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Abstract: Molecular imaging with positron emission tomography (PET) and single photon emission
computed tomography (SPECT) is a well-established and important in vivo technique to evaluate
fundamental biological processes and unravel the role of neurotransmitter receptors in various
neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine,
serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of
glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state
of affairs has persisted despite the central importance of glutamate neurotransmission in brain
physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases.
Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes
of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and
metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development
of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available
ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for
selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA
receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate
receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence
on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with
good binding properties in vitro have failed to give measurable specific binding in the living brain.
This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors,
compounded by conformational differences in vivo. The situation is better with respect to mGluR
imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations
of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering
the centrality and diversity of glutamatergic signaling in brain function, we have relatively few
selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate
receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the
glutamate receptors may yet open up new investigational vistas with broad applications in basic and
clinical research.
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1. Introduction

The first identification of the amino acid glutamate/glutamic acid (1) as a neurotransmitter was
in the insect nervous system [1,2]. Glutamate occurs at a concentration of approximately 10 mM in
mammalian brain [3], making it the most abundant amino acid, which reflects its presence both in
metabolic and neurotransmitter pools [4]. Perhaps in keeping with its ancient evolutionary lineage as
a neurotransmitter, glutamate possesses a wide variety of receptors, which have abundant expression
on neurons and glia. The glutamate receptors fall into two broad categories, namely the ionotropic
receptors, which are ligand-gated ion channels, and the metabotropic receptors (mGluRs), which have
coupling to intracellular second messenger systems. The mGluRs have further subtypes, namely the
excitatory type I receptors (mGluR1/mGluR5), the adenylate cyclase-inhibiting type II receptors
(mGluR2, mGluR3), and the type III receptors (mGluR4, mGluR6, mGluR7, mGluR8). The ionotropic
glutamate receptors, which are designated according to their excitatory amino acid ligands (Figure 1),
i.e., N-methyl-D-aspartate (NMDA, 3), kainate (4), and AMPA (5)/quisqualate (6) receptors, are ligand
gated ion channels permissive to cation flux across the cell membrane. Given this enormously diverse
pharmacology, no particular or singular action can be attributed to glutamate receptors the nervous
system. In general, however, the ionotropic receptors mediate fast excitatory synaptic signaling and
have a key role in synaptic plasticity, although their excessive activation provokes excitotoxicity,
whereas the mGluRs are modulators/shapers of neuronal activity via their effects on intracellular cyclic
adenosine monophosphate (cAMP) levels and other second messengers.
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Figure 1. Chemical structures of excitatory amino acids (EAAs), sulfur-containing amino acids (SCAAs),
and polyamines.
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There are various reviews of the pharmacology of ionotropic [5,6] and metabotropic glutamate
receptors [7,8]. There is also a burgeoning literature on the involvement of glutamate receptors in the
pathophysiology and therapeutics of Alzheimer’s dementia [9], Parkinson’s disease [10], ischemic
stroke [11], epilepsy [12], autoimmune diseases of the nervous system [13], and neuropsychiatric
disorders such as schizophrenia [14–16], depression [17,18], and substance abuse/addiction [19].
As such, the glutamate receptors present a diverse range of important targets for molecular brain
imaging by single photon emission computed tomography (SPECT) and positron emission tomography
(PET). While there have been several reviews of this topic in recent years [20–23], we now present a
systematic review of the state of development of glutamate receptor imaging, placing our emphasis on
the findings of clinical studies, and on the lacunae remaining in the literature due to lack of specific
tracers for many of these molecular targets. In selected cases, we give an account of the procedures for
radiopharmaceutical synthesis.

A Brief Note on the Various Endpoints and Units of Binding Studies

The comparison of findings with various PET and SPECT tracers in vivo requires some
consideration of the various units and measures used to quantify radiotracer uptake and binding
in the living brain. A neurochemist can measure the binding to membranes or brain sections of
the radioligand over a range of concentrations in vitro. After subtracting the non-specific binding,
the neurochemist can then calculate the saturation binding parameters, namely the Bmax, which is the
absolute concentration of the binding sites in the sample (pmol g−1 or mols per liter of tissue), and KD,
the affinity or half-saturating ligand concentration (mols per liter of solvent). Here, the experimentalist
has full control of the free ligand concentrations and incubation conditions, which generally do not
change during the binding experiment.

In PET and SPECT studies of the living organism, the radiotracer distributes throughout the
various tissues of the body after its administration as an intravenous bolus injection. This immediately
introduces a time-dependence of the concentration in blood, and further influences of hepatic
metabolism and renal elimination on the radiotracer bioavailability. In the simplest form of quantitation,
the PET or SPECT instrument reports the time–radioactivity curve in semiquantitative units of standard
uptake value (SUV). This has units of percentage of the total injected dose per gram of brain tissue,
sometimes with scaling to the corresponding uptake in a reference tissue devoid of specific binding
(SUVR), if such a tissue exists for a given target. The SUV is a time-dependent parameter and is
furthermore a composite index of specific and non-specific binding. Nonetheless, SUV serves as a
convenient marker of how effectively the tracer can cross the blood–brain barrier (BBB). Successful
SPECT or PET tracers usually attain an SUV of at least 1% of the total injected dose per gram of rodent
brain and show higher SUV in brain regions enriched with the targeted binding site. Knowing the
arterial input function by serial sampling with correction for radioactive metabolites, compartmental
analysis of the dynamic brain curve gives estimates of microparameters in brain. Chief among these
are the unidirectional blood–brain clearance of the radiotracer (K1), which has units of blood flow
(ml g−1 min−1), the fractional rate constant for clearance of unbound tracer from brain (k2; min−1),
and the association/dissociation rate constants with the cerebral target binding sites (k3/k4; min−1).
Compartmental analysis also gives estimates of macroparameters, which are the composite of several
microparameters, notably the net blood–brain clearance inclusive of irreversible trapping in brain
(Kin; mL g−1 min−1), which is defined as (K1*k3)/(k2 + k3). Calculated by linear graphical (Patlak-Gjedde)
analysis of dynamic PET/SPECT data, Kin is quite distinct from the similarly named inhibition constant
(Ki; mols per liter) derived from a blocking study in vitro, which is more akin to the IC50, i.e., the plasma
concentration of a competitor displacing 50% of the specific ligand binding in brain. Steady-state
distribution volume ratios of a tracer concentration in brain to that in the blood (mL g−1) include the
nonspecific binding (VND), which is equal to the ratio K1/k2, and the total distribution volume (VT),
which also includes the specific binding component, defined by the ratio k3/k4. The dimensionless
binding potential (BPND) represents specific binding as [(VT − VND)/VND]. This returns us to the
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first principles of autoradiography, in that the BPND derived from PET measurements should be
proportional to the ratio of the saturation binding parameters Bmax/KD measured in vitro. If there is
a brain region devoid of specific binding, this can serve for the reference tissue calculation of BPND,
thus avoiding the need for arterial sampling.

2. Glutamate Receptors

2.1. Ionotropic Glutamate Receptors (iGluR)

2.1.1. Pharmacology of NMDA Receptor Ligands

The first phase of molecular brain imaging dates to the late 1970s, with initial efforts to prepare
radiopharmaceuticals labelled with iodine-123 for SPECT, or with short-lived positron-emitting
radionuclides carbon-11 (t1/2 of 20 min) or fluorine-18 (t1/2 of 109 min) for PET brain imaging. The great
preponderance of neurotransmitter molecular imaging studies have employed radioligands for
dopamine, serotonin, and opioid binding sites, and progress in developing glutamate receptor ligands
has picked up pace only in recent years. The first glutamate receptor studies targeted the NMDA
receptor, which is a tetraheteromer consisting of two obligatory GluN1 and two GluN2 and/or GluN3
subunits, forming together a transmembrane pore for Na+/Ca2+ influx and K+ efflux. The receptor
subunits are encoded by seven genes, with a single gene for GluN1, its transcript being subject to
alternative splicing. Four GluN2 subunits (GluN2A, 2B, 2C, 2D) and two GluN3 subunits (GluN3A, 3B)
encoded by different genes, respectively, further contribute to receptor diversity. There are many splice
variants and several GluN2 transcripts, but the NMDA receptors are generally subject to allosteric
modulation by Zn2+, the polyamines spermine (11) and spermidine (12), other proteins, and voltage
dependent blockade of the cation channel by Mg2+ (for review, [24]). Activation of the NMDA receptor
requires binding of the co-substrate amino acid L-glycine (13) to the GluN1 subunit and glutamate
(1) (or NMDA, 3) to the GluN2 subunit, at specific sites in the extracellular domain. In addition to
NMDA (3) and glutamate (1), other agonists of NMDA receptors include D-cycloserine (14) (at the
glycine-binding site), homocysteic acid (9), the Amanita muscaria toxin, ibotenic acid (15), and quinolinic
acid (16). Among its antagonists are the endogenous tryptophan metabolite, kynurenic acid (17),
the over-the-counter cough suppressant, dextromethorphan (19), and the antihypertensive agent
ifenprodil (21). Figure 2 depicts some key structures.

Ligands for NMDA Receptor Ion Channels (PCP/MK801 Binding Site)

The NMDA receptor is a dimer of dimers, namely the GluN1 type paired with four known
subtypes of GluN2 proteins, designated as A, B, C, and D. While the GluN1 confers the binding site for
glycine/D-serine to the NMDA receptor complex, its association with the different glutamate-binding
GluN2 sites results in ligand gated ion channels with distinct physiological properties. These properties
differ with respect to Mg2+ block and cation conductance, as well as the kinetics of channel deactivation
after prolonged agonism and concerning their intracellular trafficking pathways (for review see
Willey et al. [25] and Vieira et al. [26]). The most abundant subunits in adult telencephalon are GluN2A
and GluN2B, which seemingly act via distinct signaling pathways (Sun et al. [27]). There is relatively
little knowledge about the functional properties of the GluN2C subunit, but its association with GluN1
results in an exclusively glycine-gated receptor. The GluN2D subunit is perhaps even more mysterious
but may modulate cellular responses to ketamine that are relevant in the context of schizophrenia
models ([28]). As shall be seen, the great preponderance of radioligands discussed in this section target
the GluN2B subunit, thus leaving a vast territory of molecular imaging yet unexplored.

As a typical ligand gated ion channel, the NMDA receptor possesses an extracellular ligand-binding
domain and an ion-conducting transmembrane domain, which is only open upon receptor activation.
The NMDA receptor is pharmacologically complex, presenting at least four distinct binding sites,
which are targetable by distinct classes of ligands. These sites include (A) the phencyclidine
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(PCP)/MK801 binding site in the transmembrane pore, (B) the glutamate binding sites on the extracellular
side GluN2, (C) the co-agonist binding site for glycine (13) on the GluN1 subunit, and (D) allosteric
modulator sites at the interface of the dimers comprising the complete tetramer. All of these sites
present potential targets for PET/SPECT imaging. To this list might also be added the polyamine
binding site, which modulates the binding of [3H]MK801 [29] and other intrachannel ligands.
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Figure 2. Chemical structures of some prototypic N-methyl-d-aspartate (NMDA) receptor ligands.

While the synthetic opioid derivatives levorphan (18, Hoffmann-La-Roche, 1952), dextrometorphan
(19, Hoffmann-La-Roche, 1954), and dextrorphan (20) share the same morphinan-skeleton, they differ
significantly in their pharmacological profiles with respect to selectivity for the PCP/MK801 binding
site in the NMDA channel. These compounds were synthesized from cyclohexanone in a ten-step
procedure [30]. Levorphan (18), which has an R-absolute configuration at all of its asymmetric centres,
is a potent opioid receptor agonist with an approximately seven-fold higher affinity than morphine [31].
Dextrometorphan (19), which is the (9S,13S,14S)-isomer, has no analgesic activity, but is commonly
used as cough suppressant. Dextromethorphan (19) and its main metabolite dextrorphan (20) also show
anticonvulsant and neuroprotective effects, which are apparently obtained by antagonism of NMDA
glutamate receptors. Thus, stereochemistry of morphinan compounds determines their selectivity
between opioid and NMDA receptors, and, as presented below, also with respect to sigma receptors.

The prototypic NMDA antagonist ligand [3H]MK801 binds to the inside of the channel with a KD

of 6 nM and Bmax of 250 nM in rat brain membranes [32]. Its binding in cryostat sections from gerbil
brain was most abundant in the hippocampus and cerebral cortex, and was substantially displaced
by ketamine (22) and phencyclidine (23), but was unaffected by glutamate (1) or NMDA (3) [33].
The success of [3H]MK801 as a ligand in vitro led to the testing of [18F]fluoro-methyl-MK801 by PET
(25), which showed slightly heterogeneous uptake in brain of living baboon [34]. However, its binding
in vivo was not displaceable by challenge with phencyclidine (23) or excess non-radioactive MK801
(24), indicating a lack of specific binding.

Another widely used ligand for autoradiographic studies of NMDA receptors is the phencyclidine
derivative [3H]-N-(1-[thienyl]cyclohexyl)3,4-piperidine ([3H]TCP), which binds to a single site in rat
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brain cryostat sections with an apparent affinity of 127 nM [35]. Its highest binding density was in
the hippocampus, where it showed a complex laminar distribution; the specific binding of [3H]TCP
(20 nM) was 320 nM in stratum radiatum membranes (assuming 10% protein). Neocortical binding
was only about 160 nM, and striatal and thalamic binding was approximately 80 nM. Parallel studies
with [3H]glutamate binding under supposedly NMDA-specific conditions (i.e., in the presence of
quisqualic acid) showed an affinity of 160 nM, and a five-fold excess stoichiometry, which suggested
that several glutamate molecules were required to fully activate the receptor. However, these studies
were conducted in the absence of the co-ligand glycine, and so may not reflect the binding properties
of glutamate in vivo.

Rodent studies with the phencyclidine derivative [3H]fluorothienyl-cyclohexylpiperidine
indicated a small specific binding component in living brain, which was substantially increased
by treatment with NMDA by intraperitoneal (i.p.) injection, suggesting a certain degree of
activation-dependence of the binding [36]. Indeed, the normally low fraction of open channels
in living brain is a key limitation of radioligands targeting the PCP/MK801 site. Around the same time,
1-[1-(2-thienyl)-4-([18F]fluoro)-cyclohexyl]-1,2,5,6-tetrahydropyridine (27) was prepared for imaging
of the NMDA ion channel. Despite high affinity in vitro, there was only moderate uptake in brain
of living rat (0.1% injected dose (ID) at 30 min post-injection [p.i.]), and little evidence of specific
binding in brain of living rat or rhesus monkey [37], perhaps due to its dependence on activation of the
NMDA receptors. Similarly, despite an IC50 value of 5 nM for blocking activation of the GluN1(A)/2B
receptor subtype in vitro, 5-[3-(4-benzylpiperidin-1-yl)prop-1-ynyl]-1,3-dihydrobenzoimidazol-2-one
(“[11C]TCS 46b”, 28) labelled with carbon-11 on the benzoimidazolone ring had globally low uptake
in brain of living rat, without any displacement by ifenprodil [38]. Some key structures of NMDA
channel ligands are depicted in Figure 3.

Logan analysis of the uptake of [N-methyl-11C]ketamine enantiomers ((R)-(−)-29, (S)-(+)-30) in
brain of living baboons showed a VT of approximately 8 mL g−1 relative to the metabolite-corrected
arterial input function. There was slightly preferential binding of the (S)-(+)-enantiomer (30), which was
somewhat obscured by rapid washout of both tracers due to their rapid metabolism in vivo [39].
Others reported a transient stereoselective binding of [N-methyl-11C]ketamine ((S)-(+)-30) in brain of
rhesus monkey, corresponding to an unusably low binding potential (BPND) of 0.2–0.4 [40]. Nonetheless,
by modifying the specific activity of their tracer, the authors were able to estimate a KD of 7 µM in living
brain, and a Bmax of about 2 µM in living brain, which is about ten-fold higher abundance than NMDA
receptor density in rat brain membranes. This discrepancy is doubtless due to various methodological
factors, as well as physiological aspects of the state of binding sites occurring in the living organism.

In 2015, Salabert et al. published the radiosynthesis of the memantine (31) analogue
[18F]fluoroethylnormemantine ([18F]FNM, 33) and its biodistribution in rat brain [41]. The radiosynthesis
of [18F]FNM (33) was achieved from 1-(N-Boc)-3-(2-tosyloxyethyl)-adamantane precursor in an automated
radiochemical synthesis. The two-step procedure was realized using a Raytest SynChrom R & D
fluorination module. In the first step of the radiosynthesis, the precursor, carrying a tosyloxy leaving-group
was reacted in a nucleophilic substitution reaction with 18F− (K2CO3, cryptand222, DMSO, 125 ◦C, 20 min).
In the second step, the N-Boc protecting group was removed by hydrolysis with 6 N hydrochloric acid
(110 ◦C, 10 min). The radiochemical yield was 10.5 ± 3% and the molar activity was > 355 GBq/µmol.
[18F]FNM (33) had a Ki of 350 nM for the displacement of [3H]TCP from rat brain membranes, which was
comparable to the values reported for memantine [42]. Uptake in brain of living rats was spatially
uniform, with and DUV of 0.3% ID/g at 30 and 60 min post injection.

Others investigated the memantine derivative 1-amino-3-[18F]fluoromethyl-5-methyl-adamantane
([18F]-memantine, 32), which had a high SUV in mouse brain (2.5% ID/g at 60 min), but was only 20%
displaceable in vivo by pretreatment with MK801 [43]. Nonetheless, the authors proceeded to test their
tracer in PET studies on healthy volunteers, finding a rather uniform binding throughout grey matter
(VT 15–20 mL g−1), which somewhat exceeded the accumulation in white matter [44]. They concluded
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that the tracer distribution in living human brain did not match the expected heterogeneous distribution
of NMDA receptors.

A series of N,N′-diphenyl and N-naphthyl-N′-phenyl guanidine derivatives were prepared as
potential PET ligands for the open state of the NMDA receptor, among which the 3-thiomethyl derivative
had a Ki of 2 nM against [3H]MK801 binding (1 nM) in rat brain membranes [45]. Others tested a
series of 80 N′-3-(trifluoromethyl)phenyl derivatives of N-aryl-N′-methylguanidines as displacers of
[3H]MK801 binding, of which several were identified as having suitably high affinity [46]. Among these
candidate tracers, [11C]N-(2-chloro-5-thiomethylphenyl)-N′-(3-methoxy-phenyl)-N′-methylguanidine
([11C]GMOM, 34) showed a VT in the range of 13–17 mL g−1 in baboon brain [47]. While this uptake in
baboon brain was unaffected by MK801 treatment, there was some displacement in rat brain studies,
and pretreatment with the glycine site ligand D-serine tended to increase the binding in vivo.
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Figure 3. Chemical structures of labelled NMDA receptor ligands developed for the MK801/phencyclidine
(PCP)-binding site of the NMDA ion channel.
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The fluorine-18 labelled analogue of GMOM, [18F]PK-209 (35) ([3-(2-chloro-5-(methylthio)
phenyl)-1-(3-([18F]fluoromethoxy)phenyl)-1-methylguanidine] displaced [3H]MK801 from membranes
with a Ki of about 20 nM, similar to that of [11C]GMOM (34) [48]. Preclinical PET studies in non-human
primates showed extensive [18F]PK-209 (35) uptake in brain, slow washout, and rather rapid formation
of radioactive plasma metabolites (only 20% parent at 20 min p.i.) [49]. The VT was rather uniformly
about 11 mL g−1 (including in the cerebellum), and pretreatment with MK-801 (24) (0.3 mg/kg) was
without consistent effect on VT in the three test monkeys. PET studies with [18F]PK-209 (35) in a
group of ten healthy volunteers showed relatively high uptake, peaking at 20 min post injection,
followed by washout with a half-life of about 90 min [50]. SUV images showed some spatial
heterogeneity, with thalamus > striatum, cerebral cortex > cerebellum > white matter. The authors
chose to model its uptake assuming irreversible binding relative to a metabolite-corrected arterial input,
which yielded three parameters: the unidirectional blood–brain clearance K1 (0.45 mL g−1 min−1),
non-specific distribution volume VND (7.8 mL g−1), and Kin, the net blood-brain influx (0.016 mL
g−1 min−1). There was no consistent effect of ketamine challenge on any of the endpoint parameters.
Therefore, the authors were pessimistic about the reliability of the tracer for measuring NMDA receptor
availability in vivo.

Tritiated (N-(2-chloro-5-methylthiophenyl)-N′-(3-methylthio-phenyl)-N′-methyl guanidine)
(CNS-5161) bound to the NMDA receptor open channel with a KD of 6 nM and a Bmax of
330 nM (assuming 10% protein) in rat brain membranes; addition of glycine and glutamate to
the medium increased the apparent affinity without altering the Bmax [51]. Ex vivo studies
showed time-dependent accumulation in rat forebrain regions, attaining a cortex/cerebellum
ration of 1.4, which increased upon NMDA treatment and declined after MK-801 (24) treatment.
Radiation dosimetry of [11C]CNS5161 (36) in humans was similar to that of widely used PET tracers,
and a pilot investigation showed moderate uptake in human brain, peaking at 20 min post injection
(effective dose equivalent: 0.0106 mSv/MBq (0.0392 REM/mCi)) [52]. The corresponding SPECT
tracer N-(1-napthyl)-N′-(3-[123I]-iodophenyl)-N-methylguanidine ([123I]CNS-1261, 37) showed high
selectivity for NMDA receptors in rat brain, and its cerebral uptake was substantially higher on the
side of a middle cerebral artery occlusion [53]. The authors suggested that this result indicated binding
to the open state of NMDA receptors, which predominated in the infarcted and depolarized tissue on
the side of the occlusion. [123I]CNS-1261 (37) uptake showed well-behaved kinetics in brain of healthy
volunteers, attaining a VT ranging from 9 mL g−1 in white matter to 16 mL g−1 in thalamus [54]. In a
rare clinical investigation of NMDA receptors, [123I]CNS-1261 (37) was used to measure occupancy
by ketamine in healthy individuals [55]. Clinical correlation analysis showed an association between
the negative symptom scores of the brief psychiatric rating scale with higher occupancy by ketamine.
In a study conducted in schizophrenia patients stably treated with clozapine, the VT of [123I]CNS-1261
(37) was globally reduced by a third as compared to untreated patients and healthy controls [56].
This could indicate either simple competition of clozapine at NMDA sites, a treatment effect, or a
disease-related down-regulation of binding. Using a binding index normalized to cortical tracer
uptake, Pilowsky et al. found a significant reduction in NMDA binding in the left hippocampus in
drug-free patients with schizophrenia, which was less prominent in patients taking clozapine or typical
antipsychotics [57]. Furthermore, there was a significant inverse correlation between [123I]CNS-1261
binding and the severity of psychotic symptoms in those patients who were treated with typical
antipsychotics. In drug-free patients, there was a significant positive correlation between tracer uptake
in the middle inferior frontal cortex with illness duration. These results are generally in line with the
NMDA hypofunction hypothesis of schizophrenia and suggest that antipsychotics may modulate the
disease-related alterations.

[18F]GE-179 (38) is another bisarylguanidine NMDA receptor blocker, with structural resemblance
to CNS5161 and GMOM. Preliminary blocking studies indicated a Ki of 2 nM for the displacement
of [3H]tenocyclidine from the (phencyclidine, 23) intrachannel binding site [58]. PET studies with
[18F]GE-179 (38) in healthy humans showed good uptake and washout characteristics, and a VT in the
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range of 8–14 mL g−1 in different brain regions of healthy human volunteers [59]. However, the authors
were cautious about attributing its rather homogeneous distribution in brain to NMDA receptor
binding. Indeed, rodent/non-human primate studies with displacement by MK-801 (24) and other
drugs did not give compelling evidence for specific binding [60]. That discrepant finding provoked
a lively discussion in the literature, with reference to the likely confounding effects of isoflurane +

ketamine anesthesia, which is apt to reduce the availability of open channel binding sites in vivo [61].
With that in mind, others tested [18F]GE-179 (38) binding in living pig brain in the context of electrical
stimulation of the hippocampus, while avoiding administration of ketamine as a potential competing
anesthetic [62]. The stimulation apparently provoked an increase in the grey matter VT from about
3.5 mL g−1 to 5 mL g−1, in the absence of any effect on perfusion as measured by [15O]-water PET in the
same session. Autoradiographic studies ex vivo with [18F]GE-179 (38) showed persistent increases in
binding in rat cerebral cortex after traumatic brain injury, which were interpreted to indicate activation
of NMDA receptors in the injured tissue [63].

BIII 277 CL [(−)-(1R,5S,2′′R)-3′-Hydroxy-N-(2′′-methoxypropyl)-5,9,9-trimethyl-6,7-benzomorphan]
with its 6,7-benzomorphan skeleton is a structural analogue of classical pharmacologically important
compounds such as pentazocine, phenazocine, metazocine and N-allylnormetazocine (SKF10,047).
The stereochemistry of receptor SKF10,047 isomers has a large effect on selectivity for different receptor
types. Thus, the (−)-epimer prefers the µ- and κ-opioid receptors, the (+)-epimer binds to the sigma
receptors and both epimers have some affinity for the NMDA receptors. Based on these findings,
BIII 277 CL was developed at the pharmaceutical company Boehringer Ingelheim in the 1990s as a
specific ion-channel blocker of the NMDA receptor-channel complex [64,65]. BIII 277 CL contains a
phenolic hydroxyl group in position-3′and a 2′′-R-methoxypropyl substituent on the nitrogen (N2).

In 2002, Kokic et al. described the preparation of [11C]methyl-BIII 277 CL (39) [66]. The radiosynthesis
was accomplished by O-methylation of the 3′-O-desmethyl precursor (free base of BIII 277 CL) with
[11C]iodomethane (K2CO3, DMSO, under nitrogen, 120 ◦C, 10 min). The tracer was prepared with
a radiochemical yield of 15 ± 5% at the end of synthesis (EOS). The total synthesis took 45–50 min.
The molar activity was 35–70 GBq/µmol and the chemical and radiochemical purity > 98%. Binding
studies with [11C]methyl-BIII 277 CL (39) in rat brain membranes indicated KD of 6 nM and Bmax of
70 nM (assuming 10% protein), but very fast washout from brain of living pig, where the VT was
uniformly close to 1 mL g−1, indicating a lack of specific binding in vivo [66].

Based on the binding of bis(phenylalkyl)amines to the polyamine sites on NMDA subunits
(more specifically the glycine-independent polyamine modulatory site), N-(3-(4-hydroxyphenyl)
butyl-3-(4-[11C]methoxyphenyl)butylamine was tested as a potential PET tracer [67]. This tracer
showed rather uniform binding in rat brain sections but was partially displaceable by spermine and by
divalent cations in vitro.

Ligands for GluN2B Sites of the NMDA Receptor

The general failure of earlier efforts to develop useful NMDA-channel binding PET
tracers inspired a search for ligands targeting the GluN2B subunit of the NMDA receptor.
Representative structures are shown in Figure 4. In one such study, the CP-101,606 analogue
(+/−)threo-1-(4-hydroxyphenyl)-2-[4-hydroxy-4-(p-[11C]methoxyphenyl) piperidino]-1-propanol (40)
was prepared [68]. The ligand had very high binding to the cortex, hippocampus and striatum in rat
brain sections, but absent binding in the cerebellum, as expected for the GluN2B subtype [69].
However, PET examination in an awake rhesus monkey showed completely homogeneous
uptake in living brain. Results of competition binding studies suggested that displacement by
endogenous polyamines might interfere with its binding in vivo. The Glu2B-selective compound
N-(2-[11C]-methoxy)benzyl-4-trifluoromethoxy-phenylamidine (41) showed forebrain-selective binding
in rat brain in vitro, and moderate uptake in living brain (1% ID/g at 40 min), but the brain signal
contained substantial amounts of labelled metabolites, which does not favor quantitation of specific
binding [70].
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Figure 4. Structure of selected radioligands for the GluN2B subunit of NMDA receptors.

In 2010, Wünsch and associates [71] reported the development of a new GluN2B-selective NMDAR
antagonist, 7-methoxy-3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepin-1-ol (WMS-1405), based on
bond cleavage and reconstruction in the piperidine ring of ifenprodil (21). The preparation of
WMS-1405 entailed a six-step reaction sequence starting from 3-methoxy-phenethylamine. The amine was
reacted with four equivalents of tosyl chloride to yield N-(3-methoxyphenethyl)-4-toluenesulfonamide
(pyridine, RT, 1.5 h, 97%), which was treated with ethyl bromoacetate (reflux, 20 h, 94%).
Next, the resulting intermediate was converted to the corresponding free acid with sodium hydroxide
(EtOH, H2O, reflux, 5 h, 91%). Cyclisation of the latter compound with P2O5 gave the desired
7-methoxy-3-benzazepine-1-one derivative as the main product. 9-Methoxy-3-benzazepine-1-one
regioisomer and also 6-methoxy-N-tosyl-1,2,3,4-tetrahydroisoquinoline were isolated from the product
mixture as minor by-products. The 7-methoxy-1H-3-benzazepine-1-one derivative was reduced with
sodium borohydride to the corresponding 1H-3-benzazepine-1-ol compound. The latter compound was
treated with Mg/MeOH to cleave the N-tosyl group and the formed secondary amine was N-alkylated to
the desired WMS-1405 bearing a (CH2)4Ph substituent on the nitrogen.

In 2018, Krämer et al. [72] described the radiosynthesis and the evaluation of WMS-1405,
which was codenamed [11C]Me-NB1 (42a), for the PET imaging of GluN1/GluN2B receptors.
The radiosynthesis was preformed by selective alkylation of the desmethyl precursor
NB1 [3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1,7-diol]. NB1 was prepared by
7-O-demethylation of WMS-1405 (Me-NB1) using boron tribromide in dichloromethane. NB1 was
treated with [11C]iodomethane in the presence of Cs2CO3 as base in N,N-dimethylformamide (90 ◦C,
3 min). The molar activity was 290 ± 90 GBq/µmol at the end of synthesis and the radiochemical
purity was > 99%. In PET imaging studies in rats, [11C]Me-NB1 exhibited a peak SUV value of
four with a slightly faster washout from cerebellum than in forebrain structures. Blockade with
various doses of eliprodil indicated a dose of 1.5 µg/kg at 50% of maximal occupancy (ID50), and a
specific binding of about 50% of the total uptake. Various lines of evidence indicate insignificant
interaction of the tracer with σ-receptors in vitro, whereas treatment with the σ1-receptor agonist



Molecules 2020, 25, 4749 11 of 42

(+)-pentazocine abolished the specific binding [11C]Me-NB1 (42a) in living rats, indicating an indirect
effect of σ1-receptors on [11C]Me-NB1 binding. Very recently, Haider et al. [73] described the separation
of the NB1 enantiomers by chiral high-performance liquid chromatography. Radiolabelling of the
enantiopure precursors ((R)-NB1 and (S)-NB1) was achieved analogously to the method described
earlier by the Ametamey-group for racemic [11C]Me-NB1 [72]. In addition to the radiochemical and
radiopharmaceutical investigations, the absolute configuration of the reference standards (R)-Me-NB1
as well (S)-Me-NB1 was determined by X-ray crystallography and the stereostructure of the precursors
was confirmed by circular dichroism spectroscopy. The in vivo results of the two enantiomers revealed
for the R-enantiomer, (R)-[11C]Me-NB1, a high and a heterogenous accumulation in GluN2B-rich
forebrain regions and dose-dependency of blockade by eliprodil. In contrast, the S enantiomer,
(S)-[11C]Me-NB1, exhibited a homogenous distribution and no dose-response when eliprodil was
applied as a GluN2B blocker.

Seeking to develop a fluorine-18 labelled analogue of [11C]Me-NB1 due to the inherently
brief physical half-life of carbon-11, which limits its use only to centers with an on-site cyclotron,
the Ametamey group evaluated a series of fluorinated analogues of Me-NB1 [74–76]. Two fluorine-18
labelled compounds, [18F]OF-NB1 (42b) and [18F]PF-NB1) (42c) (Figure 4) emerged as promising
radioligands for imaging the GluN2B receptor. The binding affinity (KD) values for OF-NB1 and PF-NB1
towards the GluN2B subunits were 10.4 ± 4.7 nM and 10.4 ± 3.9 nM, respectively. Fluorine-18 labelling
of both compounds was accomplished via copper-mediated radiofluorination in good radiochemical
yields and molar activities ranging from 88–228 GBq/µmol using appropriate pinacol boronic ester
precursors. Both radioligands displayed a heterogeneous and specific binding in GluN2B subunit-rich
brain regions such as the cortex, striatum, hypothalamus and hippocampus in autoradiography
experiments. PET imaging studies in Wistar rats showed a similar heterogeneous uptake. For both
radioligands, a dose-dependent blocking effect was observed with CP-101,606 and resulted in an ID50

of 8.1 µmol/kg for [18F]OF-NB1 (42b) and 31 µmol/kg for [18F]PF-NB1 (42c).
Ro 04-5595 is a close structural analogue of the non-narcotic analgesic Versidyne [77] (Methofoline,

Ro 4-1778/1). Both compounds are tetrahydroisoquinoline derivatives first synthesized in the early 1960s
at Hoffmann-La-Roche. Versidyne, which has the same analgesic efficacy as codeine, had an indication
for treatment of postoperative pain, but was withdrawn from the pharmaceutical market due to its
opthalmic side effects. Ro 04-5595 contains a free phenolic hydroxyl group in position-7 instead of methoxy
(Versidyne). In 2019, Jakobsson et al. [78] reported the synthesis of a new subtype selective GluN2B NMDA
radiotracer, 1-(4-chlorophenethyl)-7-hydroxy-6-methoxy-2-[11C]methyl-1,2,3,4-tetra hydroisoquinoline
([11C]Ro 04-5595, 43). The precursor for the radiosynthesis was N-desmethyl-Ro-04-5595
(1-(4-chlorophenethyl)-7-hydroxy-6-methoxy-1,2,3,4-tetrahydro isoquinoline). N-Methylation was
performed with [11C]iodomethane in DMF (40 ◦C, 1 min) by application of the captive solvent method
of Wilson et al. [79]. ([11C]Ro 04-5595, 43) was synthesized with a radiochemical yield of 13 ± 3%,
a radiochemical purity of 99%, and a molar activity of 12–43 MBq/nmol. The new tracer (43) showed
a Ki of 2 nM relative to [3H]ifenprodil at GluN2B receptors in rat brain slices [78]. In brain of living
rats, the tracer rapidly obtained a peak SUV of about 0.7, followed by rapid washout (t1/2 20 min),
which did not indicate much in the way of specific binding in vivo.

Enantiomers of (44) [S-Methyl-11C](±)-7-methoxy-3-(4-(4-(methylthio)phenyl)butyl)-2,3,4,5-
tetrahydro-benzo[d]azepin-1-ol ([11C]GluN2B-SMe) were prepared and tested as GluN2Bsubunit
ligands [80]. The compound exhibited 2 nM KD for GluN2B receptors expressed in mouse fibroblasts.
Of special interest was their demonstration that the ligand did not interact with σ1 receptors, which has
been a limitation of several GluN2B ligands, including a series of tetra-hydro-1H-3-benzazepines [81]
and fluorinated benzo[7]annulen-7-amines [82]. No radiolabelled metabolites of [11C]GluN2B-SMe (44)
were detected in rat brain at 30 min after tracer injection, and preblocking with ifenprodil decreased
the cerebral SUV from 3 to about 0.5. Of the two enantiomers, (S)-[11C]NR2B-SMe (44) seemed to have
a somewhat superior binding signal in brain.
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The benzamidazole 2-{[4-(4-iodobenzyl)piperidin-1-yl]methyl}benzimidazol-5-ol showed high
affinity for the GluN2B subunit, with a Ki of 7 nM against [3H]ifenprodil binding to rat cortical synaptic
membranes [83]. When labelled with iodine-125 it showed excellent properties for autoradiography
in vitro, but only moderate cerebral uptake in rats (0.5% ID/g at 30 min post injection). Its binding
in vivo was about 50% displaceable by treatment with the potent NR2B antagonist Ro 256,981.

The N-benzyl amidine derivatives 2-[11C]methoxybenzyl) cinnamamidine ([11C]CBA, 45),
N-(2-[11C]methoxybenzyl)-2-naphthamidine ([11C]NBA, 46), and N-(2-[11C]methoxybenzyl)quinoline-
3-carboxamidine ([11C]QBA, 47) were tested as PET radioligands for GluN2B binding sites [84].
The three compounds were strongly displaced from rat brain sections by addition of the GluN2B
blocker CP-101,606, and by spermine and Zn2+, but were unaffected by σ-ligands. However, the three
tracers showed only moderate uptake in living rodent brain, attaining an SUV of about 0.33 at ten
minutes, but showing little sign of specific binding in vivo.

Others have prepared an 18F-labelled potent antagonist, 2-((1-(4-[18F]fluoro-3-methylphenyl)-1H-
1,2,3-triazol-4-yl)methoxy)-5-methoxy-pyrimidine ([18F]N2B-0518, 48) as a ligand for PET imaging
of the GluN2B subunits [85]. Autoradiography with [18F]N2B-0518 (48) gave excellent delineation
of GluN2B sites in rat brain, with highest binding in frontal cortex and hippocampus, intermediate
binding in striatum and thalamus, and nearly absent specific binding in cerebellum. Autoradiography
in non-human primate brain revealed a laminar distribution in cortex, with highest binding in the
superficial and deep layers. Despite these promising results in vitro, biodistribution studies in mice
showed very rapid washout from brain, and little evidence of specific binding.

N-((5-(4-fluoro-2-[11C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamin ([11C]HACH242, 49)
had a Ki of 12 nM relative to the displacement of [3H]ifenprodil from rat brain membranes [86]. Although
its binding was only 30% displaceable by Ro25,6981 in mouse brain sections, binding measured ex
vivo was consistently two-fold higher in the forebrain than in cerebellum, suggesting specific binding.
PET imaging with [11C]HACH242 (49) was undertaken in a group of three nonhuman primates [87].
There was no consistent effect on the cerebral uptake upon treatment with radiprodil, which is a
GluN2B negative allosteric modifier expected to reduce ligand binding to GluN2B sites. The authors
did not attempt kinetic modelling but noted slower washout in frontal cortex (t1/2 circa 90 min) than
in cerebellum (t1/2 circa 60 min), which they deemed consistent with a specific binding component
in cortex.

Glycine Binding Site on the GluN1 Subunit of NMDA Receptors

A series of 2-carboxytetrahydroquinolines were screened as ligands for the glycine-binding
site of the GluN1 subunit of the NMDA receptor [88] by measuring the displacement of
[3H]-5,7-dichlorkynurenic acid from rat brain membranes. Others prepared [11C]-3-[2-[(3-
methoxyphenylamino)carbonyl]ethenyl]-4,6-dichloroindole-2-carboxylic acid ([11C]3MPICA, 50) as a
potential PET radiotracer for the NMDA receptor glycine site [89]. See Figure 5 for structures.
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The tracer had low uptake, attaining a rather uniform distribution of 0.15% ID/g at
60 min; the authors reported 25–50% displacement by pretreatment with non-radioactive 3MPICA,
but attributed this to effects related to ligand binding at warfarin sites on serum albumin, rather than
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indication of specific binding. Intravenous co-injection of the 4-hydroxyquinolone tracer [11C]L-703,717
(51) along with warfarin increased the tracer uptake in mouse cerebellum, apparently due to competition
against warfarin binding sites on plasma albumin [90]. Other mouse studies with [11C]L-703,717
(51)/warfarin co-injection showed selective labelling of the glycine binding site of a cerebellum-specific
NMDAR ex vivo, but showed only telencephalic binding when measured in vitro, irrespective of the
presence of the ε3 subunit responsible for the high cerebellar binding in vivo [91]. The discrepancy was
attributed to regional differences in the brain concentration of D-serine, which is absent in cerebellum
due to the high local activity of D-amino acid oxidase.

NMDA Allosteric Modulators

N,N-dimethyl-2-(1H-pyrrolo[3,2-b]′′pyridin-1-yl)acetamide allosteric modulator ligands of the
GluN2B subunit were prepared as potential PET tracers, among which [11C]N2B-1810 (52) showed
“moderate” displaceable autoradiographic binding in rat telencephalon, and absent binding in
cerebellum [92]. However, the tracer showed low (0.2% ID/g) and spatially uniform uptake in brain of
living rats.

2.1.2. AMPA Receptors

Formerly known as quisqualate receptor, the AMPA receptor is so-named for its selective agonist,
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (5). For relevant structures, see Figure 6.
The AMPA receptor is a ligand gated ion channel composed of four types of subunits, designated
GluA1, 2, 3, and 4 (for review, [93]). Like the NMDA receptor, AMPA receptors are dimers of
dimers, composed of a GluA2 dimer and one of the other dimers; changes in their composition,
functional properties and trafficking across development critically determine synaptic plasticity [94].
Unlike NMDA receptors, each subunit of the AMPA receptor can bind its agonist, and pore opening
requires binding to two or more subunits. The GluA2 subunit imparts to the channel a low permeability
to Ca2+, so the open channel only supports Na+/K+ flux, and furthermore a voltage-dependent binding
of polyamines to the GluA2 subunit modulates the K+ current. AMPA activation acts in concert with
NMDA receptors to mediate long-term synaptic potentiation, whereby initial depolarization due
to AMPA channel opening expels the Mg2+ that would otherwise block NMDA receptor-mediated
currents. This allows an influx of Ca2+ that ultimately upregulates AMPA expression to increase the
sensitivity of the membrane to glutamate.

5-Fluorowillardiine (53) is a natural product from the Willard acacia that acts as an excitotoxin
in vivo. Rat brain membrane binding studies with (S)-[3H]-5-fluorowillardiine indicate a KD of
7 nM (in the presence of KSCN) for AMPA receptors, and a Bmax of about 120 nM (assuming
10% protein) [95]. Low concentrations of NBQX, domoic acid (generally considered a kainate
ligand), AMPA, and glutamate displace its high affinity binding. Autoradiographic Bmax of
(S)-[3H]-5-fluorowillardiine ranged from 60 nM in thalamus to 440 nM in hippocampus. There was
a 60% decline in (S)-[3H]-5-fluorowillardiine binding in cortex of rats with end stage hepatic failure,
and parallel reductions in [3H]kainic acid binding sites, whereas NMDA binding sites labelled with
[3H]MK-801 were unaffected [96]. Even if fluorowillardiine (53) and kainic acid (4) were available as
PET tracers of high molar activity, their excitoxicity might preclude their use as imaging agents in vivo.

The first 5H-2,3-benzodiazepine derivative, (5-ethyl-1-(3,4-dimethoxyplenyl)-7,8-dimethoxy-4-
methyl-5H-2,3-benzodiazepine) was prepared by Körösi and Láng [97] from 2-benzopyrylium salt via a
monohydrazine-type intermediate. The 5H-2,3-benzodiazepine scaffold was formed in a base-catalyzed
cyclocondensation. 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI-52466,
54) [98–100], GYKI-53773 (55, talampanel) and GYKI-53784 (56) are structurally 2,3-benzodiazepine
derivatives that represent selective non-competitive AMPA antagonists [101,102]. GYKI52466 (54), the first
representative of this class of compounds, was first synthesized at the Institute for Drug Research
(Budapest, Hungary, Gyógyszerkutató Intézet) and soon became the pharmacological standard of the
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field. The non-competitive mechanism of its action is important because these types of compounds act
independently from glutamic acid (1), which is always present under endogenous conditions.
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2,3-benzodiazepine scaffold.

[11C]- and [18F]-labelled N-acetyl-1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives
(57, 58, 59) were prepared as potential AMPA receptor ligands for PET imaging [103] based on
findings reported by Gitto. However, there are no reports on binding properties in vivo for
these compounds. Very recently, [11C]-labeled 4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-
2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide ([11C]AMPA-1905, 60) was prepared as non-competitive
AMPA antagonist ligand for PET imaging [104]. [11C]AMPA-1905 (60) was prepared from an
N-Boc protected phenolic precursor, applying a one-pot two-step procedure. The precursor was
reacted with [11C]iodomethane in N,N-dimethylformamide in the presence of tetrabutylammonium
hydroxide (TBAOH) (80 ◦C, 5 min), followed by deprotection with 6 N HCl (80 ◦C, 5 min).
The labelling was performed with a radiochemical yield of 22–28%, >99% radiochemical
purity, and molar activity of 37 GBq/µmol. Its uptake in mouse brain was about 0.5%
ID/g at 30 min post injection, with a rather uniform distribution to autoradiography ex vivo.
Blocking studies with talampanel (55), an orally active AMPA antagonist, resulted in globally
increased cerebral uptake, a finding that often indicates confounding effects of ligand displacement
from peripheral binding sites. Very recently, Miyazaki et al. [105] developed a novel radioligand:
2-(2,6-difluoro-4-(2-(N-[11C]methylsulfonamido)ethylthio)-phenoxy)acetamide ([11C]K-2) for the PET
imaging of AMPA receptors in the living human brain. The new radiotracer was prepared from a
secondary amine type precursor (PEPA, K-1) with [11C]iodomethane in DMF (0.5 M NaOH, 80 ◦C,
5 min) in a simple radiosynthesis in high yield. [11C]K-2 is a potential tool to examine the role of AMPA
receptors in neuropsychiatric disorders.

2.1.3. Kainate Receptors

The kainate receptors are ionotropic non-NMDA receptors, which are selective to activation by
the algal excitotoxic compound kainic acid (4, Figure 1). Kainate (4) is the most toxic of the excitatory
amino acids, with a rank order of potency upon injection to the hippocampus kainate > ibotenate >

NMDA > dihydrokainate > d,l-homocysteate > l-cysteate > l-aspartate > l-glutamate [106]. As such,
kainic acid is a useful tool for neurochemical lesion studies. Like the other ionotropic glutamate
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receptors, the kainate receptor is a homomeric or heteromeric tetramer assembled from five possible
subunits [107]. The ion channel of the kainate receptor is permissive to Na+/K+ flux, but the receptor
seems also to possess coupling with a G-protein cascade, which is an unusual property for ionotropic
receptors. Native kainate receptors expressed on neurons mediate slow excitation, distinct from the
rapid depolarizations mediated by NDMA and AMPA receptors [108]. This property may be critically
involved in encoding of temporal information and modulation of local and network spike activity,
under the influence of auxiliary proteins like neuropilin and tolloid-like protein 1 (Neto1).

Autoradiography with [3H]kainic acid showed abundant specific binding in rat brain,
which peaked at postnatal day 20 and declined slightly in adulthood [109]. The binding site was
50% more abundant in striatum than in cortex or cerebellum. Mean receptor densities labelled
with [3H]kainic acid in rat telencephalon membranes were about 200 nM (assuming 10% protein),
which is roughly similar to the corresponding concentrations of NMDA receptors labelled with
[3H]MK-801, and about two-fold higher than the [3H]AMPA binding [110]. Displacement studies
with the excitotoxin L-beta-oxalyl-amino-alanine (L-BOAA) (which is responsible for neurolathyrism)
showed regional differences in the displacement of [3H]kainic acid binding in hippocampus, with lowest
affinity in regions with high affinity for the shellfish excitotoxin domoic acid [111]. These findings
indicate the presence of pharmacological heterogeneity of kainate receptors, despite the rather uniform
displacement of [3H]kainate by the natural agonist glutamate, which showed an in vitro Ki of 1 µM
across all hippocampal regions. So far, there has been no success in developing kainate receptor ligands
with suitable properties for molecular imaging in vivo.

2.2. Metabotropic Glutamate Receptors (mGluRs)

The metabotropic glutamate receptors (mGluRs) are not ligand-gated ion channels but are typical
members of the class C family of G-protein coupled receptors (GPCRs). The class C receptors consist
of an N-terminal signal sequence that guides insertion into the plasma membrane, a hydrophilic
extracellular agonist-binding domain that contains several cysteine residues, the seven transmembrane
domains, and a C-terminal sequence dangling in the cytoplasm. Glutamate binding at mGluRs
initiates dissociation of the intracellular heterotrimeric complex of GTP-binding protein subunits,
which ultimately alters various metabolic processes in the post-synapatic neuron. There are eight known
mGluR genes, which fall into three categories based on their sequence homology, i.e., the predominantly
post-synaptic Group I (mGluR 1 and 5), the pre-and post-synaptic Group II (mGluR 2 and 3), and the
predominantly presynaptic Group III (mGluR 4, 6, 7, and 8) [7]. The mGluRs are functional dimers in
which the two “Venus flytrap” N-terminal domains have an open, inactive state, which converts to a
closed state upon binding glutamate or other agonists; thus, the mGluRs have three functional
states: open-open, open-closed, and closed-closed. The agonist-induced closure propagates a
conformational change through the cytsteine-rich domain to the heptahelical transmembrane domain.
Here, the transmembrane loops impart specificity for G-protein coupling, and present binding sites
for allosteric modulators and phosphorylation sites for G-protein receptor kinases. Ultimately,
agonist-induced conformational change propagates to the intracellular side, coupling to (inter alia)
Gq/G11 to activate phospholipase Cβ and various downstream pathways (Group I mGluRs) or Gi/o
proteins to inhibit adenylate cyclase or regulate ion channels (Group II and III mGluRs). The story
of mGluRs is complicated further by possibilities for alternative splicing, and for protein–protein
interactions through the C-terminal sequences, notably with Homer proteins of the post-synaptic
density. The C-terminus of mGluR3 interacts with calmodulin and presents a phosphorylation site for
protein kinase A [112].

The mGluRs interact importantly with ionotropic glutamate receptors. Notably, activation of
protein kinase C by (Group I) mGluR5 participates in the long-term potentiation of ion currents
mediated by NMDA receptors in the synapses between mossy fibers and CA3 pyramidal neurons
of the hippocampus [113]. NMDA receptors in cerebral cortex undergo an activity-dependent
developmental shift in their subunit composition from GluN2B in the first postnatal week of rats to
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predominantly GluN2A, which have faster kinetics; this shift requires co-activation of the mGluR5
and NMDA receptors [114]. The mGluR3 antagonist β-NAAG blocked the establishment of long-term
depression in the dentate gyrus, whereas treatment with the putative endogenous agonist NAAG
down-regulated long-term potentiation [115]. Treatment of rats with the (Group II) mGluR2/3 agonist
LY379268 rescued the disruption of NMDA receptors induced by treatment with MK-801, and enhanced
NMDA-provoked inward currents in rat brain slices [116]. The two receptors did not co-precipitate,
but mGlu2/3R-activation of the Akt/GSK-3β pathway mediated the observed effects on NMDA
receptors. On the other hand, treatment with LY379268 did not rectify working memory impairments
in rats treated with MK801 (24) [117].

The functional association of mGluRs with NMDA receptors may present them as potential
targets for the treatment of schizophrenia. Indeed, there have been tests of various mGluR ligands
and allosteric modulators in animal models of schizophrenia and some such compounds have entered
clinical trials [16]. Various lines of evidence imply that mGluR5 may also present a therapeutic
target in Alzheimer’s disease [118]. In particular, mGluR5 seems to be a receptor of the neurotoxic
amyloid-β42 peptide, and genetic deletion of mGluR5 interfered with the progression of amyloid
deposition and mTOR phosphorylation and rescued cognitive impairment in a mouse model of
Alzheimer’s disease [119]. The mGluRs are also potential therapeutic targets in diverse other
conditions, including Parkinson’s disease [120], Huntington’s disease [121], fragile-X syndrome [122],
seizure disorders [123,124], and substance abuse [125].

2.2.1. Group I (mGluR1) Metabotropic Glutamate Receptors

(3-Ethyl-2-[11C]methyl-6-quinolinyl)(cis-4-methoxycyclohexyl)methanone, known as [11C]JNJ16567083
(61, Figure 7), shows high affinity for mGlu1 receptor (Ki = 0.87 nM) in rats and much lower affinity
for the mGlu5 receptor (Ki = 2.4 µM). The radiotracer containing a 11CH3 group in position-2 of the
quinoline scaffold was prepared from the corresponding 2-trimethylstannyl precursor. The reaction of
the precursor with [11C]iodomethane under catalytic conditions (Pd2(dba)3, P(o-tolyl)3, DMF, 120 ◦C,
5 min) resulted in the radioligand with a radiochemical yield of 47 ± 17% and molar activity of
22.4 ± 8.4 GBq/µmol (607 ± 228 Ci/mmol). Dynamic rat PET studies with 61 revealed persistently
two-fold higher uptake in the cerebellum than in forebrain regions, but this heterogeneity was blocked
by treatment with an mGluR1 antagonist, whereas the mGluR5 antagonist was without any such
effect [126].

N-cyclohexyl-6-{[N-(2-methoxyethyl)-N-methylamino]methyl}-N-methylthiazolo[3,2-a]-benzimidazole-
2-carboxamide (YM-202074) had selectivity and high affinity for mGluR1 (Ki 5 nM), and autoradiography
with [11C]YM-202074 (62) showed ten-fold higher binding in the rat cerebellum than in pons [127].
However, HPLC analysis of rat brain extracts showed considerable quantities of labelled
radiometabolites at 30 min post injection. While pretreatment with JNJ16259685 globally displaced the
specific binding, the uptake was relatively low, and the metabolite profile was not encouraging for its
further use.

[O-methyl-11C]dimethylamino-3-(4-methoxyphenyl)-3H-pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-
4-one ([11C]MMTP, 63) showed a Ki of 8 nM for mGluR1 in vitro [128], and was tested further using
autoradiography in human brain sections, where it showed high specific binding in cerebellum [129].
PET studies in monkey brain showed high uptake in cerebellum, attaining 2% ID/g within minutes of
injection, followed by rapid washout; the cerebellar binding was two-fold higher than in telencephalon.

[18F]MK-1312 was synthesized by the reaction of the chloro precursor with [18F]KF using
microwave heating. Saturation binding studies with [18F]MK-1312 (64) indicated a KD of 0.5 nM and a
Bmax of 53 nM in rhesus monkey cerebellum membranes, versus a KD of 1 nM and Bmax of 82 nM in
human cerebellum [130]. PET recordings with [18F]MK-1312 (64) in rhesus monkey showed peak SUV
of 2.5% ID/g at 20 min, followed by washout; two-tissue compartment kinetic analysis indicated rapid
unidirectional clearance to cerebellum (K1; 0.33 mL g−1 min−1) and moderately fast association kinetics
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to its binding sites in living brain (k3; 0.03 min−1). Self-blocking studies indicated 50% occupancy at
brain mGluR1 with a plasma concentration of 76 nM.

The non-competitive mGluR1 antagonist [18F]EFQ (65) (3-ethyl-2-[18F]fluoroquinolin-6-yl-
(4-methoxycyclohexyl)methanone) exhibits a Ki of 2 nM for receptors in rat brain membranes, but only
25 nM Ki for cloned human receptors [131]. The tracer showed displaceable binding in rat cerebellum
ex vivo, but rather homogeneous uptake (VT 2.5–3.7 mL g−1) in a PET examination of baboon brain.
This might have been due to rapid metabolism in baboon, where only 10% untransformed tracer
remained in plasma at 15 min post injection, or possibly reflected insufficient binding affinity in humans
and non-human primates. The two enantiomers of [18F]EFQ (65) were prepared and tested in mice and
rats [132]. At ten minutes after injection of [18F]cisEFQ (66), the brain concentration was 3% ID/g in
cerebellum and 2% ID/g in telencephalon, whereas [18F]transEFQ (67) showed relatively little uptake.
The cerebral uptake of [18F]cisEFQ (66) was blocked by pretreatment with cisEFQ or JNJ16259685,
but was unaffected by pretreatment with the mGluR5 ligand ABP688. Ex vivo autoradiography
suggested relatively high binding in the thalamus. The most lipophilic of its main radiometabolites in
mouse plasma constituted up to 20% of the brain activity, which is unfavorable for absolute quantitation
of the PET signal.

N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-[11C]methoxy-N-methyl-benzamide
([11C]ITMM, 68), which was derived from the a potent negative allosteric modulator of mGluR1, has a
KD of 13.6 nM in vitro [133]. Analysis of the uptake of high molar activity [11C]ITMM (68) in rats with
90 min PET recordings gave VT ranging from 2 mL g−1 in pons to 8 mL g−1 in striatum and 15 mL g−1

in cerebellum, calculated relative to a metabolite-corrected input function [134]. In a preclinical stroke
study, declining [11C]ITMM (68) binding was indicative of the extent and progression of the ischemic
brain injury [135].Molecules 2020, 25, x 17 of 40 
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The mGluR1 ligand 6-[1-(2-[18F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinolone
([18F]FPTQ, 73) was prepared for PET studies [136], having shown high selectivity and affinity
for human (IC50 = 3.6 nM) and murine (IC50 = 1.4 nM) mGluR1 in vitro. [18F]FPTQ (73)
showed good binding properties in vitro, with 20-fold higher binding in mouse cerebellum
than in pons, and no displacement by mGluR5 antagonists. PET examination showed rapid
influx into cerebellum, attaining 2.5% ID/g within minutes, followed by a rapid washout
(t1/2 20 min), with complete blockade upon treatment with MPEP (74). Less than 10% of plasma
radioactivity was unmetabolized tracer at 30 min post injection, when only 67% of cerebellar
activity was unmetabolized parent. A structurally similar compound bearing a triazole moiety,
1-(2-[18F]fluoro-3-pyridyl)-4-(2-isopropyl-1-oxo-isoindoline-5-yl)-5-methyl-1H-1,2,3-triazole ([18F]FPIT,
71) showed binding in rat and monkey brain sections at a concentration of only 8 pM, although the
saturation binding parameters were not presented [137]. The tracer showed slower brain kinetics in
living rats, with a BPND of two in cerebellum calculated relative to cerebral cortex. However, the authors
did not report on the metabolic stability of [18F]FPIT (71) in plasma, or the presence of labelled
metabolites in the brain.

PET studies with 4-[18F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-
methylbenzamide ([18F]FITM, 69) showed progressive accumulation of radioactivity to at least
60 min post injection in telencephalic structures, when there was a 15:1 ratio of cerebellum relative
to pons activity [138]. At 60 min post injection, 25% percent of plasma radioactivity remained as the
parent tracer, and only traces of labelled metabolites were present in mouse brain, all of which favors
quantitation of the PET signal. Dynamic PET recordings with [18F]FITM (69) showed faster kinetics in
monkey brain, where peak radioactivity concentration (3.5% ID g−1) occurred at 30 min post injection.
The ratio of cerebellum to pons activity was about 4:1 in monkey, but there was complete displacement
of specific binding by pretreatment with JNJ16259685. Compartmental analysis indicated a VT ranging
from 2.4 in pons to 11.5 mL g−1 in cerebellum. The microparameters from a two-tissue compartment
model indicated good blood–brain clearance (K1; 0.14 mL g−1 min−1) and rapid association to its
binding sites in living brain (k3; 0.13 min−1).

In the first clinical application of [11C]ITMM PET (68), mGluR1 availability was compared in
a patient with type VI spinocerebellar ataxia versus a group of healthy controls [139]. Relative to
the pons, which is said to be devoid of mGluR1, the BPND of [11C]ITMM (68) in cerebellum ranged
from two in the flocculus to six in the vermis of the healthy controls, and was reduced by 50% in the
patient, reflecting the degeneration of Purkinje cells. A subsequent comparison of [11C]ITMM (68)
and conventional [18F]FDG in a group of 12 patients with cerebellar ataxias gave similar sensitivities
for disease detection, but the mGluR1 tracer BPND correlated better with clinical scores, suggesting a
better depiction of the pathology [140]. A [11C]ITMM (68) PET study in a group of ten Alzheimer’s
disease patients and age-matched healthy elderly controls did not indicate any AD-related difference in
BPND anywhere in brain, nor did the binding in patients correlate with mini-mental state examination
(MMSE) scores [141]. A comparison of 15 young (aged 26 years) and 24 elderly (aged 70 years) healthy
controls did not reveal any group differences in [11C]ITMM (68) BPND, nor were there any differences
between men and women of either age group [142].

A comparison of N-[4-[6-(isopropylamino)-pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[11C]-
methylbenzamide ([11C]ITDM, 70) with [11C]ITMM (68) in nonhuman primates showed generally
higher cerebral uptake for the former compound [143]. Both compounds had favorable metabolite
profiles, with 60% parent fraction remaining at 15 min. However, the relative VTs between regions
scarcely differed between the two tracers. Reference tissue quantitation obviously presents logistic
advantages for any PET tracer, but its valid use depends on having a reference region nearly devoid of
specific binding. Blocking studies with YM-202074 showed dose-dependent displacement of [11C]ITDM
(70) in brain of living mice, including −36% in pons [144]. Indeed, Lassen graphical analysis relative
to VT gave a VND of 1.4 mL g−1, thus indicating a BPND of about five in cerebellum and calling into
question the validity of pons as a non-binding reference region. That study was notable for comparing
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the non-invasive (image derived) input function with population-based metabolite correction, and a
serial arterial sampling approach, which showed nearly identical VT results.

A [11C]ITDM (70) study in mice in which VT was calculated relative to an image-derived input
function showed an approximately 20% decline across various brain regions in aged mice (16 months)
compared to younger mice (6 months) [145], which stands in contrast to the [11C]ITMM (68) findings
across human aging, cited above. In that same rodent study, examination of the Q175DN mouse model
of Huntington’s disease showed persistently 17% higher [11C]ITDM (70) VT compared to healthy wild
type mice, indicating high levels of mGluR1 availability during the course of disease progression.
In the A53T transgenic synclein model of Parkinson’s disease, deficits in motor behavior first manifest
at 6–8 months of age, coincident with the start of nigrostriatal degeneration [146]. In a multitracer
PET study of these A53T mice, there was over-expression of striatal mGluR1 at four months of age as
measured by [11C]ITMM (68) PET, followed by a rapid decline at eight months, and nearly complete
disappearance in elderly mice compared to non-carrier controls. Strikingly, the motor deficits in
the transgenic mice correlated better with the loss of mGluR1 binding sites than with nigrostriatal
degeneration measured with the dopamine transporter ligand [18F]FE-PE2I (72). The transgenic
mice showed no abnormality in striatal binding of the selective mGluR5 [11C]ABP688 (82), which is
discussed in detail in the following section. In a longitudinal [11C]ITDM (70) PET study of rats with
pilocarpine-induced seizures, there was an acute 33% decline in the anterior part of the cerebellum,
and a 20% decline after three weeks that was confined to the thalamus [147]. The mGluR1 findings
were thus fairly restricted as compared to microglia PET examinations in the same mice with a TSPO
ligand, which was nearly doubled at one and three weeks after the seizures.

2.2.2. Group I (mGluR5) Metabotropic Glutamate Receptors

Early efforts towards developing mGluR5 PET ligands focused on diaryl alkynes, such as
2-methyl-6-(phenyl-ethynyl) pyridine (MPEP, 74) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl] pyridine
(MTEP, 75). Fore structures, see Figure 8. Autoradiographic studies with 3-[3H]methoxy-5-(pyridin-2-
ylethynyl) pyridine ([3H]MPEPy) showed a KD of 4 nM for binding to rat cortical membranes; the Bmax

ranged from 21 nM in hypothalamus to 83 nM in striatum, and specific binding was nearly absent in the
rat cerebellum [148]. However, PET studies with 3-[11C]methoxyPEPy (76) showed little cerebral uptake
in anesthetized baboons or rats [149]. Having excluded effects of anesthesia, the authors speculated
that failure of the tracer in vivo was due to P-glycoprotein-mediated efflux. Ametamey et al. described
the synthesis and biodistribution of 2-[11C]methyl-6-(3′-fluoro-phenylethynyl)-pyridine ([11C]M-FPEP,
77), which obtained a rather homogeneous distribution in living rat brain [150]. [11C]MPEP (78)
showed slightly higher uptake in rat cerebral cortex than in cerebellum at 60 min post-injection,
and six-fold higher uptake in olfactory bulb, which was partially blocked by pretreatment with MPEP
(74) (10 mg/kg) [151]; they found globally lower uptake of the methoxyphenyl derivative [11C]M-MPEP
(79) and with [11C]methoxyPyEP (76). Blocking tended to increase globally the cerebral uptake of
these tracers, suggesting displacement of the ligands from peripheral binding sites in rat. M-MTEB
and F-MTEB showed sub-nM Ki against mGluR5 binding sites in vitro. The corresponding PET tracers
[11C]M-MTEB (80) and [18F]F-MTEB (81) had rapid uptake in brain of living monkey, attaining SUV
values as high as three, which was 75% displaced by pretreatment with MTEP (75) (1 mg/kg). However,
displacement and autoradiographic saturation binding studies indicated an abundant binding density
in rhesus cerebellum (Bmax 24 nM), albeit less than in striatum (63 nM). This apparent species difference
indicates that reference tissue quantitation is unsuitable for PET studies of mGluR5 in primate brain.



Molecules 2020, 25, 4749 20 of 42

Molecules 2020, 25, x 19 of 40 

 

Bmax ranged from 21 nM in hypothalamus to 83 nM in striatum, and specific binding was nearly absent 

in the rat cerebellum [148]. However, PET studies with 3-[11C]methoxyPEPy (76) showed little 

cerebral uptake in anesthetized baboons or rats [149]. Having excluded effects of anesthesia, the 

authors speculated that failure of the tracer in vivo was due to P-glycoprotein-mediated efflux. 

Ametamey et al. described the synthesis and biodistribution of 2-[11C]methyl-6-(3′-fluoro-

phenylethynyl)-pyridine ([11C]M-FPEP, 77), which obtained a rather homogeneous distribution in 

living rat brain [150]. [11C]MPEP (78) showed slightly higher uptake in rat cerebral cortex than in 

cerebellum at 60 min post-injection, and six-fold higher uptake in olfactory bulb, which was partially 

blocked by pretreatment with MPEP (74) (10 mg/kg) [151]; they found globally lower uptake of the 

methoxyphenyl derivative [11C]M-MPEP (79) and with [11C]methoxyPyEP (76). Blocking tended to 

increase globally the cerebral uptake of these tracers, suggesting displacement of the ligands from 

peripheral binding sites in rat. M-MTEB and F-MTEB showed sub-nM Ki against mGluR5 binding 

sites in vitro. The corresponding PET tracers [11C]M-MTEB (80) and [18F]F-MTEB (81) had rapid 

uptake in brain of living monkey, attaining SUV values as high as three, which was 75% displaced 

by pretreatment with MTEP (75) (1 mg/kg). However, displacement and autoradiographic saturation 

binding studies indicated an abundant binding density in rhesus cerebellum (Bmax 24 nM), albeit less 

than in striatum (63 nM). This apparent species difference indicates that reference tissue quantitation 

is unsuitable for PET studies of mGluR5 in primate brain. 

Based on these findings, Ametamey et al. developed (3-(6-methyl-pyridin-2-ylethynyl)-

cyclohex-2-enone-O-[11C]-methyl-oxime) ([11C]ABP688, 82), as a noncompetitive and highly selective 

antagonist molecular imaging of mGluR5 [152]. Saturation binding studies indicated a KD of 2 nM 

and Bmax of 23 nM (assuming 10% protein) in rat brain membranes. Initial small animal PET studies 

showed nearly four-fold higher uptake in rat hippocampus and striatum of wild type mice compared 

with mGluR5 knockout mice, thus confirming its specificity in vivo. [11C]ABP688 (82) has found 

application in numerous preclinical studies. PET and β-microprobe studies showed an effect of 

increasing mass on the apparent BPND in brain of isoflurane-anesthetized rats [153]. 

 

Figure 8. Structures of radiotracers for metabotropic glutamate receptors (Group I, mGluR5). 

N

F
N O

N F

11CN

NH3C

N 18F

CN

N

CN

11CH3

S

H3C

N
S

CH3

N N

N

O11CH3 F
NH3

11C NH3
11C

NH3C
O11CH3

N
S

H3C

CN

18F

NH3C
N

O
11CH3

N
N

O O
18F

N

18F
N O

N F

CN

N
F

18F

[11C]M-FPEPMPEP

[11C]AZD9272

MTEP [11C]M-PEPy

74 75 76 77

[11C]MPEP

78

[11C]M-MPEP

79

[11C]M-MTEB [18F]F-MTEB [11C]ABP688

82

[18F]PSS232

83

[18F]AZD9272

80 81

84 85

[18F]FPEB [18F]FPEP [18F]FDEGPECO

8886 87

N
N

O
O

18F

Figure 8. Structures of radiotracers for metabotropic glutamate receptors (Group I, mGluR5).

Based on these findings, Ametamey et al. developed (3-(6-methyl-pyridin-2-ylethynyl)-
cyclohex-2-enone-O-[11C]-methyl-oxime) ([11C]ABP688, 82), as a noncompetitive and highly selective
antagonist molecular imaging of mGluR5 [152]. Saturation binding studies indicated a KD of 2 nM and
Bmax of 23 nM (assuming 10% protein) in rat brain membranes. Initial small animal PET studies showed
nearly four-fold higher uptake in rat hippocampus and striatum of wild type mice compared with
mGluR5 knockout mice, thus confirming its specificity in vivo. [11C]ABP688 (82) has found application
in numerous preclinical studies. PET and β-microprobe studies showed an effect of increasing mass on
the apparent BPND in brain of isoflurane-anesthetized rats [153].

However, pharmacological challenge with MK801 (24) or N-acetylcysteine, both of which
treatments increase glutamate release, were without discernible effect on the binding in vivo. This result
was in contrast to earlier findings of 10–20% reductions in [11C]ABP688 (82) BPND in rat brain following
N-acetylcysteine challenge [154]. Other studies in isofluorane-anesthetized rats showed no effect on
cerebral binding after challenge with ketamine (30 mg/kg) [155], despite results of human studies
reported below that ketamine-challenge modulated [11C]ABP688 (82) via altered glutamate release.
Similarly, rat PET studies with [18F]PSS232 (83), an [18F]-labelled analogue of ABP688, failed to show
any effect of challenge with ketamine or ceftriaxone in vivo, nor was there any evidence for direct
competition in brain slices [156]. On the other hand, treatment of anesthetized baboons with the
glutamate releaser N-acetylcysteine decreased the magnitude of [11C]ABP688 (82) VT by 20% in
three of four animals, but only at the higher of two doses (100 vs. 50 mg/kg) [157]. Heterozygous
knockout of the glutamate-synthesizing enzyme glutaminase has increased extracellular glutamate
levels, which might be expected to reduce binding of [11C]ABP688 (82) to the allosteric site. However,
glutaminase knockout mice showed unchanged mGluR5 availability in vivo, but decreased protein
levels compared to Western blot analysis [158]. This was interpreted to be indicative of masking of the
reduced mGluR5 expression by stimulated [11C]ABP688 (82) binding due to increased endogenous
glutamate levels. A study of rats treated with ceftriaxone, an activator of the GLT-1 transporter that
decreases extracellular glutamate levels, showed the expected increase in cerebral [11C]ABP688 (82)
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binding (+40%), consistent with an allosteric modulation of the PET tracer binding by glutamate [159].
Conversely, reductions of [11C]ABP688 (82) VT in brain of living baboons could be used to detect the
occupancy by different doses of intravenous fenobam [160]. Representative images of [11C]ABP688
PET in healthy humans are presented in Figure 9.
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healthy human subjects (Courtesy of the Neuroscience Research Institute, Gachon University, Incheon,
South Korea).

An alternate mGluR5 tracer of atypical structure, [11C]AZD9272 (84) had globally higher specific
binding in brain of non-human primates as compared to [11C]ABP688 (82) [161]. Examined in detail
by autoradiography with tritiated compounds, AZD9272 has distinctly higher binding in the ventral
striatum, the substantial nigra, and some thalamic nuclei. Displacement studies showed complete
displacement of [11C]AZD9272 (84) in vivo by fenobam, but only partial displacement by ligands of
the MPEP (74) structure. Subsequent work showed it to have off-target binding to monoamine oxidase
B, a property, shared with fenobam [161].

A study of AβPP transgenic mice showed no particular association between mGluR5 availability
in vivo with Alzheimer’s disease model pathology, although post-mortem immunoblotting showed
increases in mGluR5 protein levels that had been invisible to PET [162]. The 5xFAD mice, which bear
five mutations linked to human Alzheimer’s disease, showed a 35% decrease in [18F]FPEB (86)
BPND in hippocampus, cortex, and striatum, but this reduction only presented at the age of nine
months, when severe amyloid pathology and behavioral deficits had already developed [163,164].
A longitudinal PET study in Huntington’s disease model mice showed a significant 14% reduction in
striatum [18F]FPEB BPND, and a somewhat lesser reduction throughout cerebral cortex compared to
WT mice that was constant at three, six, and nine months [165]. The mGluR immunoreactivity was 37%
lower in striatum and 17% lower in cortex of the transgenic mice, which might suggest some change in
compartmental distribution of the receptor, such that the reductions measured in vivo were of lesser
magnitude. In the pilocarpine model of seizure disorder there were 20–30% reductions in [11C]ABP688
(82) binding in striatum acutely after status epilepticus that had normalized in the chronic phase [166];
focal reductions persisted in the hippocampus and amygdala in the chronic phase, perhaps indicating
a loss of neurons. Interestingly, an [18F]FPEB (86) PET study in transgenic mice with a mutation of
superoxide dismutase occurring in human cases of amyotrophic lateral sclerosis (ALS) showed trebling
of the BPND in striatum, hippocampus and doubling in cortex with progression to a neurologically
advanced disease stage [167]. In the same mice there was a doubling of the specific binding of the TSPO
ligand [11C]PBR28, a marker of activated microglia, thus linking the neurodegeneration of the ALS
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model with neuroinflammation and increased mGluR5 availability. Furthermore, PET studies with
[18F]PSS232 (83) showed 20% increases in the distribution volume ratio (DVR) in various brain regions
of mouse brain the day after challenge with lipopolysaccharide, which had completely normalized at
five days in CD1 mice (which lack certain components of innate immune responses), while persisting
in C57BL/6 mice [168]. In the same study, the authors reported three-fold high binding of [18F]PSS232
(83) in cryostat sections from cortex and basal ganglia samples from patients dying with ALS compared
with control tissues.

PET studies in sapap3 knockout mice, which show progressive exaggeration of grooming behavior
that models obsessive compulsive disorder, showed widespread 20% decreases in [11C]ABP688
(82) binding in association with their worsening behavior at nine months of age [169]. In this
case, the decline in binding seen with small animal PET was not captured by semiquantitative
autoradiography with [3H]ABP688 in vitro or by mGuR5 immunohistochemisty. An [18F]FPEB (86)
PET study in Shank3B knockout mice, which present a behavior phenotype linked to autism spectrum
disorder, showed 25% higher BPND compared to wild type mice in striatum, hippocampus and
amygdala [170]; Western blotting confirmed these increases in protein level. A pilot human PET
study showed higher [18F]FPEB BPND in the postcentral gyrus and cerebellum of male subjects with
autism [171].

A retrospective analysis of a large series of [11C]ABP688 (82) studies in human subjects showed that
the product was not stereochemically pure, but consisted of about 8% (Z)-isomer [172], which tended to
reduce the magnitude of the BPND estimate, as had been shown earlier in rat studies [173]. Presumably,
this effect may have accounted for the relatively high 11–21% test-retest variability reported in
healthy volunteers [174]. Others investigated the within-subject variability of mGluR5 availability in a
comparative PET study with [11C]ABP688 (82) and [18F]FPEB (86). The test-retest reproducibility of
[11C]ABP688 (82) was lower when scans were not repeated on the same day, as was likewise seen with
[18F]FPEB (86) PET, using a correction for residual radioactivity from a scan earlier in the day [175].
These results indicated that mGluR5 availability is inherently variable in the course of a single day,
as had been first described for the [11C]ABP688 (82) VT, which tended to increase by 30% relative to a
baseline scan two hours previously [176]. Forced sleep deprivation only slightly (+2.5%) increased the
group mean magnitude of [11C]ABP688 (82) DVnorm, but the increase was more pronounced in the
subgroup with low baseline mGluR5 availability [177]. There were very high correlations between
mGluR5 availability and electroencephalographic slow wave (0.25–1.0 Hz) oscillation power during
non-rapid-eye-movement sleep, both in the baseline and rebound after sleep-deprivation conditions.

Other studies from the same research group showed that the whole brain [11C]ABP688 (82) BPND

was 17% higher in men than in women, irrespective of the menstrual phase or hormonal contraceptive
use of the female subjects [178]. Another [11C]ABP688 (82) study in 18 men and 13 women did not
show any significant gender difference, and only a hint of a decline in BPND as a function of age [179].
That study employed a partial volume correction, making the results robust to any age-related loss of
cortical volume. The authors of that study found some evidence of systematic asymmetry, with very
slightly higher BPND in left hemispheric structures of healthy controls.

The binding of [11C]ABP688 (82) (DVR) was 27% lower in bilateral hippocampus of a group
of (n = 9) patients with Alzheimer’s disease, and by about 20% in amygdala of the same patients,
relative to a significantly younger non-demented control group (69 vs. 77 years) [180]. In a [18F]FPEB
(86) PET study using a constant infusion design, the BPND was reduced by 43% in hippocampus
of (n = 16) Alzheimer’s disease patients, compared to healthy age-matched and amyloid-negative
controls [181]. The patients had early disease, as indicated by the mean MMSE score of 25. In a
study with [18F]FPEB (86), patients with Parkinson’s disease (PD) had 20% higher BPND in putamen,
hippocampus, and amygdala compared to healthy controls [182]. In the patients, there was a significant
negative correlation (r = −0.51) between mGluR5 availability and dopamine transporter density in
putamen. The results in human Parkinson’s disease patients are in contrast to findings in rats with
parkinsonism due to a selective (6-OHDA) dopamine lesion, which showed reduced [18F]FPEB (86)
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binding in motor cortex and dorsolateral striatum [183], and in contrast to the unaltered [11C]ABP688
(82) binding in transgenic Parkinson’s disease model mice, cited above.

The binding of [11C]ABP688 (82) was reduced by about 20% in the hippocampus and amygdala of
patients with temporal lobe epilepsy; these reductions persisted after successful surgical resection for
alleviation of seizures [184]. The authors argued that the asymmetry index with this tracer was greater
than that for [18F]FDG PET, thus indicating a role for mGluR5 PET in epileptogenic lesion localization.
Another [11C]ABP688 (82) PET study from the same group showed reduced BPND in association with
focal cortical dysplasia. Immunohistochemical examination of the resected cortical tissue confirmed
loss of the normal cortical architecture [185].

A human PET study in ten healthy, non-smoking volunteers showed a mean 21% reduction
in [11C]ABP688 (82) binding upon challenge with ketamine (22) infusions amounting to 0.8 mg/kg,
which sufficed to produce a dissociative mental state [186]. A subsequent study by the same group
using [18F]FPEP (87) showed lesser effects of ketamine on the magnitude of binding (VT/fp), but similar
effect size as seen with [11C]ABP688 (82) [187]. The binding of [11C]ABP688 (82) was globally about
20% lower in a group of major depression patients of mean age 35 years as compared with age-matched
healthy controls (in whom males were under-represented) [188]. Intravenous ketamine challenge
rapidly improved mood in the patients, but provoked a similar decline in [11C]ABP688 binding (−14%)
as that seen in healthy controls. The ketamine-induced reductions in BPND had returned to baseline in
follow-up scans the next day.

An [11C]ABP688 (82) study showed no binding differences between (n = 20) patients with late-life
depression and (n = 22) elderly healthy controls [189]. The authors conceded that their use of
reference tissue quantitation might have compromised the reliability of their results. A PET study
with [11C]ABP688 (82) showed widespread clusters of reduced mGluR5 availability in patients with
major depressive disorder [190]. In that study, lower subcortical binding correlated with worse scores
in the Beck anxiety inventory. Furthermore, post-mortem western blot analysis of individuals dying
with major depressive disorder showed reduced mGluR5 protein levels in the cortical region BA 10.
Likewise, another [11C]ABP688 (82) PET study showed 20% lower BPND (relative to cerebellum) in
prefrontal cortex and in various cortical voxel clusters of a group of (n = 16) never-medicated young
patients with major depressive disorder [191]. In that study, seed-based fMRI connectivity studies
of the same patients reduced negative connectivity between certain cortical areas compared to that
in the control group. In an [18F]FPEB (86) study of groups of (n = 29) individuals, the subgroup
of post-traumatic stress disorder (PTSD) sufferers with suicidal ideation showed 25% higher VT in
amygdala, hippocampus, and frontal cortical regions compared to the healthy control group [192].
However, mGluR5 availability in major depressive disorder patients did not differ from that in the
healthy control group, irrespective of suicidal ideation.

In a group of (n = 15) medicated patients with schizophrenia there were no regional differences in
[11C]ABP668 (82) relative to age and (oversampled) smoking-matched healthy controls; smokers in
both groups showed similar 24% lower global availability [193]. There was no group difference in
[11C]ABP668 (82) binding in a contrast of patients with obsessive compulsive disorder compared with
healthy controls, although there were some correlations with Yale–Brown obsessive-compulsive scale
(Y-BOCS) scores [194]. In a group of (n = 16) patients with PTSD, the [18F]FPEB (86) VT was 20% higher
in dorsolateral prefrontal cortex, orbitofrontal cortex, and ventral striatum than in healthy controls,
and the increases correlated with avoidance subscores in the patients [195]. A post-mortem arm of that
study indicated elevated expression brain of the synaptic scaffolding protein SHANK1 in brain from
PTSD patients, consistent with a more robust engagement of the mGluR5 with signal transduction
pathways and NMDA receptor coupling.

Current smoking was associated with 20% lower [11C]ABP688 (82) binding (DVR) throughout the
brain [196]. Studies in non-smoking patients with alcohol dependence showed 25% higher DVR in
various brain regions, most notably in the amygdala, which DVR correlated inversely with craving
scores [197]. A PET study with [11C]ABP688 (82) in groups of (n = 9) cocaine-dependent subjects
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and healthy age matched volunteers showed 20–30% lower BPND in the extended striatum and in
amygdala and insula [198], with more pronounced reductions in those with longer abstinence. Another
[11C]ABP688 (82) study of 15 cocaine-addicted subjects and healthy volunteers, matched for gender
and smoking status likewise showed widespread 20% reductions in BPND relative to the (imperfect)
cerebellum reference region [199]. MR spectroscopy of the same subjects did not show any group
difference in the Glx (glutamate + glutamine) peak but did show a significantly higher N-acetylaspartate
peak in the cocaine-addicted subjects.

A PET study with [11C]ABP688 reported higher mGluR5 availability in temporal lobe regions
in male patients with alcohol use disorder (mean alcohol abstinence period: 25 ± 18 days) than in
controls [197]. A longitudinal PET study with [18F]FPEB PET showed lower mGlu5 availability in the
limbic regions, posterior cingulate cortex, caudate of recently abstinent alcohol-dependent subjects
(mean alcohol abstinence period: 7.3 ± 4.0) than in controls; however, after six months of alcohol
abstinence, subjects showed increased mGluR5 availability comparable to the levels observed in
controls, suggesting a possible reversibility [200]. A very recent [11C]ABP688 PET study showed that
mGluR5 availability is low in the striatum, orbitofrontal cortex, and insula in youth (age range: 18–20)
at elevated risk for substance use disorders, particularly those who frequently used cannabis [201].

(E)-3-(pyridin-2-ylethynyl)cyclohex-2-enone-O-2-(2-[18]F-fluoroethoxy)ethyl-oxime, ([18F]-FDEGPECO,
88) is a promising mGluR5 ligand of somewhat distinct structure compared the diaryl compounds
discussed above. It showed good binding properties in rat brain slices and dose-dependent
displacement in hippocampus and striatum by treatment with M-MPEP [202]. The closely related
compound (E)-3-(pyridine-2-yletheynyl-1)-cyclohex-2-enon-O-(3-(2-[18F]-fluoroethoxy)propyl)-oxime
([18F]PSS232, 83) had a KD of 3 nM in vitro [203]. Ex vivo studies with [18F]PSS232 in rats showed
rapid kinetics favorable for evaluation within 70-min PET recordings, despite the presence of some
displaceable binding in the cerebellum reference region. The first [18F]PSS232 (83) study in humans
showed well-behaved cerebral kinetics relative to the arterial input function, which was stably
quantifiable with dynamic recordings lasting only 45 min [204]. The considerable metabolic stability of
the tracer, which remained 60% intact in plasma samples collected at 90 min after injection, presents a
distinct advantage for PET studies with this tracer.

2.2.3. Group II (mGluR2 and mGluR3) Metabotropic Glutamate Receptors

The first successful Group II ligand was the antagonist [3H]-2S-2-amino-2-(1S,2S-2-
carboxycyclopropan-1-yl)-3-(xanth-9-yl) propionic acid ([3H]LY341495, which had a binding affinity (KD) of
1.7 nM for mGluR2 and a 0.75 nM for mGluR3 [205]. For structures, see Figure 10. Evaluations in rats showed
only a hint of displaceable binding ex vivo, due to the tracer’s poor permeability to the BBB, which the authors
attributed to hindering effects of the carboxylic acid moiety [206]. Ma et al. reported the radiosynthesis of
1-(cyclopropylmethyl)-4-(4-[11C]methoxyphenyl)-piperidin-1-yl-2-oxo-1,2-dihydropyridine-3-carbonitrile
([11C]CMDC, 89) for the PET imaging of mGluR2 [207]. The compound is a methoxy-analogue of the
compound JNJ-40068782, with a KD value of 10 nM for recombinant human mGluR2 in vitro [208].
Autoradiographic studies with [11C]CMDC (89) in vitro showed abundant displaceable binding in
rat brain sections. Dynamic PET acquisitions in rats showed an early peak uptake of about 0.5 SUV
units, followed by slow washout. Displacement studies and examinations in transgenic knockout
mice showed only traces of specific binding in brain. About 75% of the brain radioactivity was
untransformed by parent compound at 30 min post injection, which may be too low for reliable
quantitation of the PET data.
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Figure 10. Structures of radiotracers for Group II (mGluR2 and mGluR3) and Group III (mGluR 4, 6, 7
and 8).

A series of 7-(phenylpiperidinyl)-1,2,4-triazolo[4,3-a]pyridines were also tested as positive
allosteric modulator ligands of mGluR2 [209]. Among these, 8-chloro-3-(cyclopropylmethyl)-7-
[4-(3,6-difluoro-2-methoxyphenyl)-1-piperidinyl]-1,2,4-triazolo[4,3-a]pyridine ([11C]JNJ-42491293,
(90) showed promise in small animal PET studies. Further studies of 90 showed a KD of 10 nM
at human mGluR2 in vitro (23), and good binding properties in rat brain cryosections [210] and showed
moderate cerebral uptake and self-displaceable binding in rat PET studies. However, there was no
difference between uptake in wild type and mGluR2 knockout rats, indicating that the preponderance
of cerebral binding was to some unidentified off-target site.

The negative allosteric modulator 7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[11C]
methoxyphenyl)-quinoline-2-carboxamide ([11C]QCA, 91) was prepared and tested as a tracer for
imaging mGluR2 [211]. Using a functional assay involving calcium influx, QCA treated specifically
modulate the effect of glutamate at mGluR2, exerting no such effect at mGluR3 [211]. In vitro
autoradiographic studies showed high binding in cerebral cortex, hippocampus, striatum and
cerebellum, but little displaceable binding in the midbrain and pons. Unfortunately, [11C]QCA
(91) PET examination showed practically no influx into brain of living rats. Another mGluR2
negative allosteric modulator, 4-(2-fluoro-4-[11C]methoxyphenyl)-5-((2-methylpyridin-4-yl)methoxy)
picolinamide (92), showed displaceable binding in rat brain sections [212]. PET examination showed it
to have good initial uptake in rat brain, rapidly attaining a peak SUV of about 0.8, followed by rapid
washout, but little sign of heterogenous or displaceable binding in vivo. Uptake was higher in mice
lacking the P-glycoprotein, but still without significant specific binding.

The peptide N-acetlyaspartylglutamate (NAAG), which is among the most abundant
neurotransmitters in the brain, acts with a low potency agonist at NMDA receptors, but more
potently activates mGluR3 on post-synaptic neurons and astrocytes [213], although others have noted
that contamination of NAAG samples by glutamate may lead to spurious findings [214]. The activation
of mGluR3 generally inhibits the formation of cAMP, with net effects depending on its association with
inhibitory or excitatory synapse. Activation of mGluR3 potentiates the effects of mGluR5 signaling
on neuronal Ca2+ influx, thus indicating a functional partnership to the two subtypes [215]. In turn,
the mGluR5 has functional linkages to NMDA receptors via intracellular scaffolding proteins, such as
Homer, Shank, and postsynaptic density-95, which are key regulators of synaptic function [216].
The present lack of specific ligands for mGluR3 is unfortunate, given the reported and varying
interactions between mGluR3, mGluR5 and NMDA receptors.
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2.2.4. Group III (mGluR4, mGluR6, mGluR7 and mGluR8) Metabotropic Glutamate Receptors

Immunohistochemical examination with specific antisera against mGluR4 showed a rank order
of staining intensity cerebellar cortex > striatum = substantia nigra > cortex = thalamus [217].
Electron microscopic examination localized the receptor to presynpaptic boutons of type I and type II
synapses. Activation of the mGluR4 inhibits the release of GABA and glutamate in parts of the basal
ganglia, while tending to decrease excitatory transmission in cerebral cortex, thus drawing attention to
it as a possible therapeutic target in Parkinson’s disease (see [218]).

The N-(methylthiophenyl)picolinamide mGluR4 positive allosteric modulator ligand
[11C]PXT012253 (formerly [11C]KALB012, 93) was characterized as having a Ki of 3 nM in a competition
binding assay in vitro, and showed promising properties for brain imaging in rodent studies [219,220].
For structures, see Figure 10. The PET tracer also had rapid uptake in non-human primate brain,
attaining a peak SUV of about five within five minutes after tracer administration, followed by
rapid, but heterogeneous, washout [221]. Analysis by a one-tissue compartment model indicated
VT ranging from 4.4 mL g−1 in cerebellum to 6.3 mL g−1 in striatum, and 7.7 mL g−1 in thalamus.
Brain penetration of the mGluR4 positive allosteric modulator PXT002331 was confirmed in occupancy
studies using [11C]PXT012253 (93) in macaque monkeys [218]. Recently, the Brownell group developed
a [18F]-labelled version, namely N-(4-chloro-3-(([18F]fluoromethyl-d2)thio)phenyl)picolinamide for
imaging mGluR4 in the brain [220]. In that study, preliminary PET examination in rats showed good
brain uptake and considerable spatial heterogeneity.

There are considerable discrepancies between the cerebral distribution of the picolinamide
binding sites described above and the immunohistochemical localization of group III mGluRs,
thus suggesting the occurrence of off-target binding of that class of ligands. With this disagreement
in mind, others have tested the positive allosteric modulator ligand 5-methyl-N-(4-[11C]methyl
pyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine ([11C]ADX88178, 94), based on findings that the
non-radioactive compound potentiated the response of mGluR4 to glutamate with an EC50 of 4 nM [222].
Rat studies ex vivo showed adequate tracer uptake in brain, but little in the way of specific binding.

Activation of the mGluR6 inhibits forskolin-stimulated cAMP production, with L-2-amino-4-
phosphonobutyrate (L-AP4) and L-serine-O-phosphate having ten-fold greater agonist potency
than L-glutamate [223]. In situ hybridization indicated that mGluR6 expression is restricted to
the retina. The mGluR7 receptor, which is also sensitive to L-AP4, showed moderate mRNA
expression in neocortex, limbic cortex, hippocampus, and many other regions including septum,
amygdala, specific hypothalamic nuclei and locus coeruleus [224]. The selective mGluR8 agonist
(S)-3,4-dicarboxyphenylglycine has analgesic properties, perhaps in-keeping with the distribution
across the pain neuraxis [225]. There are no reports of ligands or allosteric modulators suitable for
imaging of mGluR6, 7, or 8.

3. Conclusions and Outlook

We have reviewed the present state of development of PET/SPECT probes for glutamate receptor
imaging, including both ionotropic and metabotropic receptors, and discussed the suitability of the
various tracers for reliable quantitation in the living brain. The diverse pharmacology of glutamate
receptors, together with the central role of glutamatergic neurotransmission in brain function present a
multitude of targets for molecular imaging. Quantitative imaging of ionotropic receptors is still difficult,
despite early success with the intrachannel NMDA receptor SPECT ligand, [123I]CNS-1261 in clinical
studies of schizophrenia. There has been some recent progress in developing suitable radioligands
for PET imaging of the GluN2B subtype of the NMDA receptor. There has been some success in
preclinical development of ligands for AMPA receptors in the living brain, but molecular imaging
of kainite receptors remains unattainable; this seems remarkable, given their central role in synaptic
plasticity. There has been rather better progress in mGluR imaging, particularly for the mGluR5
subtype, which has a functional link to NMDA receptors via intracellular scaffolding proteins. This has
enabled rather extensive clinical investigations of mGluR5 availability in disorders such as drug



Molecules 2020, 25, 4749 27 of 42

abuse/addiction, depression, and PTSD. It is important to note that these disorders are heterogeneous
and have high comorbidity with each other. For example, smoking history must be strictly controlled
in PET studies with the most widely used mGluR5 ligand, [11C]ABP688, and there is some evidence
of rapid diurnal changes in mGluR5 availability. However, several members of the mGluR family
including mGluR3, mGluR6, mGluR7, and mGluR8 remain uninvestigated by molecular imaging.
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Abbreviations: Acronym

Compound No. Name: Synonyms
[11C]ABP688 82 3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-[11C]methyl-oxime
[11C]ADX88178 94 5-methyl-N-(4-[11C]methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl) thiazol-2-amine

[11C]AMPA-1905 60
4-cyclopropyl-7-(3-[11C]methoxyphenoxy)-3,4-dihydro-2H-benzo[e][1,2,4]
thiadiazine 1,1-dioxide

BIII 277 CL
(−)-(1R,5S,2′′R)-3′-Hydroxy-N-(2′′-methoxypropyl)-5,9,9-trimethyl-6,7-
benzomorphan

Bmax maximal binding capacity
Boc t-Boc, tert-butoxycarbonyl group
BPND binding potential relative to the no displaceable compartment
Bq Becquerel
cAMP cyclic adenosine monophosphate
[11C]CBA 45 N-(2-[11C]methoxybenzyl) cinnamamidine

[11C]CMD 89
1-(cyclopropylmethyl)-4-(4-[11C]methoxyphenyl)-piperidin-1-yl-2-oxo-
1,2-dihydropyridine-3-carbonitrile

[*I]CNS1261 37 N-(1-napthyl)-N′-(3-[*I]-iodophenyl)-N-methylguanidine ([*I]CNS-1261

[11C]CNS-5161 36
N-(2-chloro-5-methylthiophenyl)-N′-(3-methylthio-phenyl)-N′-
[11C]methylguanidine

Dextrometorphan 19
(+)-3-methoxy-N-methyl-morphinan, (9S,13S,14S)-dextrometorphan, CAS RN:
[125-71-3]

Dextrorphan 20
(+)-3-hydroxy-N-methyl-morphinan, (9S,13S,14S)-dextrorphan, CAS RN:
[125-73-5]

EEAs excitatory amino acids
[18F]EFQ 65 3-ethyl-2-[18F]fluoroquinolin- 6-yl-(4-methoxycyclohexyl)methanone
[18F]FE-PE2I 72 (E)-N-(3-iodoprop-2-enyl)-2β-carbo-[18F]fluoroethoxy-3β-(p-tolyl)-nortropane
[18F]FDG 2-deoxy-2-[18F]fluoro-D-glucose, CAS RN: [86783-82-6]

[18F]FITM 69
4-[18F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-
N-methylbenzamide

[18F]FMEM 32 1-amino-3-[18F]fluoromethyl-5-methyl-adamantane, [18F]-memantine,
[18F]FNM 33 [18F]fluoroethylnormemantine
EOS end of synthesis
[18F]FPEB 86 3-[18F]fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile
[18F]FPEP 87 2-[18F]fluoro-6-[(3-fluorophenyl)ethynyl]pyridine

[18F]FPIT 71
1-(2-[18F] fluoro-3-pyridyl)-4-(2-isopropyl-1-oxo-isoindoline-5-yl)- 5-methyl-
1H-1,2,3-triazole

[18F]FPTQ 73 6-[1-(2-[18F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinolone
[11C]GMOM 34 N-(2-chloro-5-thiomethylphenyl)-N′-(3-[11C]methoxy-phenyl)-N′-methylguanidine

GYKI-52466 54
1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine,
CAS RN: [192065-56-8, as hydrochloride]

GYKI-53773 55
(R)-(−)-1-(4-aminophenyl)-3-acetyl-4-methyl-7,8-methylenedioxy-3,4,dihydro-5H-
benzodiazepine, talampanel, LY-300164, CAS RN: [161832-65-1]

GYKI-53784 56
(R)-(−)-1-(4-aminophenyl)-3-methylcarbamoyl-4-methyl-7,8-methylenedioxy-
3,4,dihydro-5H-benzodiazepine, LY-303070, CAS RN: [161832-71-9]
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Compound No. Name: Synonyms
[11C]HACH242 49 N-((5-(4-fluoro-2-[11C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamine
IC50 inhibition constant required for displacement of 50% of radioligand
ID injected dose
iGluR ionotropic glutamate receptors

[11C]ITDM 70
N-[4-[6-(isopropylamino)-pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-
4-[11C]-methylbenzamide

[11C]ITMM 68
N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-[11C]methoxy-
N-methyl-benzamide

[11C]JNJ16259685 61 (3-ethyl-2-[11C]methyl-6-quinolinyl)(cis- 4-methoxycyclohexyl)methanone
KD dissociation constant or half-saturation concentration
Ki inhibition constant in vitro
[11C]L-703717 51 7-chloro-4-hydroxy-3-[3-(4-[11C]methoxybenzyl)phenyl-2-(1H)-quinolone
L-AP4 L-2-amino-4-phosphonobutyrate

Levorphan 18
levorphanol, (−)-3-hydroxy-N-methyl-morphinan, (9R,13R,14R)-levorphan,
CAS RN: [77-07-6]

MDD major depressive disorder
mGluR metabotropic glutamate receptor

[11C]methyl-BIII
277 CL

39

(−)-(1R,5S,2′′R)-3′-[11C]methoxy-N-(2′′-methoxypropyl)-5,9,9-trimethyl-6,7-
benzomorphan; [2R-[2α,3(R),
6α]-1,2,3,4,5,6-hexahydro-3-(2-methoxypropyl)-6,11,11-trimethyl-2,6-methano-9-
[11C]methoxy-3-benzazocine

[11C]M-FPEP 77 2-[11C]methyl-6-(3′-fluoro-phenylethynyl)-pyridine
[11C]Me-NB1 42a 7-[11C]methoxy-3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1-ol

[18F]MK-1312 64
1-(2-[18F]fluoro-3-pyridyl)-4-(2-propyl-1-oxo-isoindoline-5-yl)-5-methyl-1H-
1,2,3-triazole

[11C]M-MPEP 79 2-(2-(3-[11C]methoxyphenyl)ethynyl)pyridine

[11C]MMTP 63
dimethylamino-3(4-[11C]methoxyphenyl)-3H-pyrido[3′,2′:4,5]thieno-
pyrimidin-4-one

[11C]MPEP 78 2-[11C]methyl-6-(2-phenylethynyl)pyridine

[11C]3MPICA 50
3-[2-[(3-[11C]methoxyphenylamino)carbonyl]ethenyl]-4,6-dichloroindole-2-
carboxylic acid

NAAG N-acetylaspartylglutamic acid, CAS RN: [3106-85-2]

[18F]N2B-0518 48
2-((1-(4-[18F]fluoro-3-methylphenyl)-1H-1,2,3-triazol-4-yl)methoxy)-5-
methoxypyrimidine

NB1 3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1,7-diol
[11C]NBA 46 N-(2-[11C]methoxybenzyl)-2-naphthamidine
NMDA N-methyl-D-aspartic acid, CAS RN: [6384-92-5]
NMDAR N-methyl-D-aspartate receptor

[11C]N2B-1810 52
2-(6-(5-chloro-4-methylthiophen-2-yl)-1H-pyrrolo[3,2-b]pyridin-1-yl)-N-
(λ1-methyl-11C)-N-methyl-acetamide

[11C]NR2B-SMe 44
[S-methyl-11C](±)-7-methoxy-3-(4-(4-(methylthio)phenyl)butyl)-2,3,4,5-
tetrahydro-1H-benzo[d]azepin-1-ol

[18F]OF-NB1 42b 3-(4-(2-[18F]fluoro-phenyl)butyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1,7-diol
[18F]PF-NB1 42c 3-(4-(4-[18F]phenyl)butyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1,7-diol
PCP 23 phencyclidine, CAS RN: [77-10-1]

[18F]FPDEGPECO 88
(E)-3-(pyridin-2-ylethynyl)cyclohex-2-enone O-2-(2-[18]F-fluoroethoxy)ethyl
oxime

PET positron emission tomography

[18F]PK-209 35
([3-(2-chloro-5-(methylthio)phenyl)-1-(3-([18F]fluoromethoxy)phenyl)-
1-methylguanidine]

[18F]PSS232 83
(E)-3-(pyridine-2-yl-etheynyl-1)-cyclohex-2-enon-O-(3-(2-[18F]-fluoroethoxy)propyl)
oxime

PTSD post-traumatic stress disorder
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Compound No. Name: Synonyms
[11C]PTX012253 93 N-(4-chloro-3-([11C]methylthio)phenyl)picolinamide, [11C]KALB012
[11C]QBA 47 N-(2-[11C]methoxybenzyl)quinoline-3-carboxamidine

[11C]QCA 91
7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro- 4-[11C]methoxyphenyl)
quinoline-2-carboxamide

[11C]Ro 04-5595 43
1-(2-(4-chlorophenyl)ethyl)-7-hydroxy-6-methoxy-2-[11C]methyl-1,2,3,4-tetrahydro-
isoquinoline

SCAAs sulfur-containing amino acids

SKF10,047
N-allyl-normetazocine; 2′-hydroxy-5,9-dimethyl-N2-allyl-6,7-benzomorphan;
CAS: [825594-24-9]

SPECT single photon emission computed tomography
SUV standard uptake value
TBAOH tetrabutylammonium hydroxide, CAS RN: [2052-49-5]
TCP N-(1-[thienyl]cyclohexyl)3,4-piperidine, tenocyclidine, CAS RN: [2150098-1]

Versidyne
1-(2-(4-chlorophenyl)ethyl)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-isoquinoline,
methopholin, NIH-7672, CAS RN: [2154-02-1]

VT total distribution volume

[11C]YM-202074 62
N-cyclohexyl-6-{[N-(2-methoxyethyl)-N-[11C]methylamino]methyl}-N-methyl-
thiazolo[3,2-a]-benz imidazole-2-carboxamide
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