes
serves as a greener and more economically viable method of generating radical intermediates able
to initiate a wide range of valuable reactions [94–98]. One application of this is the replacement of
terminal oxidants with lighter loadings of a photocatalyst whose oxidative power is obtained via
photoexcitation. Rueping and co-workers applied this strategy to demonstrate that the oxidative
alkenylation of aromatic amides, including Weinreb amides, is viable using a manifold analogous
to that described by Wang’s group (see above), but driven by a visible light-regenerated Ru-based
photocatalyst, [Ru(bpy)3][PF6]2 (Scheme 14) [99,100]. The protocol is notable not just for its efficiency
and high functional group tolerance, but also for the fact that it could be extended to other amides as
well as a variety of olefin substrates (various groups R2).
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The catalytic cycle proposed by Rueping and co-workers closely resembles to that of Wang:
ortho-rhodation of 3 to give 29 coordination and insertion of the olefin (complex 30 to 31) and β-hydride
elimination to form the hydride intermediate 32 and the product (Figure 7). Reductive loss of the
hydride and re-oxidation to Rh(III), however, is mediated by the photo-excited [Ru(bpy)3]2+· species,
of which only a 1 mol% loading is required.
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6. Ir-catalyzed Reactions

Boronates rank amongst the most versatile of groups; they may be converted to an extraordinarily
broad range of functionality through a many different mechanisms [101–103]. Moreover, recent
years have seen boronate-based methodology emerge as the basis of automated synthesis, which
holds enormous potential to streamline the synthesis of many complex (hetero)aromatic and
olefinic molecules [104–107]. Such advantages render especially important methods that allow the
regioselective introduction of boronates to organic substrates. Amongst these, Ir-catalyzed C-H
borylation ranks as one of the mildest and most enabling, as it is amenable to regiocontrol through
sterics [108,109], directing groups (both to the ortho [110–115] and para [116] positions) and/or the
inherent electronic properties [117–119] of a substrate.

Krska, Maleczka and Smith have demonstrated [120] that Weinreb amides rank amongst groups
that competently direct Ir catalysts towards ortho-C-H borylation (Scheme 15). Although only a single
entry using a Weinreb amide was reported in their Communication, the success of the reaction (a high
yield and regioselectivity) was representative, suggesting that other advantages of the method, such
as the high functional group tolerance, could easily be paired with the Weinreb amide functionality.
Conditions for this transformation deviated little from those commonly used for Ir-catalyzed C-H
borylation more generally: [Ir(µ-OMe)(COD)]2 as the pre-catalyst with dtbtpy as a ligand and B2(pin)2

as the boron source. The corresponding mono-borylated product, 33 was reported to form in 84% yield.
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Enantioselective C-H functionalization marries the benefits of directly substituting a C-H bond
with with establishing a new stereocenter in the product. This pursuit continues to inspire a
growing body of research [121]. In 2015, Yamamoto and Shirai described an Ir-catalyzed protocol
for the asymmetric intermolecular hydroarylation of arenes directed by oxygen based directing
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groups [122]. Although the scope included only a single example exploiting a Weinreb amide directing
group (the transformation of 34 to 35), this entry was representative both in terms of yield and
selectivity (Scheme 16). Enantioselectivity was induced using the bidentate bis(phosphoramidite)
ligand (R,R)-S-Me-BIPAM ligand (36) and the N-O bond was preserved in the product.
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Most recently, the group of Martín-Matute has developed an Ir(III)-catalyzed C-H ortho-iodination
of various amides [123]. The scope includes a strong focus on Weinreb amides. Their reaction used
[Cp*Ir(H2O)3][SO4] as the catalyst precursor, and N-iodo-succinimide (NIS) as the halogenating reagent
in the presence of trifluoroacetic acid. Selected examples are shown below (Scheme 17). It is notable
that Weinreb amides returned only the mono-iodinated products 11; a result only tertiary amides gave
(primary and secondary amides gave at least small amounts of di-iodination). Whilst the substrate
scope included a broad range of functional groups, substituents positioned ortho to the directing group
at the outset restricted reactivity, presumably by imposing prohibitive amounts of steric hindrance.
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Ratio of isomers is indicated in parenthesis; the major isomer is shown.

The authors also performed a robustness screen [124,125] to identify the reaction’s tolerance
towards various functional groups. To this end, various small molecules with different functional
groups were added to the reaction mixture to see how the reaction would be affected. Tolerance towards
several common functional groups, including ketones amides, carboxylic acids and alkyl halides
proved excellent. Aldehydes and alkenes returned less satisfactory results, however. Mechanistically,
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the reaction was proposed to follow a pathway closely related to that of Martín-Matute and co-workers’
recently published Ir-catalyzed C-H ortho-iodination of aryl carboxylic acids [126]. The acid additive is
understood to play a dual role: 1) activation of NIS via protonation of its carbonyl group and 2) by
encouraging the dissociation of the iodinated product from the Ir center. Indeed, Martín-Matute and
co-workers found in their optimization study on amides that lowering the amount of acid additive
favored the formation of di-iodinated products for non-tertiary amides.

7. Conclusions

The Weinreb amide is a privileged functional group in organic synthesis that enables otherwise
impossible transformations. Recent developments have seen C-H functionalization methodology
greatly expand the range of chemical contexts in which its advantages may be exploited. Challenges
remain, however. Presently, Weinreb amides are rarely explored as a substrate class in their own right;
they are most often presented as specialized examples in studies describing a more general scope,
typically amidst other amides. Thus, it is usual that only the simplest examples of Weinreb amides are
demonstrated to work under newly developed reaction conditions. This is at least a little unfair since,
as some of the examples described above demonstrate, Weinreb amides may return different results to
other amides, for example by virtue of the reactivity of their N-O bond. Weinreb amides might, in this
sense, be considered hitherto as “sleeper” substrates.

Despite this, it is evident that Weinreb amides can direct a wide range of C-H functionalization
reactions catalyzed by transition metals. C-H functionalization, and catalytic methodology in general,
is undergoing a shift of emphasis towards the use of less “endangered” [127,128], especially first-row
transition elements for catalysis [43]. However, their use with Weinreb amides is rare. For example,
to the best of our knowledge, no Weinreb amide-directed C-H functionalization reactions catalyzed by
Mn, Fe or Ni have yet been reported.

Finally, it is unfortunate that the preponderance of conditions used for Weinreb amide directed
C-H functionalization involve toxic halogenated solvents. Increasing legislative pressure is being
brought to bear on this problem, with a particular focus against 1,2-dichloroethane (DCE) [129], which
features in many of the reactions discussed above. We look forward to the use of Weinreb amides
under greener conditions [130–132].
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