Supporting Information for

Unusual Complexes of $\mathrm{P}(\mathrm{CH})_{3}$ with $\mathrm{FH}, \mathrm{ClH}$, and FCl

Janet E. Del Bene, ${ }^{[a]}$ Ibon Alkorta, ${ }^{[b]}$ and José Elguero ${ }^{[b]}$

[a] Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, USA
[b] Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain

Pgs. S2 Table S1. Structures (A), total energies (a.u.), and molecular graphs of $\mathrm{P}(\mathrm{CH})_{3}$ and $X Y: P(C H)_{3}$ complexes A.

Pg. S3

Pg. S4

Pg. S5

Pg. S6

Pg. S7

Pg. S7

Pg. 58

Pg. S9 Table S6. ${ }^{1} \mathrm{~J}(\mathrm{P}-\mathrm{C})(\mathrm{Hz})$ for $\mathrm{P}-\mathrm{C}$ bonds of $\mathrm{P}(\mathrm{CH})_{3}$ that do or do not interact with $\mathrm{FH}, \mathrm{ClH}$, and ClF in complexes A, B, C, and D.

Pgs. S10-11 Table S7. Structures (A), total energies (a.u.), and molecular graphs of transition structures.

Table S1. Structures (\AA), total energies (a.u.), and molecular graphs of $P(C H)_{3}$ and $X Y: P(C H)_{3}$ complexes A.

	$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P} \\ & \mathrm{MP2}=-456.63885880 \text { NIMAG }=0 \\ & \mathrm{P}, 0 ., 0 ., 1.4295144635 \\ & \mathrm{C}, 0.8458105226,0 .,-0.223504098 \\ & \mathrm{C},-0.4229052614,-0.7324933993,-0.223504098 \\ & \mathrm{C},-0.4229052613,0.73249339994,-0.223504098 \\ & \mathrm{H}, 1.8094069194,-0.0000000001,-0.6918739831 \\ & \mathrm{H},-0.9047034598,-1.5669923579,-0.6918739831 \\ & \mathrm{H},-0.9047034596,1.566992358,-0.6918739831 \end{aligned}$
	$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{HF}(\mathrm{~A}) \\ & \mathrm{MP2}=-556.98688314 \text { NIMAG= } 0 \\ & \mathrm{P},-1.0055179229,-1.0177023062,0 . \\ & \mathrm{C}, 0.8751029552,-1.0343136986,0 . \\ & \mathrm{C}, 0.2718088206,-2.1423868938,0.7341450432 \\ & \mathrm{C}, 0.2718088206,-2.1423868938,-0.7341450432 \\ & \mathrm{H}, 1.741208448,-0.4006724264,0 . \\ & \mathrm{H}, 0.4528506334,-2.7845227668,1.5729967012 \\ & \mathrm{H}, 0.4528506334,-2.7845227668,-1.5729967012 \\ & \mathrm{H}, 0.1285827285,1.1932291285,0 . \\ & \mathrm{F}, 0.4417948599,2.0722790074,0 . \end{aligned}$
	$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{HCl}(\mathrm{~A}) \\ & \mathrm{MP2}=-916.95959525 \mathrm{NIMAG}=0 \\ & \mathrm{P},-1.0143747249,-0.9638798373,0 . \\ & \mathrm{C}, 0.8603298618,-0.9602114368,0 . \\ & \mathrm{C}, 0.2736821604,-2.0785289105,0.7340623326 \\ & \mathrm{C}, 0.2736821604,-2.0785289105,-0.7340623326 \\ & \mathrm{H}, 1.715668339,-0.3126356017,0 . \\ & \mathrm{H}, 0.4651602132,-2.7202865757,1.5709087139 \\ & \mathrm{H}, 0.4651602132,-2.7202865757,-1.5709087139 \\ & \mathrm{H}, 0.0366255889,1.4015621816,0 . \\ & \mathrm{Cl}, 0.4123611962,2.6337194994,0 . \end{aligned}$
	$\begin{aligned} & \hline \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{ClF}(\mathrm{~A}) \\ & \mathrm{MP} 2=-1016.01271690 \text { NIMAG }=0 \\ & \mathrm{P},-0.9112111459,--0.926383996,0 . \\ & \mathrm{C}, 1.0211821078,-1.1528021619,0 . \\ & \mathrm{C}, 0.2753671016,-2.131112393,0.7492444775 \\ & \mathrm{C}, 0.2753671016,-2.131112393,-0.7492444775 \\ & \mathrm{H}, 1.8884276354,-0.5225049089,0 . \\ & \mathrm{H}, 0.385036045,-2.8127755103,1.5706941822 \\ & \mathrm{H}, 0.385036045,-2.8127755103,-1.5706941822 \\ & \mathrm{Cl},-0.0528338906,1.4770459264,0 . \\ & \mathrm{F}, 0.2219240067,3.2133447917,0 . \\ & \hline \end{aligned}$

Table S2. Structures (\AA), total energies (a.u.), and molecular graphs of complexes B.

	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}$: HF (B) MP2 $=-556.98488324$ NIMAG $=0$ P,-0.3234405614,-0.560215486,1.5724251219 C,0.5197977619,-0.5780589497,-0.0797718927 C,-0.7519199942,-1.3023636265,-0.0703303818 C,-0.7605126141,0.1611285952,-0.0797718916 H,1.4852916728,-0.6173435155,-0.5472343005 H,-1.2325538058,-2.1348458022,-0.5440356889 H,-1.2772809977,0.9776285694,-0.5472342982 H,0.826961738,1.432339737,-0.9717318675 F,1.2462730908,2.1586083003,-1.3742375395
	```\(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{HCl}(\mathrm{B})\) MP2 \(=-916.95870314\) NIMAG \(=0\) P,1.279343667,0.1515359203,0. C,-0.4123867687,0.3674890598,0.7373131667 C, \(0.0534117854,1.5426714084,0\). C,-0.4123867687,0.3674890598,-0.7373131667 H,-1.0213695062,0.1083327806,1.5812965696 H,-0.0436471277,2.6100898719,0. H,-1.0213695062,0.1083327806,-1.5812965696 H,-1.0917119063,-1.7171933778,0. Cl,-1.2920648715,-2.9832004927,0.```
	```\(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{CIF}\) (B) MP2= -1016.00727079 NIMAG= 0 P,1.5123150225,0.6284420037,0. C,-0.1815604127,0.4740829491,0.7392147198 C, \(0.0126920872,1.7222583333,0\). C,-0.1815604127,0.4740829491,-0.7392147198 H,-0.7085498328,0.1005203361,1.5947715348 Н,-0.3109127254,2.7441192099,0. H,-0.7085498328,0.1005203361,-1.5947715348 CI,-1.4128802635,-2.0688600487,0. F,-1.9831746348,-3.619619069,0.```

Table S3. Structures (\AA), total energies (a.u.), and molecular graphs of complexes \mathbf{C}.

Table S4. Structures (\AA), total energies (a.u.), and molecular graphs of complexes \mathbf{D}.

	```\(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{HF}\) (D) MP2 \(=-556.97957100\) NIMAG \(=0\) P,0.,0.,1.1020677007 C,0.8455205236,0.,-0.553230496 C, \(, 0.4227602618,-0.7322422528,-0.553230496\) C,-0.4227602617,0.7322422528,-0.553230496 H,1.8095183173,-0.0000000001,-1.0210647542 H,-0.9047591587,-1.5670888313,-1.0210647542 H,-0.9047591586,1.5670888314,-1.0210647542 F,0.,0., 4.591035106 H,0.,0.,5.5131672372```
	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{HCl}(\mathrm{D})$ $\mathrm{MP2}=-916.95480177$ NIMAG $=0$ $\mathrm{P}, 0 ., 0.0000000968,-0.2259019695$ $\mathrm{C}, 0.0000000879,0.845721393,-1.8791303615$ $\mathrm{C}, 0.7324160831,-0.4228606274,-1.8791303615$ $\mathrm{C},-0.732416171,-0.4228604752,-1.8791303615$ $\mathrm{H}, 0.0000001882,1.8105925738,-2.3453121734$ $\mathrm{H}, 1.5680189869,-0.9052963047,-2.3453121734$ $\mathrm{H},-1.5680191751,-0.9052959787,-2.3453121734$ $\mathrm{Cl}, 0 ., 0.0000000968,3.4008399116$ $\mathrm{H}, 0 ., 0.0000000968,4.6765093277$
	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{CIF}$ (D) MP2 $=-1016.00205000$ NIMAG $=0$ $\mathrm{P}, 0 ., 0.0000000968,-0.1751656791$ $\mathrm{C}, 0.0000000879,0.8455660291,-1.8296854362$ $\mathrm{C}, 0.732281534,-0.4227829455,-1.8296854362$ $\mathrm{C},-0.732281622,-0.4227827932,-1.8296854362$ $\mathrm{H}, 0.0000001883,1.8108733627,-2.2949353228$ $\mathrm{H}, 1.5682621572,-0.9054366993,-2.2949353228$ $\mathrm{H},-1.5682623455,-0.9054363731,-2.2949353228$ $\mathrm{~F}, 0 ., 0.0000000968,3.0433714043$ $\mathrm{Cl}, 0 ., 0.0000000968,4.6837933739$

Table S5. PSO, DSO, FC, and SD components of total J for complexes A, B, C, and D.

Complexes of $\mathrm{P}(\mathrm{CH}) 3$ with

	PSO	DSO	FC	SD	J
HF A	-4.2	0.0	31.3	1.8	$28.9^{\text {a }}$
HCl A	-0.5	0.0	3.5	0.3	$3.3^{\text {a }}$
CIF A	6.7	0.0	222.4	2.8	$232.0^{\text {b }}$


HF B	-2.4	-0.2	0.1	0.6	$-1.8^{\text {c }}$
HCl B	0.0	0.0	0.0	0.1	$0.1^{\text {c }}$
CIF B	0.6	0.0	-0.5	0.1	$0.2^{\text {d }}$


HF C	-0.2	-0.3	-11.7	0.1	$-12.1^{\mathrm{e}}$
HCl C	0.2	0.0	-3.5	0.2	$-3.2^{\mathrm{f}}$
CIF C	4.8	-0.2	-21.5	1.1	$-15.8^{\mathrm{e}}$
HF C	-0.1	0.2	3.1	-0.1	$3.2^{\mathrm{g}}$
HCl C	0	0	1.4	0	$1.4^{\mathrm{h}}$
CIF C	0.2	0.4	5.0	-0.2	$5.4^{\mathrm{g}}$


HF D	-0.6	0.3	118.4	0.1	$118.1^{\mathrm{e}}$
HCl D	0.0	0.0	44.6	0.0	$44.6^{f}$
CIF D	0.4	0.5	298.6	-0.2	$299.3^{\mathrm{e}}$
HF A-tr	-1.3	0.1	69.3	0.6	$68.7^{\mathrm{a}}$
HCl A-tr	-0.1	0.0	7.0	0.1	$7.0^{\mathrm{a}}$
CIF A-tr	0.6	0.0	257.0	-0.5	$257.1^{\mathrm{b}}$


HF B-tr	-10.4	-0.3	-8.9	0.5	$-19.2^{\text {a }}$
HCl B-tr	-1.7	0.0	-1.1	0.1	$-2.7^{\text {a }}$
CIF B-tr	5.2	0.0	-7.7	1.5	$-1.0^{\text {b }}$

a) ${ }^{2 h} J(X-P) ;$ b) $\left.\left.\left.\left.\left.\left.{ }^{1 x} J(C l-P) ; ~ c\right) ~{ }^{2 h} J(X-C) ; ~ d\right){ }^{1 x} J(C l-C) ; ~ e\right) J(F-P) ; ~ f\right) J(C l-P) ; g\right) J(F-C) ; h\right) J(C l-C) ;$ i) $J(F-P)$; J(Cl-P).

Fig. S1 ${ }^{2 h} J(F-P)(H z)$ versus the F-P distance $(\AA)$ for $F H: P(C H)_{3} \mathbf{A}$ along the F-P intrinsic reaction path.


Fig. S2. ${ }^{1 \mathrm{x}}(\mathrm{Cl}-\mathrm{P})(\mathrm{Hz})$ versus the Cl-P distance $(\mathrm{A})$ for $\mathrm{FCl}: \mathrm{P}(\mathrm{CH})_{3} \mathbf{A}$ along the Cl-P intrinsic reaction path.


Fig. S3. Dipole alignments in the isomers $\mathbf{C}$ and $\mathbf{D}$ for $\mathrm{CIH}: \mathrm{P}(\mathrm{CH})_{3}$.


Table S6. ${ }^{1 \mathrm{~J}}(\mathrm{P}-\mathrm{C})(\mathrm{Hz})$ for $\mathrm{P}-\mathrm{C}$ bonds of $\mathrm{P}(\mathrm{CH})_{3}{ }^{\text {a }}$ that do or do not interact with $\mathrm{FH}, \mathrm{ClH}$, and ClF in complexes $\mathbf{A}, \mathbf{B}$, $\mathbf{C}$, and $\mathbf{D}$.

$\mathbf{A}$	${ }^{1} \mathrm{~J}(\mathrm{P}-\mathrm{C})$ interacting	${ }^{1} \mathrm{~J}(\mathrm{P}-\mathrm{C})$ noninteracting
FH	-42.5	-39.1
ClH	-40.5	-39.6
CIF	-33.1	-45.2


B	${ }^{1} \mathrm{~J}(\mathrm{P}-\mathrm{C})$ interacting	${ }^{1} \mathrm{~J}(\mathrm{P}-\mathrm{C})$ noninteracting
FH	-40.0	-41.4
CIH	-39.6	-41.5
CIF	-39.9	-40.7


C	${ }^{1} \mathrm{~J}(\mathrm{P}-\mathrm{C})$ interacting	
FH	-39.3	
CIH	-40.1	
CIF	-39.6	


| D | ${ }^{1} \mathrm{~J}(\mathrm{P}-\mathrm{C})$ noninteracting |
| :--- | :---: | :---: |
| FH | -41.5 |
| ClH | -40.1 |
| CIF | -40.9 |

a) ${ }^{1} \mathrm{~J}(\mathrm{P}-\mathrm{C})=-40.3 \mathrm{~Hz}$ for $\mathrm{P}(\mathrm{CH})_{3}$.

Table S7. Structures ( $\AA$ ), total energies (a.u.), and molecular graphs of transition structures.

	```\(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}\) : HF (A-tr) MP2 \(=-556.98222723\) NIMAG \(=2\) P,0.,0.,1.2919511674 C,0.8467120193,0.,-0.3521192519 C, \(-0.4233560097,-0.7332741184,-0.3521192519\) C,-0.4233560096,0.7332741184,-0.3521192519 H,1.8125954318,-0.0000000001,-0.8164477897 H,-0.9062977159,-1.5697536907,-0.8164477897 H,-0.9062977158,1.5697536907,-0.8164477897 Н,0.,O.,3.8859568023 F,0.,0.,4.8111772953```
	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{HCl}(\mathrm{A}-\mathrm{tr})$ MP2 $=-916.95616998$ NIMAG $=2$ P,0.,0.0000000968,-0.0217254821 C,0.000000088,0.8462672657,-1.669655022 C, $0.7328888227,-0.4231335639,-1.669655022$ C,-0.7328889107,-0.4231334115,-1.669655022 H,0.0000001885,1.8124983648,-2.1332601138 H,1.5696694501,-0.9062492004,-2.1332601138 H,-1.5696696386,-0.906248874,-2.1332601138 H,O.,0.0000000968,2.6650485632 $\mathrm{Cl}, 0 ., 0.0000000968,3.9435600388$
	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{P}: \mathrm{CIF}(\mathrm{A}-\mathrm{tr})$ MP2 $=-1016.00558891$ NIMAG $=2$ $\mathrm{P}, 0 ., 0.0000000968,-0.1313005907$ $\mathrm{C}, 0.000000088,0.8471471664,-1.7754121881$ $\mathrm{C}, 0.733650839,-0.4235735143,-1.7754121881$ $\mathrm{C},-0.7336509271,-0.4235733618,-1.7754121881$ $\mathrm{H}, 0.0000001884,1.812259673,-2.2414009503$ $\mathrm{H}, 1.5694627371,-0.9061298545,-2.2414009503$ $\mathrm{H},-1.5694629255,-0.9061295282,-2.2414009503$ $\mathrm{Cl}, 0 ., 0.0000000968,2.8539126848$ F $, 0 ., 0.0000000968,4.5059643204$
	C3H3P:HF (B-tr) MP2 $=-556.98320288$ NIMAG $=2$ P,0.,0.0000000015,-2.0895876044 C,0.0000000007,0.8491215134,-0.4434190667 C,-0.7353608005,-0.4245607538,-0.4434190667 C,0.7353607999,-0.424560755,-0.4434190667 H,0.0000000014,1.8206034388,0.0112489076 Н, $-1.5766888276,-0.9103017159,0.0112489076$ H,1.5766888262,-0.9103017184,0.0112489076 F,0.,0.0000000015,2.7022006281 H,0.,0.0000000015,1.7762427603

