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Abstract: The design of novel metal complexes with N-heterocyclic carbene (NHC) ligands that
display biological activity is an active research field in organometallic chemistry. One of the
possible approaches consists of the use of NHC ligands functionalized with a carbohydrate moiety.
Two novel Au(I)–Au(I) dinuclear complexes were synthesized; they present a neutral structure with
one bridging diNHC ligand, having one or both heterocyclic rings decorated with a carbohydrate
functionality. With the symmetric diNHC ligand, the dicationic dinuclear complex bearing two
bridging diNHC ligands was also synthesized. The study was completed by analyzing the
antiproliferative properties of these complexes, which were compared to the activity displayed
by similar mononuclear Au(I) complexes and by the analogous bimetallic Au(I)–Au(I) complex not
functionalized with carbohydrates.
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1. Introduction

Cisplatin was used as an anticancer drug for many years, and it is still one of the most used
ones, despite its numerous issues with drug resistance and side effects [1,2]. These issues require
more research to find a valid transition metal-based alternative to cisplatin. In this regard, metal
complexes with N-heterocyclic carbene ligands (NHC) [3–5] are attracting increasing attention from the
bioinorganic scientific community; these complexes are especially interesting due to their high stability
imparted by the strength of the M–NHC bond, such that it appears reasonable that the structure of
these complexes remains unchanged and stable under physiological conditions [6–12].

In particular, the interest in gold-based drugs received great impulse from the discovery of the
anti-cancer properties of Auranofin, originally used as an antiarthritic drug. Compared to cisplatin,
Auranofin presents better activity against difficult to treat tumors, better selectivity, and less cell
resistance [13,14]. As Auranofin presents a phosphine ligand, it is reasonable to assume that this ligand
could be substituted with an NHC ligand, as NHCs are rapidly substituting phosphine ligands given
the higher stability of the resulting complexes; furthermore, as for phosphine ligands, for NHC ones it
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is also possible to easily and independently modify their steric and electronic properties [15]. This NHC
versatility, obtained for example by simply changing the substituents on the nitrogen atoms of the
heterocyclic ring, also allows a better fine-tuning of the lipophilic/hydrophilic balance of the molecule,
thus enhancing the selectivity of the drug [16]. Many gold(I) and gold(III) complexes with NHC
ligands show biological activity, and several reviews appeared on this topic in recent years [10,14,17].

The decoration of the carbene ligand with a carbohydrate can be of interest for a variety
of reasons; sugars are abundant in nature and present an extremely varied structure, they can
enhance the water solubility of the complex, and finally the presence of a sugar residue in the
molecule can enhance the drug selectivity as a result of the increased carbohydrate uptake of cancer
cells [18–23]. The bioactivity of mononuclear gold(I) complexes with carbohydrate-functionalized
NHCs were recently studied by some of us [18]. In this manuscript, we report on the synthesis of
dinuclear Au(I)–NHC complexes with incorporated acetylated glucopyranose moieties and on their
antiproliferative activity. The performances of the dinuclear complexes, in terms of both activity
and selectivity, were compared to their corresponding mononuclear counterparts and to dinuclear
complexes not having carbohydrate-functionalized NHCs. Dinuclear Au(I) complexes with one or two
bridging diNHC carbene ligands were reported to present anticancer properties, acting by inhibiting
the thioredoxin reductase TrxR or by leading to mitochondria-induced apoptosis [24–31].

2. Results and Discussion

2.1. Synthesis of the Bis(Imidazolium) Salts

Compound L1·2HPF6 was synthesized following a three-step process (Scheme 1), in which
the carbohydrate-functionalized imidazole (a) [32] reacts with 1,3-dibromopropane to obtain the
imidazolium salt (b). This reaction does not yield the bis(imidazolium) symmetric product, possibly
due either to the limited nucleophilicity of the imidazole (a) or to the low reactivity of dibromopropane
under the reaction conditions. In fact, by reacting product (b) with N-methylimidazole, compound
L1·2HBr can be isolated. The final Br−/PF6

− anion metathesis step is usually required to isolate an
azolium salt more soluble in organic solvents, such as acetonitrile, and to prevent interferences of the
counter anions during the synthesis of the Au(I) complexes, especially the dinuclear dicationic ones.

In order to obtain the symmetric bis(imidazolium) salt L2·2HPF6, imidazole (a) was reacted with
1,3-propylenebistriflate, a substrate more activated than 1,3-dibromopropane for the nucleophilic
substitution, following a procedure reported by Anneser et al. (Scheme 2) [33]. Also in this case,
the final step is the anion metathesis.

Both L1·2HPF6 and L2·2HPF6 were characterized by 1H- and 13C{1H}-NMR spectroscopy, as well
as electrospray ionization mass spectrometry (ESI-MS), and both salts appear to be spectroscopically
pure. In the case of compound L1·2HPF6, the acidic protons of the imidazole C2-H hydrogens give
two signals in the 1H-NMR spectrum at 8.72 and 8.73 ppm, indicating the lack of symmetry of the
system. Conversely, the 1H-NMR spectrum of symmetric L2·2HPF6 presents only one peak at 8.82 ppm.
Anomerization processes were reported in the literature during the quaternization of the imidazole
ring or during the synthesis of carbene complexes with carbohydrate functionalized NHC [34]. In both
compounds, the signal relative to the anomeric proton, which is found around 5.7–5.8 ppm, has a
coupling constant value of around 9 Hz. Comparing this 3JHHvalue with data found in literature
relative to the anomeric proton in glucopyranose rings, it is reasonable to state that the carbohydrate
remains present in the β anomer form in both diazolium salts; the coupling constant of the same peak
for the α anomer is, in fact, much lower, around 2–4 Hz [35].
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Scheme 1. Synthesis of the bis(imidazolium) salt L1·2HPF6; (a) carbohydrate-functionalized imidazole;
(b) imidazolium salt.

Scheme 2. Synthesis of the bis(imidazolium) salt L2·2HPF6; (a) carbohydrate-functionalized imidazole.

2.2. Synthesis of the [Au2Br2L] Complexes

Compounds 1 and 2 were synthesized following a single-step procedure already reported in the
literature [36] in which the proper bis(imidazolium) salt reacts with the gold precursor AuCl(SMe2) in
the presence of LiBr and K2CO3 as a base to deprotonate the bis(imidazolium) salt. The addition of
LiBr prevents the formation of the analogous chloro complexes [Au2Cl2L]; furthermore, it was reported
by Nolan and co-workers that the anion which usually coordinates to gold(I) in the complexes is that of
the starting azolium salt [37]. The neutral [Au2Br2L] complexes (Scheme 3) were then characterized by
1H- and 13C{1H}-NMR spectroscopy, as well as ESI-MS. In particular, an indication that the complexes
formed is provided by the disappearance of the peak relative to the acidic C2-Hs, supporting the
deprotonation of the diazolium salt. Further proof comes from the 13C-NMR spectrum, in which the
peak relative to the imidazole C2 is present at around 170–175 ppm, in the range of values found in the
literature for carbene carbons coordinated to a gold(I) center trans to a bromide ligand [36,38]. In both
complexes, the carbohydrate is present in the β anomeric form as suggested by the value (9 Hz) of
the 3JHH coupling constant of the anomeric proton in the glucopyranose ring [35]. From the ESI-MS
spectra, the most prominent peaks are the [Au2BrL]+ (at m/z 993 and 1311 for compounds 1 and 2,
respectively) and the [Au2Br2LK]+ cations (m/z 1113 and 1429 for compounds 1 and 2, respectively).
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Scheme 3. Synthesis of the dinuclear gold(I) complexes 1 and 2.

2.3. Synthesis of the [Au2L2](PF6)2 Complexes

With this type of dicarbene ligand, in addition to the neutral complexes described in the previous
section, it is possible to also isolate dinuclear dicationic complexes with the general formula [Au2L2]2+

having two ligands bridging the two gold centers. Considering the asymmetric nature of the proligand
L1·2HPF6, at least two configurational isomers can be isolated: one with the carbohydrate-imidazoles
facing each other and one with each carbohydrate-NHC facing a methylimidazole-2-ylidene.
Furthermore, we recently reported that, in similar [Au2L2]2+ complexes with heteroditopic ligands,
the number of possible products is also increased by the different conformations of the propylene
linkers between the carbene units [39,40]. For this reason, we investigated only the reaction with
the symmetric ligand L2. Compound 3 was synthesized following the same procedure described for
complex 2 but using a 1:1 L2·2HPF6:AuCl(SMe2) molar ratio and without adding LiBr to the reaction
mixture (Scheme 4). Once again, the formation of the complex is supported by the disappearance in the
1H-NMR spectrum of the peak associated to the C2-H on the imidazole rings. The stoichiometry of the
complex was confirmed by high-resolution mass spectrometry measurements where a peak relative to
the dicationic [Au2L2

2]2+ fragment is present at 1033.2594 m/z. Another indication that this complex is
cationic comes from the 13C{1H}-NMR spectrum; the peak of the carbene carbon is found at 183.2 ppm,
downfield shifted by ca. 10 ppm with respect to the signal observed in the corresponding neutral
complex 2 (174.6 ppm). This chemical shift value is coherent with the values reported in literature for
carbene carbons with another carbene carbon in trans position [41–45], and this geometry is frequently
observed in cationic gold(I) complexes with two carbene ligands coordinated to the same metal center.

Scheme 4. Synthesis of the dinuclear gold(I) complex 3.

2.4. Reactivity of the Gold(I) Complex 3 toward Oxidative Addition of Halogens

The reactivity of the gold(I) complex 3 in the oxidative addition of halogens to gold was investigated;
the reactions were performed in an NMR tube at room temperature in deuterated acetonitrile as solvent,
using a slight excess of oxidant (I2:[Au] = 1.2:1 and PhICl2:[Au] = 1.5:1) (Scheme 5). Many possible
products can be obtained from the oxidative addition of halogens to dinuclear diNHC gold(I) complexes:



Molecules 2020, 25, 3850 5 of 13

the fully oxidized gold(III)–gold(III) product, the mixed-valence gold(I)–gold(III) complex, and the
gold(II)–gold(II) species (Figure 1) [46]. Therefore, the reactions were followed by recording 1H-NMR
spectra before the addition of the oxidant, immediately after, and three hours and 24 h later in order to
monitor any possible changes in the product distribution. With both halogens, the dinuclear gold(III)
complex was immediately formed, and no further evolution of the product was detected.

In both cases, the symmetry of the complex is maintained, as shown by the 1H-NMR spectra
which present only one set of peaks relative to the sugars and imidazole rings. This suggests that
the two metal centers are equivalent and, therefore, present the same oxidation state. The 13C-NMR
spectra show more definite proof that the oxidation state of the gold centers changed from gold(I) to
gold(III); the carbene carbons present, in fact, a peak at 145.6 ppm for complex 4 and 154.6 ppm for 5.
These values of chemical shifts are 20–30 ppm lower than the value (δ 183.2 ppm) found for complex
3. This is usually explained taking into consideration the more pronounced Lewis acidic behavior of
gold(III), causing an extended delocalization of the π electron density of the imidazole C=C double
bond toward the carbene carbon [47,48]. The difference between the 13C-NMR carbene chemical shifts
in 4 and 5 is ca. 10 ppm and is due to the different nature of the two halide ligands [46]. The definitive
proof that both complexes are dinuclear gold(III) complexes comes from the high-resolution mass
spectra; for both complexes, the most prominent signal is the one given by the [Au2X4L2]2+ ion, at m/z
1287.0697 for 4 and 1103.1974 for 5, both for monoisotopic peaks.

Scheme 5. Synthesis of the dinuclear Au(III) complexes by oxidative addition to 3.

Figure 1. Possible products obtained from the oxidative addition of halogens to the dinuclear
gold(I)–gold(I) complexes.

2.5. Biological Activity of the Gold(I) Complexes

The biological activity of the gold(I) complexes 1–3 and 6 was tested on different eukaryotic cell
lines. Complex 6 (Figure 2), bearing only methyl groups as wingtip substituents, was chosen for the
absence of any carbohydrate moiety as comparison.

Figure 2. Structure of complex 6.
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The assay was performed to study the importance of the functionalization with a carbohydrate
moiety in determining the antiproliferative activity. We did not test the antiproliferative activity of
gold(III) complexes 4 and 5, as it is well known that similar dicationic gold(III) complexes easily
undergo reduction to the corresponding gold(I) species in a physiological environment [26,48].
In particular, two cancer cell lines, A431 and SVT2, were tested in the presence of increasing amount
of each compound. Immortalized cell lines, HaCaT and BALB/c-3T3, were analyzed as well to
study the selectivity of the newly synthesized compounds. Cell viability was evaluated by the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the results, after 48 h of
incubation, are reported in Figure 3. All the complexes were cytotoxic on all cell lines analyzed, and they
showed a dose-dependent toxicity. Interestingly, the analyzed compounds induced an increase in cell
proliferation at very low concentration (5–10 µg/mL). The IC50 values, i.e., the complex concentration
required to induce 50% of cell death, is reported in Table 1. Complex 3 was the compound with the
lowest toxicity with respect to the other tested molecules.

Figure 3. Effect of complexes 1, 2, 3, and 6 on the survival of different cell lines. Immortalized human
cells (HaCaT, dashed line with empty circles), immortalized murine cells (BALB/c-3T3, dashed line
with empty squares), human epidermoid carcinoma (A431, black line with black circles), and murine
fibroblast transformed with simian virus 40 (SV40) (SVT2, black line with black squares) were incubated
with increasing amounts of each compound (10–200 µg/mL) for 48 h. Cell viability was assessed by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and expressed as described
in the Section 3. A, complex 1; B, complex 2; C, complex 3; D, complex 6. Values are given as
means ± SD (n ≥ 3).
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Table 1. IC50 values (µM) obtained for 1, 2, 3, and 6 on HaCaT, BALB/c 3T3, A431, and SVT2 cells line
after 48 h of incubation.

Cell Line Complex 1 Complex 2 Complex 3 Complex 6

HaCaT 181 ± 8 >144 >85 240 ± 15
BALB/c 3T3 148 ± 15 108 ± 17 >85 241 ± 15

A431 162 ± 34 137 ± 5 >85 235 ± 16
SVT2 139 ± 12 118 ± 6 72 ± 15 207 ± 15

Even if the IC50 values for the reported dinuclear complexes are very high (>100 µM), these results
are not totally unexpected, as this inertness was also observed for the mononuclear complex
[Au(magi)Cl] (magi = 1-methyl-3-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)imidazole-2-ylidene) [18]
and was attributed to the low mitochondrial penetration of the complex. Comparing the performances
of complexes 1, 2, and 6, it is evident that the introduction of a sugar in the carbene moiety only slightly
improves the cytotoxic activity. Complex 3 shows lower IC50 values than those of the neutral complex
2, having the same diNHC ligand.

In general, halo-substituted neutral gold(I) complexes turn out to be less effective than their
corresponding cationic bis(NHC) complexes. The lability of the Au–X (X = halogen) bond, compared
to the relative inertness of the Au–NHC bonds, makes the halide derivatives less stable in biologically
relevant conditions, favoring the occurrence of deactivation reactions by different cellular components.
Another parameter that can explain the lower activity of the neutral gold(I) complexes is their lower
solubility in water, which possibly reduces the drug uptake by cells [49]. Finally, the higher activity of
complex 3 can be also attributed to its dicationic nature, which allows its classification as a delocalized
lipophilic cation (DLC) [50]. Indeed, the difference in the mitochondrial membrane potential between
cancerous and healthy cells could explain the higher penetration of DLCs into the mitochondrial
membrane of tumor cells, which in turn would lead to cell apoptosis [51].

3. Materials and Methods

3.1. General Comments

All commercially available reagents (Sigma-Aldrich, Darmstadt, Germany) were used as received
without additional purification steps. The reagents a [32], b [52], 1,3-propylenebistriflate [53],
and complex 6 [36] were prepared according to literature procedures. The NMR spectra were
recorded on a Bruker Avance 300 (Bruker, Billerica, MA, USA; 300.1 MHz for 1H and 75.5 MHz
for 13C) at 298 K unless otherwise stated; chemical shifts (δ) are reported in units of ppm relative
to the residual solvent signals. ESI-MS analyses of compounds L1·2HPF6, L1·2HPF6, 1, and 2 were
performed using an LCQ-Duo (Thermo Fisher Scientific, Waltham, Massachusetts, USA) operating
in positive ion mode; sample solutions were prepared by dissolving the compounds in acetonitrile
and were directly infused into the ESI source by a syringe pump at 8 µL/min flow rate. The HRMS
measures of complexes 3–5 were performed using a Q-Exactive hybrid quadrupole-Orbitrap™mass
spectrometer (Thermo Fisher Scientific). MS conditions were as follows: electrospray ionization in
positive mode, resolution 70,000, automatic gain control (AGC) target 1 × 106, max injection time
of 50 ms, scan range 500–2000 amu, capillary voltage 3.5 kV and radiofrequency (RF) voltage 50 V,
capillary temperature 320 ◦C and probe temperature 350 ◦C; nitrogen was used as sheath gas at
11 psi. Samples were prepared using acetonitrile as solvent and injected for analysis at a flow rate
of 10 µL/min. Calibration was performed with a standard solution purchased from Thermo Fisher
Scientific (Pierce®ESI positive Ion Calibration Solution). The software for analysis of MS data was
Xcalibur 3.1 (Thermo Fisher Scientific). Elemental analyses were carried out by the microanalytical
laboratory of Chemical Sciences Department (University of Padova) with a Thermo Scientific FLASH
2000 apparatus. The recorded NMR and ESI-MS spectra of the reported compounds can be found in
the Supplementary Materials section.
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In the characterization of the imidazolium salts and gold complexes, the following notation
(Figure 4) was adopted for the sugar substituent:

Figure 4. Numbering of the carbon atoms in the sugar substituent for NMR assignments.

3.2. Synthesis of the Bis(Imidazolium) Salts

3.2.1. Synthesis of the Bis(Imidazolium) Salt L1·2HPF6

Compound b (0.19 g, 0.32 mmol), N-methylimidazole (91 µL, 1.14 mmol), and 10 mL of CHCl3
were added to an Ace pressure tube. The solution was stirred at 65 ◦C for three days, then for two
additional days at room temperature. The solvent was evaporated under reduced pressure to give
a white solid. The solid product was dissolved in 5 mL of a saturated aqueous KPF6 solution and
left stirring overnight. The formation of an oil was observed. The oily residue was separated from
the aqueous solution and dried under vacuum. The residue was treated with 20 mL of diethyl ether
under stirring for three hours and the formation of a white solid was observed. The solid was isolated
by filtration (yield 44%). 1H-NMR (300 MHz, CD3CN) δ 8.76 (s, 1H, NCHN-GluIm), 8.41 (s, 1H,
NCHN-MeIm), 7.64 (s, 1H, GluIm), 7.47 (s, 1H, GluIm), 7.38 (m, 2H, MeIm), 5.74 (d, 3J = 9.0 Hz, 1H,
1-Glu), 5.50 (m, 1H, 3-Glu), 5.38–5.21 (m, 2H, 2,4-Glu), 4.32–4.18 (m, 3H, 5,6-Glu), 4.18–4.09 (m, 4H,
NCH2), 3.84 (s, 3H, CH3-MeIm), 2.38 (quint, 2H, 3J = 7.2 Hz, 2H, CH2), 2.07 (s, 3H, CH3-Ac), 2.03
(s, 3H, CH3-Ac), 1.99 (s, 3H, CH3-Ac), 1.94 (s, 3H, CH3-Ac). 13C{1H}-NMR (75 MHz, CD3CN) δ 171.16
(CO), 170.59 (CO), 170.48 (CO), 170.43 (CO), 136.91 (NCHN-GluIm), 136.31 (NCHN-MeIm), 124.78
(GluIm), 124.12 (GluIm), 123.01 (MeIm), 121.61 (MeIm), 85.28 (1-Glu), 75.56 (Glu), 72.13 (Glu), 71.87
(Glu), 67.97 (Glu), 62.08 (6-Glu), 47.64 (NCH2), 46.76 (NCH2), 36.67 (CH3-MeIm), 30.46 (CH2), 20.63
(CH3-Ac), 20.56 (CH3-Ac), 20.33 (CH3-Ac). ESI-MS (positive ions, CH3CN): m/z 667 [H2L1PF6]+, 983
[H2L2PF6]+, 1479 [(H2L1)2(PF6)3]+. Elemental analysis C24H34N4O9P2F12. Calculated: C, 35.48%; H,
4.22%; N, 6.90%. Found: C, 34.96%; H, 3.73%; N 5.57%.

3.2.2. Synthesis of the Bis(Imidazolium) Salt L2·2HPF6

Compound a (231 mg, 0.58 mmol) was dissolved in 50 mL of acetonitrile at 0 ◦C. A solution of
1,3-propylenebistriflate (98 mg, 0.29 mmol) in 7 mL of acetonitrile was prepared and added dropwise,
over one hour, to the solution containing a. The resulting solution was warmed to room temperature
and left stirring for 16 h. The solvent was removed and the obtained solid was dissolved in 5 mL of
distilled water. A saturated aqueous NH4PF6 solution (5 mL) was added, and the final solution was
left stirring for an hour until the formation of a white solid precipitate was observed. The solid was
filtered, washed with distilled water, and then dried under reduced pressure (yield 48%). 1H-NMR
(300 MHz, CD3CN) δ 8.82 (s, 2H, NCHN-Im), 7.67 (t, 3J = 1.9 Hz, 2H, Im), 7.50 (t, 3J = 1.9 Hz, 2H,
Im), 5.78 (d, 3J = 9.0 Hz, 2H, 1-Glu), 5.52 (m, 2H, 3-Glu), 5.38–5.25 (m, 4H, 2,4-Glu), 4.28–4.22 (m, 6H,
5,6-Glu), 4.22–4.17 (m, 4H, NCH2), 2.47–2.36 (m, 2H, CH2), 2.05 (s, 6H, CH3-Ac), 2.05 (s, 6H, CH3-Ac),
2.01 (s, 6H, CH3-Ac). 13C{1H}-NMR (75 MHz, CD3CN) δ 171.2 (CO), 170.6 (CO), 170.5 (CO), 136.5
(NCHN-Im), 124.2 (Im), 121.8 (Im), 85.4 (1-Glu), 75.7 (3-Glu), 72.2 (Glu), 71.9 (Glu), 68.0 (Glu), 62.1
(Glu), 47.6 (NCH2), 30.4 (CH2), 20.7 (CH3-Ac), 20.7 (CH3-Ac), 20.5 (CH3-Ac). ESI-MS (positive ions,
CH3CN): m/z 983 [H2L2PF6]+, 507 [H2L2-Glu]+, 419 [H2L2]2+. Elemental analysis C37H50N4O18P2F12.
Calculated: C, 39.37%; H, 4.46%; N, 4.96%. Found: C, 39.07%; H, 4.24%; N, 4.36%.
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3.3. General Procedure for the Synthesis of Complexes [Au2Br2L]

The proper bis(imidazolium) salt (0.086 mmol), AuCl(SMe2) (0.172 mmol), K2CO3 (1.89 mmol),
LiBr (0.86 mmol), and 40 mL of acetonitrile were added to a round-bottom flask. The mixture was
heated to 60 ◦C and left stirring for 18 h, then filtered on Celite to remove excess salts. The solvent
was removed under reduced pressure. The solid was finally recrystallized with chloroform/n-hexane
(for 1) or acetonitrile/diethyl ether (for 2), obtaining a white solid product which was filtered and dried
under vacuum.

1. White solid, yield 59%. 1H-NMR (300 MHz, CD3CN) δ 7.43 (d, 3J = 2.1 Hz, 1H, GluIm), 7.29
(d, 3J = 2.1 Hz, 1H, GluIm), 7.20 (d,3J = 1.9 Hz, 1H, MeIm), 7.17 (d, 3J = 1.9 Hz, 1H, MeIm), 6.12
(d,3J = 8.9 Hz, 1H, 1-Glu), 5.52 (m, 1H, 3-Glu), 5.33–5.19 (m, 2H, 2,4-Glu), 4.27–4.17 (m, 3H, 5,6-Glu),
4.17–4.02 (m, 4H, NCH2), 3.85 (s, 3H, CH3-MeIm), 2.50–2.35 (m, 2H,CH2), 2.06 (s, 3H, CH3-Ac), 2.04
(s, 3H, CH3-Ac), 1.98 (s, 3H, CH3-Ac), 1.93 (s, 3H, CH3-Ac). 13C{1H}-NMR (75 MHz, CD3CN) δ 175.07
(NCN-MeIm), 172.91 (NCN-GluIm), 171.27 (CO), 170.66 (CO), 170.58 (CO), 169.99 (CO), 123.93 (MeIm),
122.30 (GluIm), 120.73 (MeIm), 119.62 (GluIm), 86.64 (1-Glu), 75.13 (3-Glu), 72.64 (Glu), 72.24 (Glu),
68.51 (Glu), 62.34 (Glu), 48.31 (NCH2), 47.50 (NCH2), 38.75 (CH3-MeIm), 30.96 (CH2), 21.08 (CH3-Ac),
20.95 (CH3-Ac), 20.82 (CH3-Ac), 20.75 (CH3-Ac). ESI-MS (positive ions, CH3CN): m/z 993 [Au2L1Br]+,
1113 [Au2L1Br2K]+.

2. White solid, yield 89%. 1H-NMR (300 MHz, CD3CN) δ 7.45 (d, 3J = 2.0 Hz, 2H, Im), 7.30
(d, 3J = 2.0 Hz, 2H, Im), 6.14 (d, 3J = 8.9 Hz, 2H, 1-Glu), 5.54 (m, 2H, 3-Glu), 5.26 (m, 4H, 2,4-Glu),
4.34–4.18 (m, 6H, 5,6-Glu), 4.18–3.98 (m, 4H, NCH2), 2.49–2.35 (m, 2H, CH2), 2.06 (s, 6H, CH3-Ac),
2.04 (s, 6H, CH3-Ac), 1.98 (s, 6H, CH3-Ac), 1.92 (s, 6H, CH3-Ac). 13C{1H}-NMR (75 MHz, CD3CN) δ
174.64 (NCN-Im), 171.24 (CO), 170.65 (CO), 170.59 (CO), 170.01 (CO), 122.34 (Im), 119.67 (Im), 86.76
(1-Glu), 75.20 (Glu), 72.65 (Glu), 72.33 (Glu), 68.55 (Glu), 62.36 (6-Glu), 48.22 (NCH2), 21.05 (CH3-Ac),
20.97 (CH3-Ac), 20.85 (CH3-Ac), 20.78 (CH3-Ac). ESI-MS (positive ions, CH3CN): m/z 1311 [Au2L2Br]+,
1429 [Au2L2Br2K]+.

3.4. Synthesis of the Complex [Au2L2
2](PF6)2, 3

The salt L2·2HPF6 (76 mg, 0.067 mmol), AuCl(SMe2) (20 mg, 0.067 mmol), K2CO3 (203 mg,
1.47 mmol), and 40 mL of acetonitrile were added to a round-bottom flask; the mixture was heated to
60 ◦C and left stirring for 18 h, then filtered on Celite to remove excess salts. The solvent was removed
at reduced pressure. The residue was recrystallized with acetonitrile/diethyl ether, obtaining a white
solid which was filtered and dried under vacuum (yield 69%). 1H-NMR (300 MHz, CD3CN) δ 7.58
(d, 3J = 1.9 Hz, 4H, Im), 7.42 (d, 3J = 1.9 Hz, 4H, Im), 6.08 (d, 3J = 8.9 Hz, 4H, 1-Glu), 5.63 (m 4H, 3-Glu),
5.35 (m, 8H, 2,4-Glu), 4.47–4.31 (m, 8H, NCH2), 4.31–4.13 (m, 12H, 5,6-Glu), 2.54–2.38 (m, 4H,CH2), 2.05
(s, 12H, CH3-Ac), 2.01 (s, 12H, CH3-Ac), 2.01 (s, 12H, CH3-Ac), 1.92 (s, 12H, CH3-Ac). 13C{1H}-NMR
(75 MHz, CD3CN) δ 183.17 (Im), 171.16 (CO), 170.73 (CO), 170.55 (CO), 170.09 (CO), 126.84 (Im),
123.80 (Im), 87.14 (1-Glu), 75.51 (Glu), 72.70 (Glu), 72.58 (Glu), 68.29 (Glu), 62.26 (Glu), 50.11 (NCH2),
32.53 (CH2), 21.04 (CH3-Ac), 20.83 (CH3-Ac), 20.80 (CH3-Ac). HRMS (positive ions, monoisotopic
peak): m/z 991.2506 [Au2L2

2(-2CH2CO)]2+ (calculated for C70H92Au2N8O34
2+ = 991.2518), 1012.2554

[Au2L2
2(-CH2CO)]2+ (calculated for C72H94Au2N8O35

2+ = 1012.2571), 1033.2594 [Au2L2
2]2+ (calculated

for C74H96Au2N8O36
2+ = 1033.2624).

3.5. Reactivity of Complex 3 in Halogen Oxidative Addition: Characterization of the Dinuclear Au(III)
Complexes [Au2L2

2X4](PF6)2, 4 and 5

Complex 3 was added to an NMR tube and dissolved in CD3CN; the oxidant (I2 or PhICl2) was
then added in a [I2]/[Au] = 1.2 and [Cl2]/[Au] = 1.5 ratio. NMR spectra were recorded before the
addition of the oxidant, immediately after, and three hours and 24 hours later to monitor the reaction.
In the case of the [Au2L2

2Cl4](PF6)2 complex, the product was isolated as a white solid by removal of
the deuterated solvent and by treatment of the residue with diethyl ether to remove the coproduct of
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the oxidant (PhI). These reactivity tests were run on NMR scale and, for this reason, the characterization
of the complexes involved only NMR and MS analysis.

4. 1H-NMR (300 MHz, CD3CN) δ 7.77 (d, 3J = 2.1 Hz, 4H, Im), 7.62 (d,3J = 2.1 Hz, 4H,
Im), 5.90 (d, 3J = 9.3 Hz, 4H, 1-Glu), 5.66 (m, 4H, 3-Glu), 5.40 (m, 4H, 2-Glu), 5.24 (m, 4H,
4-Glu), 4.28–4.00 (m, 20H, 5,6-Glu and NCH2), 2.66–2.43 (m, 4H, CH2), 1.96 (s, 12H, CH3-Ac),
1.94 (s, 12H, CH3-Ac), 1.89 (s, 12H, CH3-Ac). 13C{1H}-NMR (75 MHz, CD3CN) δ 171.06 (CO),
171.01 (CO), 170.66 (CO), 170.64 (CO), 145.63 (NCN-Im), 126.58 (Im), 123.81 (Im), 85.81 (1-Glu), 75.96
(Glu), 72.69 (Glu), 72.29 (Glu), 68.11 (Glu), 62.43 (Glu), 50.02 (NCH2), 30.45 (CH2), 22.13 (CH3-Ac),
20.96 (CH3-Ac), 20.80 (CH3-Ac), 20.75 (CH3-Ac). HRMS (positive ions, monoisotopic peak): m/z
1160.1664 [Au2L2

2I2]2+ (calculated for C74H96Au2I2N8O36
2+ = 1160.1668), 1287.0697 [Au2L2

2I4]2+

(calculated for C74H96Au2I4N8O36
2+ = 1287.0713), 1266.0660 [Au2L2

2I4(-CH2CO)]2+ (calculated for
C72H94Au2I4N8O35

2+ = 1266.0660).
5. 1H-NMR (300 MHz, CD3CN) δ 7.84 (s, 4H, Im), 7.68 (s, 4H, Im), 6.39 (d, 3J = 9.3 Hz, 4H,

1-Glu), 5.80 (t, 3J = 9.6 Hz 4H, 3-Glu), 5.45–5.19 (m, 8H, 2,4-Glu), 4.61–4.42 (m, 4H, NCH2), 4.42–4.27
(m, 4H, NCH2), 4.27–4.05 (m, 12H, 5,6-Glu), 2.71–2.48 (m, 4H, CH2), 2.05 (s, 12H, CH3-Ac), 2.01
(s, 12H, CH3-Ac), 1.93 (s, 12H, CH3-Ac), 1.90 (s, 12H, CH3-Ac). 13C{1H}-NMR (75 MHz, CD3CN) δ
171.37 (CO), 171.01 (CO), 170.66 (CO), 170.63 (CO), 154.57 (NCN-Im), 126.14 (Im), 122.99 (Im), 85.68
(1-Glu), 76.16 (Glu), 73.56 (Glu), 72.41 (Glu), 68.10 (Glu), 62.40 (6-Glu), 49.46 (NCH2), 31.56 (CH2), 21.50
(CH3-Ac), 20.80 (CH3-Ac), 20.76 (CH3-Ac). HRMS (positive ions, monoisotopic peak): m/z 1033.2615
[Au2L2

2]2+ (calculated for C74H96Au2N8O36
2+ = 1033.2624), 1103.1970 [Au2L2

2Cl4]2+ (calculated for
C74H96Au2Cl4N8O36

2+ = 1103.2001).

3.6. Cytotoxicity Assay

To assess the cytotoxicity of the compounds, both immortalized and tumorigenic cells were
chosen. Immortalized human keratinocytes (HaCaT, from Innoprot, Derio, Spain), immortalized
murine fibroblasts (BALB/c 3T3, from ATCC, Manassas, Vi, USA), human epidermoid carcinoma cells
(A431, from ATCC), and BALB/c-3T3 transformed with simian virus 40 (SV40) (SVT2, from ATCC)
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich, St Louis, MO, USA)
supplemented with 10% fetal bovine serum (HyClone, Logan, UT, USA), 2 mM l-glutamine and
antibiotics. Cells were grown in a 5% CO2 humidified atmosphere at 37 ◦C and seeded in 96-well
plates at a density of 2 × 103 cells per well. Cells were incubated with increasing concentrations
of each compound (from 10 to 200 µg·mL−1). After 4 h of incubation, cell viability was measured
using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, which measures
mitochondrial functionality. Briefly, the MTT reagent was dissolved in DMEM in the absence of
phenol red (Sigma-Aldrich) and added to the cells (0.5 mg·mL-1 final concentration). Following 4 h of
incubation at 37 ◦C, the culture medium was removed and the resulting formazan salts were dissolved
by adding isopropanol containing 0.01 mol·L−1 HCl (100 µL per well). Absorbance values were
determined at 570 nm using an automatic plate reader (Microbeta Wallac 1420, PerkinElmer, Waltham,
MA, USA).

4. Conclusions

In this work, we reported two novel diNHC precursors with one or both the heterocyclic
rings functionalized with a carbohydrate moiety. The corresponding neutral complexes of the type
Au2Br2(diNHC) and, with the symmetric ligand, also the dicationic complex [Au2(diNHC)2](PF6)2

were synthesized. The antiproliferative properties of these complexes were investigated. Results
suggest that the complexes appear rather inert and the introduction of a carbohydrate moiety does not
significantly improve their performance. The investigation of the coordinating properties of the new
ligands described in this work will be extended to other metal centers in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/17/3850/s1:
NMR and ESI-MS spectra of the reported compounds.

http://www.mdpi.com/1420-3049/25/17/3850/s1
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