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Abstract: In this study, aluminum-doped zinc oxide (Al:ZnO) thin films were grown by high-speed
atmospheric atomic layer deposition (AALD), and the effects of air annealing on film properties are
investigated. The experimental results show that the thermal annealing can significantly reduce the
amount of oxygen vacancies defects as evidenced by X-ray photoelectron spectroscopy spectra due to
the in-diffusion of oxygen from air to the films. As shown by X-ray diffraction, the annealing repairs
the crystalline structure and releases the stress. The absorption coefficient of the films increases with
the annealing temperature due to the increased density. The annealing temperature reaching 600 ◦C
leads to relatively significant changes in grain size and band gap. From the results of band gap and
Hall-effect measurements, the annealing temperature lower than 600 ◦C reduces the oxygen vacancies
defects acting as shallow donors, while it is suspected that the annealing temperature higher than
600 ◦C can further remove the oxygen defects introduced mid-gap states.
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1. Introduction

Metal oxides are widely used in many applications such as optical coatings, transparent conducting
oxides (TCOs), photocatalysis, sensors and photo-electrochemistry [1–7]. TCOs have attracted lots
of attention because they show simultaneously conductivity and optical transparency. In the past
fifty years, indium tin oxide (ITO) has become the most widely used TCO for optoelectronic devices
due to its high transmittance of ~90% in the visible range and low resistivity (~2 × 10−4 Ω-cm) with
mobility of about 40 cm2/Vs and high carrier concentration of 1021 cm−3 [8,9]. However, ITO faces
several challenges. The scarcity of indium element may result in severely increased material cost.
The commonly used sputtering process for preparing ITO can cause damage to the underlying layer as
appears in the increased parasitic absorption at the TCO/Si interface of the heterojunction silicon solar
cells [10–12]. The high carrier concentration of ITO reduces short-circuit current of solar cells if it is
used as a window layer. The development of alternative materials with low cost and high mobility is
necessary. Among all materials, aluminum-doped zinc oxide (Al:ZnO) is the most widely researched
n-type TCOs owing to its excellent properties similar to ITO and comparability to various deposition
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techniques, such as sputter [13], spray pyrosis [14], plasma enhanced chemical vapor deposition [15],
and pulsed laser deposition [16]. However, the Al:ZnO is generally used as an interconnection layer
in optoelectronics, such as tandem thin film solar cells and polymer solar cells, but not used as an
electrode since the ITO still outperform Al:ZnO in this aspect. Recently, atomic layer deposition (ALD)
has become a very attractive approach to prepare TCOs [17,18]. The ALD technique is known for
its unique features such as the deposition of conformal layer over a variety of substrate types and
geometries, pinhole-free films with a very low defect concentration compared to other techniques,
and the controllability of film thickness at sub-nanometer level. In some studies, ALD Al:ZnO has
reached a low resistivity comparable to ITO [19]. It has been reported a better conversion efficiency of
polymer solar cells with ALD Al:ZnO electrodes compared to that using ITO-coated glass [20]. Effects
of the ALD deposition parameters such as substrate temperature, purge time, precursor dosing time
on the properties of the Al:ZnO films are systematically studied [21–24]. However, the post-annealing
effects on the ALD Al:ZnO are rarely reported. In the literature the post-annealing effects are mostly
for magnetron sputtered Al:ZnO. For instance, Kim et al. reported an increased carrier concentration
of the Al:ZnO films prepared by sputtering after vacuum annealing [25].Lin et al. reported a decreased
carrier concentration in the case of nitrogen or oxygen annealing [26], while Zhou et al. observed a
decreased resistivity of the Al:ZnO after annealing in nitrogen and oxygen mixture [27]. The results of
the annealed Al:ZnO are controversial, and the related mechanism is not fully understand.

In this study, the Al:ZnO thin films were prepared using high-growth rate atmospheric ALD
(AALD). The processing time of one ALD cycle is about 3 s, which is nearly 20 times shorter than
vacuum-type ALD (~1 min for one ALD cycle). Furthermore, the growth rate per cycle of the AALD
Al:ZnO films is 0.94 Å/cycle, corresponding to about 0.3 Å/s. This value is lower than that (0.5–3 Å/s)
obtained by using sputter [28–31], but in terms of total deposition time, the AALD method would take
more advantages since it does not require a vacuum environment. For example, for a 60 nm-thick
Al:ZnO film, the AALD method takes about 40 min to finish the deposition, whereas the sputter
technique may require more time as it needs to reach high degree of vacuum before deposition.
The AALD process thus demonstrates high potential for the industrial applications. Instead of using
traditional multilayered Al2O3/ZnO structure, the Al and Zn metal precursors are co-injected into the
deposition zones. The films are annealed at 300–800 ◦C to manipulate the oxygen vacancies. The effects
of the air annealing temperature on the optical, electrical and structural properties are investigated.

2. Results and Discussion

The chemical states of O for the AALD Al:ZnO thin films with different annealing temperatures
are investigated by X-ray photoelectron spectroscopy (XPS), as shown in Figure 1a. The peaks at
around 530, 1020, and 1050 eV are assigned to the O 1s, Zn 2p3/2, and Zn 2p1/2 core levels, respectively.
No carbon peaks (~284.5 eV) are observable, indicating no or very low carbon content as the surface
of the samples was sputtered before the XPS measurement to remove the surface contamination.
In addition, the lack of carbon peaks suggests the nearly full ALD reactions of the diethylzinc (DEZ) and
trimethylaluminum (TMA) precursors, otherwise the methyl groups in the precursors will remain in the
deposited films. The Al peak at 75.6 eV is hardly observed due to the low content of <0.7 at.% as shown
in Figure 1b. In order to investigate the chemical states, the O 1s spectra of the samples with different
annealing temperature (Figure 1c–h) are deconvoluted into two peaks, which are centered at 530.6 and
532.1 eV. In the literature, a peak at the lower binding energies of 530–531 eV is generally attributed to
the O2− binding at lattice points of ZnO, while the peak at the higher binding energies (531–532 eV) is
ascribed to oxygen vacancies [32–38]. We thus assign the peaks at 530.6 and 532.1 eV as the lattice
oxygen (OL) and oxygen vacancies defects (OD), respectively. Increasing annealing temperature from
300 to 500 ◦C leads to high OD/(OL+OD) ratios of around 30.8%–35.4%. The ratio reduces to 27.4%,
suggesting that the oxygen vacancies are filled by the oxygen from the annealing environment. As the
oxygen vacancies affect optoelectronic properties of the Al:ZnO films [39], the significant variation
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of the OD/(OL + OD) ratio from 35.4% to 14.5% indicates the high tunability of the film properties
depending on the annealing temperature.
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Figure 1. (a) XPS spectra, (b) Al content and (c–h) O 1s spectra for the AALD Al:ZnO thin films
annealed at different temperature.
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Figure 2a shows the X-ray diffraction (XRD) patterns for the atmospheric Al:ZnO films
with different annealing temperature. All the films have the peaks at 31.83◦, 36.36◦, 56.69◦,
and 68.14◦designated to (100), (101), (110), and (112) lattice planes of polycrystalline hexagonal
wurtzite structure ZnO, respectively (JCPDS #36-1451) [40]. The preferred orientation is (100).
All the samples do not show any peaks related to Al-related oxides, and this suggests that Al ions
are well-incorporated into the wurtzite structure in the investigated annealing temperature range.
The narrowing of the dominant (100) peaks with the increase of the annealing temperature indicates
the improved crystallinity. Figure 2b illustrates the full-width-half-maximum (FWHM) of the (100)
peaks and the corresponded crystallite size calculated using Scherrer′s equation as given by [41]:

D =
kλ
βcosθ

, (1)

where D is the average crystallite size, k is the Scherrer constant (0.9), λ is the wavelength of the X-ray
radiation (0.15418 nm), β is FWHM, and θ is the Bragg’s diffraction angle of the (100) peak. At the
annealing temperatures of 300–500 ◦C, the crystallite size is around 20.5 nm. Further increasing the
annealing temperature from 500 to 800 ◦C leads to an enlargement of the crystallite size from 20.5 to
26.9 nm due to recrystallization of the films. In addition to the repair of the crystalline structure,
the annealing treatment renders oxygen atoms/molecules able to diffuse from the air into the Al:ZnO
films to fill the oxygen vacancies. The increased annealing temperature enhances this process, thereby
improving the crystal growth and crystallite size. As oxygen vacancies are known to induce stress
to the lattice structure [42], the reduction of the oxygen vacancies defects through high-temperature
annealing releases the stress. This is also reflected on the decreased trend of the microstrain (ε), shown
in Figure 2c, as calculated by [43]:

E = (0.9/D − 1/D)*λ/sinθ′ (2)

Further, the restoration of the lattice structure should increase the interplanar distance between
crystal faces. The interplanar distance (d-spacing) of the (100) preferred orientation for the samples is
calculated by the following equation [44]:

2dsinθ = nλ, (3)

where n is the diffraction order. The 2-theta value shifts from 32◦ to 31.9◦ when the annealing
temperature increases from 300 to 800 ◦C. Accordingly, the d-spacing increases from 2.79 to 2.801 Å as
shown in Figure 2d.

Figure 3a–f show the scanning electron microscopy (SEM) topological images for the AALD
Al:ZnO films with different annealing temperature. At 300 ◦C, the sample has elongated grains parallel
to the substrate, which is in accordance with the XRD result showing a (100) preferred orientation.
The grain size changes with varying the annealing temperature. By drawing a diagonal line, we can
estimate the average grain size of the samples. The increasing trend of the average grain size with
the annealing temperature agrees with the XRD result. In particular, the grain size well-matches the
crystallite size determined from XRD at the annealing temperatures lower or equal to 600 ◦C, whereas
at the annealing temperature of 800 ◦C the grain sizes are apparently larger than expected, suggesting
that the high-temperature annealing causes the crystallites to aggregate rather than merge into larger
crystals. The aggregation may lead to discontinuity/voids as clearly observed in Figure 3f. The presence
of the voids can cause shunting or increased leakage current when the Al:ZnO films are used as the
TCO of optoelectronic devices. Furthermore, in some applications the ALD films are mostly prepared
at a thin thickness (few to tens nanometers), and the adverse influence of these voids could be more
magnified. A proper annealing temperature is thus important for the AALD Al:ZnO films.
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Molecules 2020, 25, 5043 6 of 12

The resistivity, mobility, and carrier concentration (Ne) determined by Hall-effect measurements
are shown in Figure 4. The resistivity remains 1.12 × 10−3 Ω-cm at the annealing temperatures of
300–500 ◦C, and then it decreases to a minimum of 9 × 10−4 Ω-cm at 600 ◦C, as shown in Figure 4a.
Further increasing the annealing temperature to 800 ◦C leads to a significant increase in resistivity to
2.7 × 10−3 Ω-cm. It is known that the resistivity should be inversely proportional to the product of
the mobility and carrier concentration. As shown in Figure 4b, the increased annealing temperature
improves the mobility due to the enhanced crystalline structure and grain size. Noted that at
800 ◦C the relatively small increment of the mobility is possibly related to the adverse effect of
the crystallite aggregation as discussed in the SEM results. In contrast, the carrier concentration
reduces with increasing the annealing temperature as a consequence of the removal of the oxygen
vacancies. Therefore, the net result of the competing effect of the increased mobility and reduced
carrier concentration at increasing annealing temperature shows that the 600 ◦C-annealed sample has
the lowest resistivity.
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The optical properties of the AALD Al:ZnO samples with different annealing temperature
are investigated. Figure 5a shows the transmittance and reflectance spectra over the 350–950 nm
wavelengths for the bare glass and the AALD Al:ZnO films annealed at different temperatures.
Compared to the glass substrate, all the Al:ZnO films exhibit a lower transmittance, due to the
significantly higher reflectance. To exclude the impact of the reflectance, the absorption coefficient (α)
is used for assess the optical property of the films and calculated by:

α = −
1
d

ln

 T

(1−R)2

, (4)

where d is the thickness of the films, T is the transmittance, and R is the reflectance. The result is
shown in Figure 5b. The high absorption coefficients at the short-wavelengths (<400 nm) are due to the
band-to-band absorption where the photon energy is close to the material band gap [45]. The increased
absorption coefficient at increasing annealing temperature is related to the better crystalline structure
with less oxygen vacancies. All the films exhibit similarly low absorption coefficients at the longer
wavelengths. Figure 5c shows the band gap, calculated using Tauc’s plot method [46], of the AALD
Al:ZnO films with different annealing temperature. The band gap slightly decreases from 300 to 500 ◦C.
Further increasing the annealing temperature leads to a sharp increase in band gap. For Al:ZnO films,
band gap variation is usually associated with the carrier concentration. When the carrier concentration
exceeds the Mott critical density (~1019 cm−3 for ZnO-based films), the Burstein-Moss band filling
effect occurs to increase the band gap and the increment is proportional to the Ne

2/3 [47,48]. This linear
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relationship is observed in the annealing temperatures of 300–500 ◦C in the present work. We therefore
suspected that the reduction of the band gap can be attributed to the decreased carrier concentration
and the less pronounced Burstein-Moss effect. The increased tendency of the band gap after 500 ◦C
implies different mechanism. In addition to acting as the shallow donors, in some cases oxygen
vacancies can introduce mid-gap states. The significant increase in band gap at 600–800 ◦C is possibly
due to the reduction of the mid-gap states caused by the microstructure restoration or the removal of
the mid-gap state oxygen vacancies. Similar results associated with the band gap enlargement due
to the mid-gap state elimination in metal oxides are reported elsewhere [49]. Figure 5d shows the
refractive indices of the samples annealed at different temperature. The refractive index increases
with the annealing temperature increasing from 300–700 ◦C, due to the improved crystalline structure,
as evidenced by XRD, and film density. The 800 ◦C-annealed sample has a reduced refractive index,
which is commonly linked to the decreased density. As observed from SEM image, the enhanced grain
boundaries and voids at 800 ◦C may account for the reduced density of the film.
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3. Experimental

Glass substrates with a size of 2 cm × 2 cm were ultrasonically cleaned in alcohol, acetone and
deionized water for 15 min each, and then dried in nitrogen and placed in an oven at 80 ◦C for
at least 30 min. The Al:ZnO films were deposited via a homemade AALD system having injector
heads connected to trimethylaluminum (TMA), diethylzinc (DEZ) and oxidant (H2O). The metal
precursors (purity: 99.9999%) were purchased from Aimou Yuan Scientific (Nanjing, China), and were
co-introduced into the deposition region. The schematic diagram of the AALD system is shown
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in Figure 6a. The injection heads were arranged in the order of H2O, (DEZ+TMA), and H2O,
each separated by nitrogen gas curtains. The temperatures of the TMA, DEZ, and H2O bubblers were
controlled to be 40, 40 and 30 ◦C, respectively, using the heating water baths. Nitrogen gas was used
as carrier gas, dilution gas and gas curtain. During AALD deposition, the samples were placed on a
substrate holder in the air atmosphere. The substrate holder moved horizontally back and forth at a
speed of 150 mm/s, and stopped for about 0.5 s when it reached both ends. The distance between the
injection head and the substrate was 0.3 mm. Table 1 summarizes the detailed deposition parameters
for the Al:ZnO films.Molecules 2020, 25, x FOR PEER REVIEW 9 of 12 
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Table 1. Deposition parameters for AALD Al:ZnO films.

Parameter Value

Annealing temperature (◦C) 300–800
Substrate temperature (◦C) 110

Substrate holder moving speed (cm/s) 15
Distance between injector and substrate (mm) 0.3

H2O carrier gas flow rate (sccm) 400
H2O dilution gas flow rate (sccm) 800

Precursor carrier gas flow rate (sccm) 200
Precursor dilution gas flow rate (sccm) 1100

TMA and DEZ bubbler temperature (◦C) 40

When the substrate moved beneath the injector, the substrate firstly received the exposure of H2O
to generate -OH species on the substrate surface. The substrate then moved to the metal precursors
co-injection zone. The surface OH ligands reacted with the metal precursors to create O-Al or O-Zn
bonds, and the surface species changed to -CH3 or -C2H5, as given by:

S-OH + Al-(CH3)3 or Zn(C2H5)2→ S-O-Al-(CH3)2 or S-O-Zn(C2H5) + CH4 or C2H6, (5)

where S denotes the substrate surface. Noted that there were exhaust holes between the H2O and the
metal precursors injectors to remove the excess precursor molecules or by-products. When the substrate
arrived the next H2O injection zone, the surface ligands changed to the initial state (-OH species) again
as given by:

S-O-Al-(CH3)2 or S-O-Zn(C2H5) + H2O→ S-O-Al-OH or S-O-Zn-OH + CH4 or C2H6 (6)

After the surface reactions (1) and (2), one ALD cycle was completed and repeated by moving the
substrate back and forth beneath the injection head until the required film thickness was obtained.
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Figure 6b shows the film thickness as a function of the ALD cycle. The error of the film thickness
was within ±1.5%. The linear relationship indicated the self-limiting nature of the ALD process.
The growth per cycle was about 0.94 nm/cycle. To study the annealing effects on the properties
of the films, the Al:ZnO films were prepared at a thickness of 60 nm, corresponding to the ALD
cycle number of 635, and then received a post-deposition annealing process at different temperatures
ranging from 300 to 800 ◦C in a diffusion furnace (FRD-002, Friend, Qingdao, China) in ambient air.
The transmittance and reflectance spectra of the films were obtained by using a UV-visible spectrometer
(MFS-630, Hong-Ming Technology, New Taipei City, Taiwan). The refractive indices and thickness of
the films were determined by an ellipsometer (M2000, J. A. Woollam, Lincoln, NE, USA). The X-ray
diffraction (XRD, Rigaku TTRAXIII, Ibaraki, Japan) measurements were carried out at an incident
angle of 0.5◦ to investigate the crystal structure of the films. The X-ray photoelectron spectroscopy
(XPS, ESCALAB 250Xi, Thermo Fisher, Waltham, MA, USA) with Al-Kα anode was employed to
obtain the chemical states and elemental ratio of the films. The Hall-effect measurements (HMS5000,
Side Semiconductor Technology, Shanghai, China) were conducted to determine the resistivity, carrier
concentration, and mobility of the films. The surface morphologies of the samples were observed
using a scanning electron microscopy (SEM, sigma 500, Zeiss, Oberkochen, Germany).

4. Conclusions

Al-doped ZnO films are prepared using high-growth rate AALD and receives a post-annealing
process with different annealing temperature in air. The XPS result evidences the reduction of the
oxygen vacancies, suggesting that the oxygen from the annealing ambient can be incorporated in the
films to fill the vacancies. The XRD result also confirms the restoration of the crystalline structure.
The annealing at 600 ◦C has the lowest resistivity of 9 × 10−4 Ω-cm due to the balance between the
increased mobility and reduced carrier concentration at increasing annealing temperature. The band
gap variation at 300–500 ◦C matches the Burstein-Moss effect, suggesting that the low annealing
temperature mainly reduce the oxygen vacancies acting as donors. While the higher annealing
temperature of above 600 ◦C could further reduce the mid-gap states. The AALD Al:ZnO thin films
with high transparency and low resistivity provide a promising alternative option to replace the ITO
films in solar cell applications.
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