Supplementary information

Alternative theoretical approach for deriving an expression for the $\boldsymbol{R}_{\text {ESR }}$

There is another way to determine voltage drop (ΔU), which is based on the continuity of the voltage in a capacitor. Figure 1 Sa shows the equivalent circuit now connected to a current source while the plot in Figure 1 Sb shows the profile of the square current wave used in the present case.

Figure 1. The equivalent circuit connected to a current source (a) and the plot (b) showing the profile of the square current wave.

Notice that times t_{0}, t_{1}, and t_{2} are the switching times. When the current is switched at an instant t, the voltage on the capacitor C cannot change abruptly. Therefore, one has
that $U_{C(t-)}=U_{C(t+)}$. With this idea in mind, it is easy to derive an expression for ΔU. Before t_{0}, the current is zero and the capacitor is initially discharged $U_{C}=0$.

In addition, the elements C and R_{L} are in parallel, thus $U_{\mathrm{c}}=U_{\mathrm{RL}}=U_{\mathrm{yz}}$ and $U_{x y}=U_{E S R}=0$. In this way the total cell voltage for just before t_{0} is

$$
\begin{equation*}
U_{\text {cell }\left(t_{0}-\right)}=U_{x y}+U_{y z}=0 \tag{1}
\end{equation*}
$$

At t_{0}, a current $+I_{0}$ starts to flow from the left to right. U_{xy} becomes instantaneously equal to $+I 0 R_{\mathrm{ESR}}$, but U_{c} remains zero since it cannot change abruptly. Therefore, one has that:

$$
\begin{equation*}
U_{C(t-)}=U_{C(t+)}=0=U_{y z} \tag{2}
\end{equation*}
$$

At $t_{0}{ }^{+}$the total voltage of the cell goes up to:

$$
\begin{equation*}
U_{\text {cell }\left(t_{0}+\right)}=U_{x y}+U_{y z}=I_{0} R_{E S R}+0=I_{0} R_{E S R} \tag{3}
\end{equation*}
$$

Therefore, one has that the first change in cell voltage due to the application of the positive current is given by:

It is worth mentioning that this voltage drop occurs only during the experiment (e.g., for an interval of $T / 2$ of the square wave, where T is the period) while the current goes from zero up to $+I_{0}$. Therefore, the next voltage drop must be twice this value as will be shown in this section. Probably, this important fact is the source of the error present in many scientific papers.

Then capacitor C will be charging. There will be a transient period when U_{c} will increase and a stationary period when the U_{c} will reach a constant value. At the instant t_{1}, the current will switch again its polarity and, therefore, $U_{x y}$ becomes instantaneously equal to $-I_{0} R_{\mathrm{ESR}}$. Either for the transient or stationary periods, U_{c} will be $U_{\mathrm{c}}\left(t_{1}^{-}\right)$before switching the current polarity, i.e., U_{RL} will also be U_{c} since they are in parallel.

Considering that U_{c} will not change immediately during the switching process, one must have the condition that $U_{C(t-)}=U_{C(t+)}=K$. As a result, the following relation can be obtained:

$$
\begin{equation*}
U_{\text {cell }\left(t_{1}+\right)}=U_{x y}+U_{y z}=-I_{0} R_{E S R}+U_{C\left(t_{1}-\right)}=-I_{0} R_{E S R}+K \tag{4}
\end{equation*}
$$

Finally, the voltage drop due to $R_{\text {ESR }}$ can be given as follows:

$$
\begin{align*}
& \Delta U=U_{\text {cell(t } \left.t_{1}-\right)}-U_{\operatorname{cell}\left(t_{1}+\right)}=I_{0} R_{E S R}+K-\left(-I_{0} R_{E S R}+K\right) \tag{5}\\
& R_{E S R}=\frac{\Delta U}{2 I_{0}} \tag{6}
\end{align*}
$$

Conversely, after the switching, capacitor C will discharge and charge in the opposite directions. At t_{2}, the current switches again and $U_{x y}$ becomes instantaneously equal to $+I_{0} R_{\text {ESR }}$. Regardless the electric system is in the stationary or transient regime, U_{c} will have a certain value immediately before instant t_{2} and this value will have to be the same just after t_{2} :

$$
\begin{equation*}
U_{C\left(t_{2^{-}}\right)}=U_{C\left(t_{2}+\right)}=L \tag{7}
\end{equation*}
$$

Immediately before t_{2}, one obtains the following relationship:

$$
\begin{equation*}
U_{\text {cell(}\left(t_{2}-\right)}=U_{x y}+U_{y z}=-I_{0} R_{E S R}+U_{C\left(t_{2}-\right)}=-I_{0} R_{E S R}+L \tag{8}
\end{equation*}
$$

Immediately after t_{2}, one obtains the next relation:

$$
\begin{equation*}
U_{\text {cell }\left(t_{2}+\right)}=U_{x y}+U_{y z}=+I_{0} R_{E S R}+U_{C\left(t_{2}+\right)}=+I_{0} R_{E S R}+L \tag{9}
\end{equation*}
$$

Again, the voltage drop due to R_{ESR} can be given as follows:

$$
\begin{align*}
& \Delta U=U_{\text {cell(t2 } \left.t_{2}\right)}-U_{\text {cell(t } \left.t_{2}-\right)}=I_{0} R_{E S R}+L-\left(-I_{0} R_{E S R}+L\right) \tag{10}\\
& R_{E S R}=\frac{\Delta U}{2 I_{0}} \tag{11}
\end{align*}
$$

The same physical situation will repeat for the next switching times during the application of the square current wave.

