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Figure S1 (a-v): Full MS spectra and structures of compounds 1, 3, 7, 9, 12, 13, 15, 25, 27, 28, 29, 35,
37,42,43,44, 46, 48, 51, 53 and 55.
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Docking analyses of Greigia sphacelata main compounds

Material and Methods

Docking simulations were carried for those compounds (Figure S1) that turned out to be the
most abundant species according to the UHPLC Chromatogram (Figure 2) obtained from the pulp
and seeds of the G. sphacelata's fruit. The geometries and partial charges of quercetin-3-O-glucoside
acetate (peak 28), lupinisoflavone A (peak 32), genistein-7-O-di-glucoside (peak 35), ononin
(formononetin 7-O-glucoside) (peak 46), genistein-7-O-glucoside (peak 38), aesculetin-O-glucuronide
(peak 25), dihydroxy-octadecaenoic acid (peak 62), and hydroxy-pentadecanoic acid (peak 69) were
fully optimised using the DFT method with the standard basis set PBEQ/ 6-311+g*[1, 2]. All
calculations were performed in Gaussian 09W software[3]. Crystallographic enzyme structures of
Torpedo californica  acetylcholinesterase (TcAChE; PDBID: 1DX6 code[4]) and human
butyrylcholinesterase (hBuChE; PDBID: 4BDS code[5]) were downloaded from the Protein Data Bank
RCSB PDB[6]. Water molecules and ligands of the crystallographic protein active sites were removed.
All polar hydrogen atoms of both enzymes were added and proteins were treated as rigid bodies.
Grid maps were calculated using the Autogrid option and were centred on the putative catalytic site
of each enzyme considering their known catalytic residues: Ser200, Glu327 and His440 for TcAChE
[7, 8] and Ser198, Glu325 and His438 for iBuChE [9, 10] respectively. Ser200 of TcAChE and Ser198
of hBuChE were designated as the centre of the grids for the catalytic site of each enzymes. The
volumes chosen for the grid maps for both catalytic sites were made up of 60 x 60 x 60 points in the
X, y, z directions of 6.634, 63.588, 60,192 for TcAChE and 138.839, 120.098 and 41.943 for hBuChE,
respectively. A grid-point spacing of 0.375 A was established. Docked compound complexes were
built using the Lamarckian Genetic Algorithm[11] which involved 100 runs. The lowest docked-
energy binding cluster positions were chosen to be analyzed according to the potential intermolecular
interactions between compounds and the enzymes, as well as to obtain the binding mode and
docking descriptors. The different complexes were visualised in a Visual Molecular Dynamics
program (VMD) and Pymol [12].
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Figure S2. Components of G. sphacelata fruits used in docking studies.



Results and Discussion

All Compounds that turned out to be the most abundant species according to the UHPLC
Chromatogram (Figure 2) obtained from the pulp and seeds of G. sphacelata, as well as the known
cholinesterase inhibitor galantamine, were subjected to docking assays into the TcAChE catalytic site
and h1BuChE catalytic site, in order to rationalize their pharmacological results analyzing their protein
molecular interactions in the light of their experimental inhibition activities showed in Table 2. The
best docking binding energies expressed in kcal/mol of each compound are shown in Table S1.



Table S1. Binding energies obtained from docking experiments of most abundant compounds in G.
sphacelata's fruit and the known cholinesterase inhibitor galantamine over acetylcholinesterase
(TcAChE) and butyrylcholinesterase (hBuChE).

Binding energy Binding energy
Compound (kcal/mol) (kcal/mol)
Acetylcholinesterase Butyrylcholinesterase

(TcAChE) (hBuChE)
Quercetin-3-O-glucoside-acetate -9.46 -8.31
Lupinisoflavone -9.36 -7.99
Genistein-7-0-di-glucoside -9.18 -6.89
Ononin (formononetin 7-O- -7.45 -6.44
glucoside)
Genistein-7-O-glucoside -7.24 -5.86
Aesculetin-7-O-glucuronide -6.67 -6.85
Dihydroxy-octadecaenoic acid -4.71 -5.76
Hydroxy-pentadecanoic acid -4.81 -4.87
Galantamine -11.81 -9.5

Acetylcholinesterase (IcAChE) docking results

Table S1 showed that the flavonoid quercetin-3-O-glucoside-acetate, and the isoflavones
Lupinisoflavone and Genistein-7-O-di-glucoside displayed the best binding energies of -9.46, -9.36
and -9.18 kcal/mol, respectively. These results suggest that G. sphacelata pulp or seed extracts
inhibitory activity over acetylcholinesterase are mainly due the compounds mentioned above,
especially the flavonoid quercetin-3-O-glucoside-acetate.

Quercetin-3-O-glucoside-acetate perform five different hydrogen bond interactions; two of them
are carried out between the hydrogen atoms of the hydroxyl groups (-OH) at position 3’- and 4'- of
the phenyl ring of the 4H-chromen-4-one framework and the amino acid Glu199. The 4'- hydroxyl
group (-OH) also shows a hydrogen bond interaction with Tyr130 through its oxygen atom (Figure
S3). Moreover, since the 4H-chromen-4-one moiety of quercetin-3-O-glucoside-acetate possesses two
more hydroxyl groups at positions 5- and 7-, each one of them are in charge to perform another
hydrogen bond interaction stabilizing the protein—inhibitor complex. The good binding energy value
shown by quercetin-3-O-glucoside-acetate may be supported by these hydrogen bond interactions
profile mentioned above.

Lupinisoflavone exhibit a binding energy value of -9.36 kcal/mol and shows two hydrogen bond
interactions through the hydroxyl group (-OH) of phenyl the moiety at position 6- of the 2,3-dihydro-
5H-furo-chromen-5-one and the amino acids Glu199 and Tyr130. Isoflavone also perform two extra
7Tt interactions among the residues of Phe288 and Phe 331 with the aromatic rings of benzene in the
dihydro-5H-furo-chromen-5-one core and the phenyl moiety at posotion 6-. Especially, the first r-7t
mentioned interaction is probably favoured because of its quite flat chemical structure due its three
fused rings.

Even though quercetin-3-O-glucoside-acetate and Lupinisoflavone structures are arranged in
different manners into the TcAChE catalytic site, these derivatives were the only compounds of all
those shown Table 2 that presented these hydrogen bond interactions with the same Glu199 and



Tyr130 amino acids at the same time, suggesting that these two residues could play a key role in the
TcAChE inhibition when an inhibitor interacts with them.

Genistein-7-O-di-glucoside has a binding energy value of -9.18 kcal/mol and shows four
hydrogen bond interactions with Asp72, Glul99, Ser200 and Ser286, as well as a -7t interaction
between the benzene ring of the 4H-chromen-4-one scaffold and Tyr334 (Figure S3). Thus, this
derivative into the extract represent a good candidate to behave as a TcAChE inhibitor compared to
ononin (formononetin 7-O-glucoside), genistein-7-O-glucoside, aesculetin-7-O-glucuronide,
dihydroxy-octadecaenoic acid and hydroxy-pentadecanoic acid.

Ononin (formononetin 7-O-glucoside) and Genistein-7-O-glucoside possesses resembling
chemical structures; hence are settled in similar modes into the TcAChE catalytic site. The latter could
be the reason why these derivatives share some interactions with the same amino acids, such as
Tyr130 and Phe288, as well as similar binding energy values (-7.45 and -7.24 kcal/mol respectively,
see Table 3).

The coumarin aesculetin-7-O-glucuronide exhibit only two hydrogen bond interactions with
Glu199 through the two hydroxyl groups (-OH) of the glucoronide moiety at positions 3’- and 5 and
a binding energy of -6.67 kcal/mol. Therefore, this derivative, as well as the dihydroxy-octadecaenoic
acid and the hydroxy-pentadecanoic acid which carry out only few interactions with the catalytic site
of the enzyme, presents low binding energies and have no possibilities to perform other sorts of
interactions like m-7 or T-shaped. Thus, these compounds would not contribute to the enzyme
inhibition in a significant manner, even if they are in high proportion into the extracts (Figure S3).
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Figure S3. Predicted binding mode and predicted intermolecular interactions of all most abundant compounds
in G. sphacelata pulp and seeds extracts and the residues of Torpedo californica acetylcholinesterase (TcAChE)
catalytic site. Yellow dotted lines indicate hydrogen bond interactions, cyan dotted lines represent m-m
interactions. A. Quercetin-3-O-glucoside-acetate (flavonoid) into the catalytic site; B. Lupinisoflavone
(isoflavone) into the catalytic site; C. Genistein-7-O-di-glucoside (isoflavone) into the catalytic site; D. Ononin
(formononetin 7-O-glucoside) (isoflavone) into the catalytic site; E. Genistein-7-O-glucoside (isoflavone) into the
catalytic site F. Aesculetin-7-O-glucuronide (coumarin) into the catalytic site G. Dihydroxy-octadecaenoic acid
(fatty acid) into the catalytic site; H. Hydroxy-pentadecanoic acid (fatty acid) into the catalytic site.



Pulp and seeds extract presented considerably abilities to exert an inhibitory potency over the
TcAChE enzyme (ICso= 4.94 + 0.075 for pulp extract and ICso= 4.98 + 0.042 for seeds extract)
considering the known cholinesterase inhibitor galantamine (see table 3). In this sense, Figure S3
shows the hydrogen bond interactions in a two dimensional diagram of each main and most
abundant compounds determined from both extracts into the TcAChE catalytic site in order to
summarize the information.

Butyrylcholinesterase (hBuChE) docking results

All binding energies obtained from docking assays over butyrylcholinesterase (#BuChE) of the
most abundant compounds in the pulp and the seeds extracts showed to be poorer compared to those
in TcAChE. These results are consistent with the less inhibitory activity of the extracts over this
enzyme shown in table 2 (ICso=73.86 + 0.086 for pulp extract and ICso=78.57 + 0.064 for seeds extract).

Just like in TcAChE, the flavonoid quercetin-3-O-glucoside-acetate exhibited the best binding
energy profile, suggesting that this derivative could be the main responsible for the inhibitory activity
over the hBuChE.

Quercetin-3-O-glucoside-acetate binding descriptors over hBuChE had certain differences
compared to those shown by TcAChE. Quercetin-3-O-glucoside-acetate into the ABuChE catalytic site
perform only three hydrogen bond interactions. Two of them are carried out between the hydroxyl
group (-OH) at position 4' in the phenyl moiety of the 4H-chromen-4-one framework and the amino
acids Glu197 and Tyr128. Moreover, this flavonoid performs a m-mt interaction between the catechol
ring and the residue of Trp231, and two T-shaped interactions between the catechol ring and the
benzene scaffold of the 4H-chromen-4-one core as well (Figure S4). Nevertheless, the lack of
hydrogen bond interactions compared to those carried out by quercetin-3-O-glucoside-acetate into
the TcAChE catalytic site could explain the less binding energy of the hBuChE-quercetin-3-O-
glucoside-acetate complex.

Lupinisoflavone's iBuChE binding energy, as well as that obtained for TcAChE docking assays,
presented the second-best profile, hence it could contribute to the inhibitory activity of the extracts
over the enzyme. Nonetheless, also this derivative presented less binding energy relating to the
obtained over TcAChE docking results, as was aforementioned. Lupinisoflavone perform a hydrogen
bond interaction between the oxygen atom of the dihydrofuran ring at position 1- and the residue of
His438. Also present a second hydrogen bond interaction through the oxygen atom of the carbonyl
of Trp82 and the hydroxyl group (-OH) at position 2’ of the phenyl moiety. Both distant interactions
can be done owing its flat chemical structure.

Isoflavonoids genistein-7-O-di-glucoside, ononin (formononetin 7-O-glucoside) and genistein-
7-O-glucoside due their similar chemical structures are overlapped among them into the hBuChE
catalytic site, and therefore exhibit related binding modes and similar binding energies as can be seen
in table 3. The three isoflavonoids mentioned above perform the same hydrogen bond interaction
with His438 through one of the hydroxyl groups (-OH) their glycoside moieties. Likewise, genistein-
7-O-di-glucoside and ononin (formononetin 7-O-glucoside) carry out another hydrogen bond
interaction through the 3”7-OH of their glycosides scaffolds with Trp82, but genistein-7-O-glucoside
perform the same interaction through its 3”-OH with the nearby amino acid Trp430. Genistein-7-O-
di-glucoside expose a substantial difference compared to the other two isoflavonoids, carrying out
an extra hydrogen bond interaction between the 4' phenolic hydroxyl (-OH) and Asn68, what the



other derivatives do not perform. This latter feature could explain the best binding energy exhibited
by genistein-7-O-di-glucoside (-6.89 kcal/mol).

The coumarin aesculetin-7-O-glucuronide, as well as the fatty acids dihydroxy-octadecaenoic
acid and hydroxy-pentadecanoic acid, like in TcAChE docking assays, showed the worse binding
energies, and therefore they are probably not significant contributors for the #BuChE inhibition.
Aesculetin-7-O-glucuronide shows two hydrogen bond interactions with Glul97 through two
hydroxyl groups (-OH) of its glycoside core, and the fatty acids also carry out poor interactions being
only two hydrogen bond interactions in charge of stabilizing the protein-compound complex in the
dihydroxy-octadecaenoic acid (interactions with Gly117 and Glu197) and only one hydrogen bond
interaction between the hydroxyl (-OH) at position 4- of the aliphatic chain and Gly117. All binding
mode positions and descriptors of each abundant compounds obtained from G. sphacelata pulp and
seeds extracts over the hlBuChE are shown in Figure S4.
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Figure S4. Predicted binding mode and predicted intermolecular interactions of all most abundant
compounds in G. sphacelata pulp and seeds extracts and the residues of human butyrylcholinesterase (hBuChE)
catalytic site. Yellow dotted lines indicate hydrogen bond interactions, cyan dotted lines represent m-m
interactions and magenta dotted lines indicates T-Shaped interactions. A. Quercetin-3-O-glucoside-acetate
(flavonoid) into the catalytic site; B. Lupinisoflavone (isoflavone) into the catalytic site; C. Genistein-7-O-di-
glucoside (isoflavone) into the catalytic site; D. Ononin (formononetin 7-O-glucoside) (isoflavone) into the
catalytic site; E. Genistein-7-O-glucoside (isoflavone) into the catalytic site F. Aesculetin-7-O-glucuronide
(coumarin) into the catalytic site G. Dihydroxy-octadecaenoic acid (fatty acid) into the catalytic site; H. Hydroxy-
pentadecanoic acid (fatty acid) into the catalytic site.
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