Chemical constituent of β -glucuronidase inhibitors from the root of *Neolitsea acuminatissima*

Chu-Hung Lin ^{1, +}, Hsiao-Jung Chou ^{2, +}, Chih-Chi Chang ², Ih-Sheng Chen³, Hsun-Shuo Chang^{3,5}, Tian-Lu Cheng ^{4,5}, Yueh-Hiung Kuo ^{6,7,8,*}, and Horng-Huey Ko ^{2,5,*}

- ¹ Herbal Medicinal Product Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan; chuhung.lin@gmail.com
- ² Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; cc032324@gmail.com (H.-J.C.); newheart1920@hotmail.com (C.-C.Chang)
- ³ School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; hschang@kmu.edu.tw (H.-S.C.); m635013@kmu.edu.tw (I.-S.C.)
- ⁴ Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- ⁵ Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- ⁶ Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
- ⁷ Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- ⁸ Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- * Correspondence: hhko@kmu.edu.tw (H.-H.K.); kuoyh@mail.cmu.edu.tw (Y.-H.K.); Tel.: +886-7-3121101 ext. 2643; fax: +886-7-3210683 (H.-H.K.)
- ⁺ These authors contributed equally to this work.

The List of Supplementary Material

Figure S1	Preliminary anti-e β G screening assay of partial Lauraceae plants	4
Figure S2	FT-IR spectrum of 1	5
Figure S3	¹ H NMR spectrum of 1 (400 MHz, acetone-d ₆)	5
Figure S4	¹³ C NMR spectrum of 1 (100 MHz, acetone-d ₆)	6
Figure S5	DEPT spectrum of 1	6
Figure S6	HSQC spectrum of 1	7
Figure S7	HMBC spectrum of 1	7
Figure S8	COSY spectrum of 1	8
Figure S9	NOESY spectrum of 1	8
Figure S10	HRESIMS spectrum of 1	9
Figure S11	FT-IR spectrum of 2	9
Figure S12	¹ H NMR spectrum of 2 (400 MHz, CDCl ₃)	10
Figure S13	¹³ C NMR spectrum of 2 (100 MHz, CDCl ₃)	10
Figure S14	DEPT spectrum of 2	11
Figure S15	HSQC spectrum of 2	11
Figure S16	HMBC spectrum of 2	12
Figure S17	COSY spectrum of 2	12
Figure S18	NOESY spectrum of 2	13
Figure S19	HRESIMS spectrum of 2	13
Figure S20	FT-IR spectrum of 3	14
Figure S21	¹ H NMR spectrum of 3 (500 MHz, CDCl ₃)	14
Figure S22	¹³ C NMR spectrum of 3 (125 MHz, CDCl ₃)	15
Figure S23	DEPT spectrum of 3	15
Figure S24	HSQC spectrum of 3	16

Figure S25	HMBC spectrum of 3	16
Figure S26	COSY spectrum of 3	17
Figure S27	NOESY spectrum of 3	17
Figure S28	HRESIMS spectrum of 3	18

Preliminary anti-e β G screening assay of partial Lauraceae plants

Figure S1 (A) Anti-eβG activity of different samples and (B) anti-hβG activity in human intestines. 724r is the methanolic extract of the root of *N. acuminatissima*. #SCI: 1-((6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl) methyl)-3-(4-ethoxyphenyl)-1-(2-hydroxyethyl) thiourea was used as positive control.

dem A

Figure S5 DEPT spectrum of **1**

Figure S6 HSQC spectrum of **1**

Figure S7 HMBC spectrum of **1**

Figure S9 NOESY spectrum of **1**

Figure S10 HRESIMS spectrum of 1

Figure S11 FT-IR spectrum of 2

Figure S13 ¹³C NMR spectrum of 2 (100 MHz, CDCl₃)

Figure S17 COSY spectrum of 2

Figure S18 NOESY spectrum of 2

Figure S19 HRESIMS spectrum of 2

neolitacumone E(14)

Figure S20 FT-IR spectrum of **3**

Figure S21 ¹H NMR spectrum of **3** (500 MHz, CDCl₃)

Figure S23 DPET spectrum of **3**

Figure S27 NOESY spectrum of **3**

Figure S28 HRESIMS spectrum of 3