

Reaction of Aldoximes with Sodium Chloride and Oxone under Ball-Milling Conditions

Kuan Chen¹, Chuang Niu¹ and Guan-Wu Wang^{1,2,*}

- ¹ Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China; kuanc@mail.ustc.edu.cn (K.C.); cniu@mail.ustc.edu.cn (C.N.)
- ² State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- * Correspondence: gwang@ustc.edu.cn; Tel: +86-551-6360-7864

Table of contents

1.	¹ H and ¹³ C NMR spectra of 2 and 3a	2
2.	Single-Crystal X-ray Crystallography of 2a	20

1. ¹H and ¹³C NMR spectra of 2 and 3a

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2a.

Figure S2. ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 2a.

Figure S4. ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 2b.

Figure S6. ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 2c.

Figure S8. ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 2d.

Figure S10. ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 2e.

10

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 Figure S11. ¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 2e.

-54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 **Figure S14.** ¹⁹F NMR (471 MHz, CDCl₃) spectrum of compound 2f.

110 100 -1 Figure S20. ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 2i.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 Figure S22. ¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 2i.

Figure S24. ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 2j.

Figure S26. ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 2k.

Figure S28. ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 2l.

Figure S30. ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 2m.

Figure S32. ¹³C NMR (126 MHz, CDCl₃) spectrum of compound 2n.

Figure S34. 1H NMR (500 MHz, CDCl3) spectrum of compound 20.

Figure S36. 1H NMR (500 MHz, CDCl3) spectrum of compound 3a.

2. Single-Crystal X-ray Crystallography of 2a

Single crystals of **2a** were obtained by slow evaporation from a mixture of dichloromethane/*n*-hexane at 4 °C. Single-crystal X-ray diffraction data were collected on a diffractometer (Gemini S Ultra, Agilent Technologies) equipped with a CCD area detector using graphite-monochromated Cu K α radiation (λ = 1.54184 Å) in the scan range 9.254° < 2 θ < 146.750°. The structure was solved with direct methods using SHELXS-97 and refined with full-matrix least-squares refinement using the SHELXL-97 program within OLEX2. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 2003914.

Figure S38. ORTEP Diagrams of 2a with 30% Thermal Ellipsoids.

Identification code	2003914
Empirical formula	C ₁₆ H ₁₄ ClNO ₂
Formula weight	287.73
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	7.3283(3)
b/Å	17.5340(8)
c/Å	11.3990(5)
α/°	90
β/°	90.530(4)
γ/°	90
Volume/Å ³	1464.65(11)
Ζ	4
$\rho_{calc}g/cm^3$	1.305
μ/mm^{-1}	2.313
F(000)	600.0
Crystal size/mm ³	$0.250 \times 0.220 \times 0.150$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
20 range for data collection/°	9.254 to 146.750
Index ranges	$-7 \le h \le 8, -21 \le k \le 21, -14 \le l \le 11$
Reflections collected	5918
Independent reflections	2866 [$R_{int} = 0.0196$, $R_{sigma} = 0.0209$]
Data/restraints/parameters	2866/0/183
Goodness-of-fit on F ²	1.059
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0496, wR_2 = 0.1441$
Final R indexes [all data]	$R_1 = 0.0568, wR_2 = 0.1551$
Largest diff. peak/hole/e Å ⁻³	0.33/-0.36

Table S1. Crystal Data and Structure Refinement for 2a.